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Abstract: In this paper, we consider a general expression for ϕ(u, x, y), the joint

density function of the surplus prior to ruin and the deficit at ruin when the initial

surplus is u. In the renewal risk model, this density function is expressed in terms

of the corresponding density function when the initial surplus is 0. In the compound

Poisson risk process with phase-type claim size, we derive an explicit expression for

ϕ(u, x, y). Finally, we give a numerical example to illustrate the application of these

results.
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1 Introduction

The renewal risk model {U(t)}t≥0 is defined by

U(t) = u+ ct−
N(t)∑
i=1

Xi,

where u is the initial surplus, c is the rate of premium income per unit time, {Xi}∞i=1 is

a sequence of independent and identically distributed (i.i.d.) random variables, where Xi

represents the amount of the ith claim, and {N(t)}t≥0 is a counting process with N(t)

denoting the number of claims up to time t. In addition, Xi has a density function θ(x) and

a distribution function

Θ(x) = 1− Θ̄(x) = P{X ≤ x},

where X is an arbitrary Xi. Let
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E(X) =

∫ ∞

0

xdΘ(x) <∞.

The sequence of i.i.d. random variables {Wi}∞i=1 represents the claim inter-arrival times, with

W1 being the time until the first claim. Wi has a density function k(t) and a distribution

function

K(t) = 1− K̄(t) = P{W ≤ t},

where W is an arbitrary Wi. Let

E(W ) =

∫ ∞

0

tdK(t) <∞.

We assume that claim amounts are independent of claim inter-arrival times. Further, we

assume that

cE(W ) > E(X).

Define the time of ruin

T = inf{t : U(t) < 0},

where T = ∞ if U(t) ≥ 0 for all t > 0. Denote the ruin probability by

ψ(u) = P{T <∞ | U(0) = u},
and the survival probability by

δ(u) = 1− ψ(u).

It is well known that

ψ(u) = P{L > u} =
∞∑

n=1

(1− ρ)ρnF̄ ∗n(u), u ≥ 0, (1.1)

where ρ = ψ(0), L is the well-known maximal aggregate loss in the renewal risk model, and

F (y) = 1− F̄ (y)

is the so-called ladder height distribution function, which can be interpreted as either the

distribution function of the deficit at ruin when initial surplus u = 0 or the distribution

function of the amount of a drop in surplus, given that a drop below its initial level occurs.

F ∗n(y) = 1− F̄ ∗n(y)

is the distribution function of the n-fold convolution of F (y) with itself (see [1]).

Let

Φ(u, x, y) =

∫ x

0

∫ y

0

ϕ(u, r, s)dsdr

= P{U(T−) ≤ x, |U(T )| ≤ y, T <∞ | U(0) = u},
where U(T−) denotes the surplus prior to ruin, and U(T ) denotes the deficit at ruin.

Φ(u, x, y) may be interpreted as the probability that ruin occurs from initial surplus u

with the deficit at ruin no greater than y and the surplus prior to ruin no greater than x.

ϕ(u, r, s) denotes the joint density function. Let

h(u, x) =

∫ ∞

0

ϕ(u, x, y)dy,
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where h(u, x) may be interpreted as the defective density function of the surplus prior to

ruin from initial surplus u. Let

g(u, y) =

∫ ∞

0

ϕ(u, x, y)dx,

where g(u, y) may be interpreted as the defective density function of the deficit at ruin

from initial surplus u. Define the proper density function of the deficit at ruin when initial

surplus u = 0 by

f(y) =
g(0, y)

ψ(0)
.

Clearly, we have

f(y) =
d

dy
F (y).

The Sparre Andersen risk model is a well recognized risk model. As it was commented

by Gerber and Shiu[2], although the model was proposed almost half a century ago, it

remains an important area of research in actuarial science. A large number of researchers

have studied this model on a variety of topics. Albrecher et al.[3] considered the threshold

dividend strategies in the renewal risk model. Borovkov and Dickson[4] gave the distribution

of ruin time in the renewal risk model. Yang and Zhang[5] studied the Gerber-Shiu function

in a Sparre Andersen model with multi-layer dividend strategy. Landriault and Willmot[6]

considered discounted penalty function in the renewal risk model with general inter-claim

times.

The remainder of this paper is organized as follows. In Section 2, we provide a general

solution for Φ(u, x, y), and consequently its joint density function ϕ(u, x, y). In Section 3,

we consider a simplifications in compound Poisson process with phase-type claim amount.

In Section 4, we give a numerical example to illustrate the application of these results.

2 An Expression for ϕ(u, x, y)

In this section, we derive the explicit expression of ϕ(u, x, y).

First, we consider the case when u ≥ x. In order for the surplus immediately prior to

ruin to be less than or equal to x, the surplus cannot fall below 0 on the first occasion that

it drops below its initial level u. Hence it follows that

Φ(u, x, y) =

∫ u

0

g(0, z)Φ(u− z, x, y)dz

= ψ(0)

∫ u

0

f(z)Φ(u− z, x, y)dz.

Taking partial derivatives with respect to x and y yields

ϕ(u, x, y) = ψ(0)

∫ u

0

f(z)ϕ(u− z, x, y)dz. (2.1)

Secondly, in the case when 0 ≤ u < x, it is possible for ruin to occur at the time the

surplus first falls below its initial level u, and for the surplus prior to ruin to be less than or

equal to x, and for the deficit at ruin to be less than or equal to y. The probability of this
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event is

J(u, x, y) =

∫ x−u

0

∫ u+y

u

ϕ(0, r, s)dsdr

as the event is equivalent to ruin occurring from initial surplus 0 with a surplus immediately

prior to ruin less than or equal to x− u and a deficit at ruin between u and u+ y. Hence,

for 0 ≤ u < x, we have

Φ(u, x, y) = ψ(0)

∫ u

0

f(z)Φ(u− z, x, y)dz + J(u, x, y),

and

ϕ(u, x, y) = ψ(0)

∫ u

0

f(z)ϕ(u− z, x, y)dz + ϕ(0, x− u, u+ y). (2.2)

Therefore, for u ≥ 0, from (2.1) and (2.2), we have

ϕ(u, x, y) = ψ(0)

∫ u

0

f(z)ϕ(u− z, x, y)dz + β(u, x, y), (2.3)

where

β(u, x, y) = I(u < x)ϕ(0, x− u, y + u),

with

I(A) =

{
1, if A occurs;

0, otherwise.

Let

ϕ̃(s, x, y) =

∫ ∞

0

e−suϕ(u, x, y)du,

β̃(s, x, y) =

∫ ∞

0

e−suβ(u, x, y)du,

f̃(s) =

∫ ∞

0

e−suf(u)du.

Taking Laplace transform for (2.3) with respects to u, by basic properties of Laplace trans-

form, we obtain

ϕ̃(s, x, y) =
β̃(s, x, y)

1− ψ(0)f̃(s)
.

From (1.1) we obtain

E(e−sL) =

∫ ∞

0

e−sudδ(u) =
δ(0)

1− ψ(0)f̃(s)

(see [1]), which implies that

ϕ̃(s, x, y) =
E(e−sL)

δ(0)
β̃(s, x, y) =

∫ ∞

0

e−sudδ(u)

δ(0)
β̃(s, x, y).

Since the product of two transforms is the transform of a convolution, it immediately follows
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that

ϕ(u, x, y) =
1

δ(0)

∫ u

0

β(u− z, x, y)dδ(z)

=
1

δ(0)

∫ u

max{0,u−x}
ϕ(0, x− u+ z, u− z + y)dδ(z). (2.4)

Hence the above equation provides a means of finding ϕ(u, x, y) provided that we know

both δ(z) and ϕ(0, x, y).

3 Simplifications in the Classical Risk Process with
Phase-type Claim

In this section, we derive the explicit expression in compound Poisson process with phase-

type claim amount.

Assume that {N(t)}t≥0 is a Poisson process with rate λ > 0. So the claim inter-arrival

time Wi has distribution function

K(t) = 1− e−λt, t > 0.

First, we introduce the phase-type distributions. Phase-type distributions have become an

extremely popular tool for applied probabilists wishing to generalize beyond the exponential

while retaining some of its key properties (see [7]–[8]). The phase-type family includes the

exponential, mixture of exponentials, Erlangian and Coxian distributions as special cases.

The class of phase-type distributions is dense in the space of probability distributions on

[0, ∞). We can always use phase-type distribution as the approximate distribution. Readers

interested in finding a good approximating phase-type distributions may refer to [9]–[10].

Phase-type distributions were first introduced by Neuts[11] in 1975. A shortened treat-

ment can be stated as follows. Consider a Markov process with transient states {1, 2, · · · , m}
and absorbing state m+ 1, whose infinitesimal generator Q has the form

Q =

(
S S0

0 0

)
.

The diagonal entries Sii are necessarily negative, other entries are non-negative, and S0 =

−Se′ (e′ is an m× 1 column vector of ones) represents the rates at which transitions occur

from the individual transient states to the absorbing state. Let the process start in state i

with probability ai (i = 1, 2, · · · ,m,m + 1), and a = (a1, a2, · · · , am) (in many practical

problems, am+1 = 0). Under these assumptions, the time V until absorption has occurred

has distribution function

F (x) = 1− a exp{Sx}e′, x ≥ 0

and density function

p(x) = −a exp{Sx}Se′, x ≥ 0,

where the matrix exponential is defined by

exp{Sx} =
∞∑

n=0

xn

n!
Sn.
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As this distribution is completely determined by a and S, we say either that V has a phase-

type distribution with representation (a, S), or write V ∼ PH(a, S). Occasionally, we

say that F (x) has PH representation (a, S). For a more detailed description of phase-type

distributions, see [12].

Several well-known ruin-theoretic results can be summarized as follows (see [13]):

If the i.i.d. claim amount random variables Xi ∼ PH(a, S), from Theorem 4.4 in

[12] we know that the probability of ultimate ruin in the general renewal risk model with

phase-distributed claim amounts is given by

ψ(u) = a+ exp{uB}e′,
where B = S+Se′a+, and the row vector a+ is the unique solution of a fixed-point problem,

i.e., a+ satisfies the equation

a+ = ϕ(a+), (3.1)

while

ϕ(a+) = a

∫ ∞

0

exp{ct(S− Se′a+)}dK(t).

In the classical compound Poisson risk process, the claim inter-arrival times are expo-

nentially distributed with

K(t) = 1− e−λt, t ≥ 0.

Note that ∫ ∞

0

exp{ct(S− Se′a+)}dK(t)

=

∫ ∞

0

exp{ct(S− Se′a+)}λe−λtdt

= λ

∫ ∞

0

exp{t(−λIm + cS− cSe′a+)}dy

= λ(λIm − cS+ cSe′a+)
−1, (3.2)

where Im represents the m×m identity matrix. Therefore, substituting (3.2) into (3.1), we

obtain the following equation:

λa+ − ca+S+ ca+Se
′a+ − λa = 0. (3.3)

Based on Corollary 3.1 in [12], we try as the candidate solution

a+ = −λ
c
aS−1.

Then the left-hand side of (3.3) becomes

λa+ − ca+S+ ca+Se
′a+ − λa

= − λ2

c
aS−1 + λa+

λ2

c
aS−1Se′aS−1 − λa

= − λ2

c
aS−1 +

λ2

c
aS−1

= 0.
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Thus the probability of ultimate ruin in the compound Poisson risk process with phase-type

distribution claim amounts is given by

ψ(u) = −λ
c
aS−1 exp{uB}e′, (3.4)

where

B = S+
λ

c
Se′aS−1.

It is well known that in the compound Poisson risk process

ϕ(0, x, y) =
λ

c
p(x+ y)

(see [14]). Thus when Xi ∼ PH(a, S), we have

ϕ(0, x, y) = −λ
c
a exp{S(x+ y)}Se′, x ≥ 0. (3.5)

Substituting (3.4) and (3.5) into (2.4), for 0 ≤ u ≤ x, we obtain

ϕ(u, x, y) =
p(x+ y)

δ(0)

∫ u

0

λ

c
dδ(z)

= − λ

c
a exp{S(x+ y)}Se′ 1− ψ(u)

1− ψ(0)

= − λ

c
a exp{S(x+ y)}Se′

1 +
λ

c
aS−1 exp{uB}e′

1 +
λ

c
aS−1e′

, (3.6)

and for u > x we obtain

ϕ(u, x, y) =
p(x+ y)

δ(0)

∫ u

u−x

λ

c
dδ(z)

= − λ

c
a exp{S(x+ y)}Se′ψ(u− x)− ψ(u)

1− ψ(0)

= − λ

c
a exp{S(x+ y)}Se′

−λ
c
aS−1 exp{(u− x)B}e′ + λ

c
aS−1 exp{uB}e′

1 +
λ

c
aS−1e′

.

(3.7)

4 Example

In this section, we illustrate the application of the results of the previous section with an

example. We comment that the computation of matrix exponentials is a simple task with

the aid of software. The results in this section can be readily obtained using packages such

as Mathematica.

We consider that individual claim amount Xi ∼ PH(a, S) with a =
(1
2
,

1

2

)
and

S =

( −3 0

0 −7

)
. In this case, the distribution is an equal mixture of two exponentials at

rates 3 and 7, respectively, where {N(t)}t≥0 is a Poisson process with rate λ = 1 and the

rate of premium income per unit time c =
1

3
. From (3.4), we have
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B = S+
λ

c
Se′aS−1 =


−3

2

9

14

7

2

−11

2

 .

The matrix exponential exp{uB} can be calculated as

exp{uB} =


9

10
e−u +

1

10
e−6u 9

70
e−u − 9

70
e−6u

7

10
e−u − 7

10
e−6u 1

10
e−u +

9

10
e−6u

 .

From (3.5)–(3.7), we have

ϕ(0, x, y) =
3

2
(7e−7(x+y) + 3e−3(x+y)),

ϕ(u, x, y) =
3

20
(7e−7(x+y) + 3e−3(x+y))(35− e−6u(1 + 24e5u)), 0 ≤ u ≤ x,

and

ϕ(u, x, y) =
3

20
(7e−7(x+y) + 3e−3(x+y))(e−6u+x(e5x + 24e5u)− e−6u(1 + 24e5u)), u > x.

Thus, we have the defective density function of the surplus prior to ruin h(u, x) and the

defective density functions of the deficit at ruin g(u, y), namely,

h(u, x) =

∫ ∞

0

ϕ(u, x, y)dy

=


3e−6u−7x(−1− 24e5u + 35e6u)(1 + e4x)

20
, 0 ≤ u ≤ x;

3e−6u−7x(−1− e4x + e6x + e10x + 24e5u(−1 + ex)(1 + e4x))

20
, u > x,

and

g(u, y) =

∫ ∞

0

ϕ(u, x, y)dx =
3e−6u−7y(3 + 2e5u − e4y + 6e5u+4y)

10
.
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