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Abstract: In this paper, we study a class of soluble Lie algebras with variety relations
that the commutator of m and n is zero. The aim of the paper is to consider the
relationship between the Lie algebra L with the variety relations and the Lie algebra L
which satisfies the permutation variety relations for the permutation ¢ of {3,--- , k}.
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1 Introduction

There are many parallel results between groups and Lie algebras. We can translate some
results from groups to Lie algebras. For example, Macdonald!! discussed some varieties
of groups, particularly, some varieties associated with nilpotent groups in 1961, and then
Suthathip!® showed the similar varieties for nilpotent Lie algebras. In this paper, we extend

similar varieties in [3] to soluble Lie algebras.

Let L be a Lie algebra, and 1,22, - ,2, € L. The commutator [x1,z9, - ,x,] in L is
defined by
(21, 22] = [21, 2]
and
[X1,@2, o1, Tn] = [[T1, 22, Tre1], Tn ), n > 2. (1.1)

Moreover, we define
[.fl,xg, o Tmy Y1,Y2, 00 ayn] - [[Ila Ty 7x’m]7 [y17y25 e 7y7l]]
for any integers m and n. We say that the Lie algebra L is variety [m,n] = 0 if it satisfies

[[xth;"' al‘m]a [y15y27"' 5yn]] = 0’ Li, Yj eL.
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If a Lie algebra L satisfies [x1, 22, - , 2] = 71,22, Zy(3), -+, T, Where ¢ is a per-
mutation of {3,---,k}, then we call that L satisfies C(k, ). If L satisfies C(k, ) for all
permutations ¢ of {3,---,k}, then we call that L satisfies C(k).

The main result of this paper is that L satisfies C'(n+2) (n > 2) if and only if L satisfies
the law [n — k,2+ k] =0 for all k = 0,1,--- ,n — 2. Then it is easy to see that [3,2]=0 is
equivalent to C(5). Furthermore, [n,2] = 0 (n > 3) implies C(2n — 1). However, the law
[m,n] =0 does not imply any nontrivial law C'(k, ¢) for m,n > 3.

2 The Lie Algebra with Varieties [m,n] =0

Now we want to introduce some properties of the Lie algebra with variety [m, n] = 0. Denote
by (x) a subalgebra generated by x.

Definition 2.1  Let L be a Lie algebra. We define the sequence {L"}p>1 by
L'=1L, Lt =[L,L"], n>1.
If L™+t =0, L™ # 0 for some m, then we say that L has nilpotent class precisely m.

Lemma 2.1 Let A be an associative algebra. Then the following identities hold:

(1) (adc)™(a) = > (—1)m_j( T )cjacm_j for all a,c € A;

0<j<m
(2) [ab,c] = [a,c]b+ alb,c] for all a,b,c € A.
Lemma 2.2 [f L satisfies [n,m] = 0, then [n+p, m-+q] = 0 for any nonnegative numbers
p and q.

Lemma 2.3P!  If L satisfies C(k, p1) and C(k, ), then L satisfies C(k, ) for any ¢ in
the group generated by @1 and pa.

Lemma 2.4P  If L satisfies C(k), then L satisfies C(m) for all m > k.

Lemma 2.5 Let L be a Lie algebra. Then [a,[z,y]] = 0 if and only if [a,x,y] = [a,y, z]
for any a,x,y € L.

Proof. Tt is easily checked by Jacobian identity.

Lemma 2.6  Let L be a Lie algebra with variety [n,2] =0 (n > 2). If L/Z(L) satisfies
C(n+1), then L satisfies C(n + 2).

Proof. By Lemma 2.5, we know that L satisfies C(n+ 2, ;) for ¢; = (n+1,n+ 2). Since
L/Z(L) satisfies C(n + 1), in particular, it satisfies C(n + 1, p2) for v3 = (3,4,--- ,n+1).
Thus, for any x1, 9, ,2n4+1 € L, we have
[T1, 20,23, , Tni1] = [T1, T2, Tpy(3),  + » Tpymeny] € Z(L),

and also

[21, @2, Bng1, Tna] = (21,22, By (3), 7+ s Ta (n41)s Tipn(nt2)]
for any x,2 € L. That is, L satisfies C(n + 2, ¢3). Since S,, = (1, ¢2), by Lemma 2.3, we
know that L satisfies C(n + 2).
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Lemma 2.7  If L satisfies [n,m] = 0 and [n — 1,m + 1] = 0, then L/Z(L) satisfies
[n—1,m] = 0. Particularly, if L satisfies [n,n—1] =0, then L/Z(L) satisfies [n—1,n—1] = 0.

Proof. Let
a=a+Z(L)=[r1,22, ,xn-1] + Z(L),
b=b+Z(L) = [y, y2, - ym] + Z(L),
By Jacobian identity, we know that [a,b, 2] = [a,2,b] + [a,[b, z]] for any z € L. By the
hypothesis, L satisfies [n,m] = 0 and [n — 1,m + 1] = 0. Thus we have [a, z,b] = 0 and
[a,[b,2]] = 0. So [a,b] € Z(L) and [a,b] = [a,b] + Z(L) = 0. That is, L/Z(L) satisfies
[n—1,m]=0.

Ti,Yj € L.

Lemma 2.8  If L satisfies [n,m] =0 and L/Z(L) satisfies [n—1,m] = 0, then L satisfies
[m+1,n—1]=0.

Proof. Let a=[r1,%2, " ,Tm+1], b= [Y1,Y2, - ,Yn—1] for all z;,y; € L. Then
[aab] = 7[(),(1]
= _[ba [x1;$2;' o 7xm]a$m+1]
= 7[ba [xlal'Qa e 7xm];zm+1] + [bamerl; [xlal'Qa T 7xm]]

Since L/Z(L) satisfies [n — 1, m] = 0, we have [b, [x1,Z2, -+ ,Zy]] € Z(L). Hence,
[b, [x1, 22, , Tm], Tmt1] = 0.

Furthermore, since L satisfies [n,m] = 0, we have
[b, Tmt1, [X1, 22, ,x]] = 0.

Therefore, [a,b] = 0, that is, L satisfies [m + 1,n — 1] = 0.

3 Some Cases for Small m and n

In this section, we consider the construction of the Lie algebra L with variety [m,n] = 0 for
small m and n.

Theorem 3.1 L satisfies [3,2] = 0 if and only if L satisfies C(5).

Proof. If L satisfies [3,2] = 0, then by Lemma 2.7, L/Z(L) satisfies [2,2] = 0. Thus,
L/Z(L) satisfies C(4). Thereby, by Lemma 2.6, the result is true.

Conversely, if L satisfies C'(5), in particular, L satisfies C(5, 1) for ¢1 = (4,5). Using
Lemma 2.5, the result follows.

Corollary 3.1 L satisfies C(n) if and only if L satisfies C(n,p;) (i = 1,2) for o1 =
(4,5,---,n—1) and ¢3 = (n — 1,n), where n > 5.

Proof. 1f L satisfies C(n), then it is easy to see that L satisfies C(n,;), i =1,2.
Conversely, let L satisfy C(n,¢;), ¢ = 1,2. We proceed by induction on n. If n =5, it
is the result in Theorem 3.1. By Lemma 2.3, L satisfies C(n, ¢) for any ¢ such that ¢(3) = 3.
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Since L satisfies C'(n, 1), we have [x1, T2, 23, -, Tp_1,%n] = [21,%2, T4, (3), " » Ty (n—1)> Tn)
for any z,, € L. Hence,

(€1, 20,23, , Tn_1] = [T1,%2, Ty (3), > Tipy (n—1)) € Z(L).
That is, L/Z(L) satisfies C'(n — 1, 1). Similarly, we can show that L/Z(L) satisfies C'(n —
1,3) for ¢35 = (n —2,n — 1) € {(p1,p2). By induction on n, L/Z(L) satisfies C(n — 1).
Thus, by Lemma 2.6, L satisfies C(n).

Theorem 3.2 L satisfies C(n+2) (n > 2) if and only if L satisfies [n—k,2+ k] =0 for
allk=0,1,--- ,n— 2.

Proof. Induction on n. In the cases of n = 2 and n = 3, it has been proved in Theorem
3.1. Now, we assume n > 3. If L satisfies C(n + 2), then L satisfies [n,2] = 0 by Lemma
2.5. Furthermore, L satisfies C'(n + 2, ¢) for any ¢ which fixes n + 2. Thus,

[T1, 22,23, , Tn, Tng1, Tng2] = (21,02, Tu(3),  » Tp(n) Tp(nt1), Tni2)
for any z,42 € L, and then

(@1, 20,23, , Tn, Tng1] — [T1, T2, Tp(3)s + » Tp(n)s To(nt1)) € Z(L).

So we know that L/Z(L) satisfies C(n + 1). Then, by the hypothesis of induction on n,
L/Z (L) satisfies [n — 1 — k, 2+ k] = 0 for any nonnegative integer k such that n —1—k > 2.
Finally, by Lemma 2.8 and [n,2] = 0, we know that L satisfies [n — k,2 + k] = 0 for all
k=0,1,---,n—2.

Conversely, let L satisfy [n — k,2 + k] = 0 for all nonnegative integers k < n — 2 and
assume by induction that if L satisfies [n — 1 —k,2+ k] =0 for all 0 < k <n — 3, then L
satisfies C'(n + 1). Since L satisfies [n —k,24+k]=n—k—-1,24+k+1] =0, and L/Z(L)
satisfies [n —k — 1,24+ k] = 0 by Lemma 2.7, L/Z (L) satisfies C(n + 1). Hence, L satisfies
C(n + 2) by Lemma 2.6.

Remark 3.1 By the anticommutativity of Lie bracket, we know that L satisfies [n,m] =
0 if and only if L satisfies [m,n] = 0. Thus, we can replace Theorem 3.2 by the following
result: L satisfies C'(n+2) if and only if L satisfies [n,2] = [n—1,3] =--- = [n—s,2+5] =0,
where 2s =n — 2 if n is even and 2s =n — 3 if n is odd.

Theorem 3.3  If L satisfies
n,2l=n-13=---=n—-k2+k=0 (3.1)
for some k < s, then L satisfies C(2n — 2k —1).

Proof.  Let L satisfy (3.1). Then, by Lemma 2.2, L satisfies
[2n—2k—3,2]=[2n—2k—4,3] = =[n—kn—k—1]=0 (3.2)
also. By Theorem 3.2, we know that L satisfies C(2n — 2k — 1). This completes the proof.

In particular, for £ = 0, we get the following results.

Corollary 3.2  If L satisfies [n,2] =0, then L satisfies C(2n — 1) for n > 3.
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Corollary 3.3  If L satisfies C(n,p) (n > 5) for all ¢ which leave fixed 3,--- ;m (m <
n—2), or for any set of generators of the group of permutations of {m+1,--- ;n} (m > 3),
then L satisfies C(n +m — 3).

Theorem 3.4  Let L satisfy
n,2l=n—ki,2+ki]=--=n—kmn,2+kn]=n-52+s=0, (3.3)
where 0 < k1 < ko < -+ < ky, < s and s is defined in Remark 3.1. Then L satisfies

C(n+1+t), where t = max{ky, k2 — k1, -+ ,km — km—1,8 — km }.

Proof.  Note that (3.1) implies (3.2), and (3.3) implies that L satisfies [n +t — 1,2] =
[n+t—2,3]=---=[2,n+t—1] = 0. Hence, L satisfies C(n+ 1+¢) by Theorem 3.2. This
completes the proof.

Next, we comment briefly on some results of the situation for

[T1, 20, 2] = [T1,Tp(2) -+ 5 Typ(n))- (3.4)

Theorem 3.5 L satisfies (3.4) for all permutations ¢ of {2,--+ ,n} if and only if L is a

nilpotent of class <n — 1.

Proof. Use induction on n. For n = 3, by Lemma 2.5, [z1, 2, 3] = [21, 23, 2] if and only
if [x1, [x2,x3]] = 0. If L satisfies the hypotheses for n > 3, then L satisfies [n — 2,2] = 0 by
Lemma 2.5 and L satisfies (3.4) for any ¢ which fixes n. Thus, as in the proof of Lemma 2.6,
L/Z(L) satisfies (3.4) when n is replaced by n — 1 for any permutation ¢ of {2,--- ,n —1}.
Therefore, by induction, L/Z(L) is a nilpotent of class < n — 2 and L is a nilpotent of class
<n-1.

The proof of the converse is trivial.

Now, we know that the law [n,2] = 0 (n > 3) implies C(2n—1). The law [n, 1] = 0 means
that nilpotence class n implies C(n + 1) trivially. However, the law [m,n] =0 (m,n > 3)
does not imply C(k, ) for any k and any nontrivial ¢. It suffices to show this for [3,3] = 0.

Lemma 3.1  If L satisfies [3,3] =0 and C(n,¢) (n > 4), where p(m) = 3, m # 3, then
the two-generator subalgebras of L satisfy C(n +1).

Proof. If m = 4, then it is easy to see that L satisfies C(4). Now, let n > 5, m = n
and H = (z,y), z,y € L. Then, we show that H satisfies [n — 1,2] = 0. Since L satisfies
[3,3] = 0, it suffices to check that [x1, 29, -+ ,zn_1,[z,y]] = 0. Since L satisfies C(n, ¢) and
¢(n) = 3, we can assume that ¢'(3) = n. Thus

[x,y, T3, ", Tn-1, [I, y]] = [I, Y, [I, y]a Lol(4)) " 7prl(’n)] =0.
If 1 = [x,y], then by Jacobian identity we have

[xla T2, " 3 Tp—1, [.f,y]] = [[I) y]a T3, T2, ,Tp—1, [xay]]

+ [[Iay]ﬂ [1’2,1‘3],1'4, 5 Tp—1, [Iay]]
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Since p(n) = 3,

[[:E,y], [1’2,1‘3],1‘4,"' y Tn—1, [:c,y]] = [1' Y, [1'2;1'3]7334;' oy Tn—1, [l’,y]]
= [Iaya [Iay]a [$2,$3],I4,-- . 7x71—1]
=0.

We have
[$17x27" 5 Tn—1, [Iay]] = [[xay]7x37x25' Ly Tn—1, [xay]]
By the same way, we know that
[l‘l,l‘g,"' y Tn—1, [m’y]] = [[Z,y],l’g,' Ty Tn—1, [l’,y],l@]
= [[Iay]a [xay]7x37" . 7xn—17x2]

=0.

Since [3,3] = 0, H satisfies [n — 1,2] = 0. And since L satisfies [n —2,3| =[n—3,4] =--- =
[3,n — 2] = 0, by Theorem 3.2, H satisfies C(n + 1).

Now we consider the case of m < n. We proceed by induction on n — m. Suppose that
the result is true for the case of p(m + 1) = 3, m # 2, then we need to consider the case
of ¢(m) = 3 (m # 3). By the hypothesis of induction, we know that H/Z(H) satisfies C(n)
and [n —2,2] = 0. Since H satisfies [n — 2,3] = 0, by Lemma 2.8 we know that H satisfies
[n—1,2] = 0. Thus [3,3] = 0 implies that H satisfies C'(n + 1). This completes the proof.

Next, we give a Lie algebra which satisfies [3,3] = 0, but the subalgebra (x,y) does not
satisfy C'(n + 1) for any n > 4.

Let A(Z,3) be the associative algebra of formal power series in the noncommuting vari-
ables z, y, z with integer coefficients. Let [r1,r2] = r179 — ror;. Then A(Z,3) can be
viewed as a Lie algebra. If the relation 71[ra, r3] = 0 is added to A(Z, 3) for any monomials
r; € A(Z,3), whenever the degree (as monomial in z, y, z) of 1 is > 3, then the result that
A(Z, 3) satisfies [3,3] = 0 follows.

Now, we only need to show that [[r1,r2,73], [ra,75,76]] = O for any r;, € A(Z,3). Let
[r1,72] = @, [r4,75] = b. Then we have

[[Tlv 2, T3]7 [7’4, Ts, TGH = [[aa T3]a [ba TGH

= lars — r3a, brg — reb]
= (ars — r3a)(brg — r¢b) — (brg — r¢b)(ars — r3a)
= (arszbrg — arsrgb — rzabrg + raargh)

— (brgars — brgrsa — rebars + rebrsa).

In the expression (arsbrg — arsrgb — rzabrg + rsargh), we replace a and b by 173 — 1971 and
[r4, 5], respectively. And in the expression (brgars — brgrsa — rebars + rgbrsa), we replace
a and b by [r1,r2] and r4rs — r5ry, respectively. Then we have [[r1,r2,73), [r4, r5,76]] = 0.
That is, A(Z, 3) satisfies [3,3] =0 .
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We show that the subalgebra H = (z,y) does not satisfy C'(n+1) for n > 4. By Lemma
2.1, we know that

[1’; Y9, Y, [x,y]] = (71)n*3[(ady)n73([1,’ y])ﬂ [xay]]
—

n—3

D S ) (e P

0<j<n—3—j J
= —[z,y]?y"?
#0.
By Lemma 2.5, we have
[xayayv" . ayvxay] 7é [xayayv" . ay7yax]'
— ——
n—3 n—3

So (z,y) does not satisfy C(n + 1) for any n > 4.
Hence, by Lemma 3.1, if [3,3] = 0 implies C(n, ), then ¢(3) = 3. Now we suppose
that [3,3] = 0 implies C(m + n + 3, ), where ¢(m +mn+3) = m + 3, n > 0. Then, in the

Lie algebra A(ng)a [xayamf" ;l';y] = [x,y,l',"' y Ly Yy Tyw e 733]' Let [CL’,y,l’,"' 733] =T.
— —_— = ~——
m—+n m n m

Then

[T7$7"'7$7Q]Z[Tay7$7"'ax]- (35)

~—— ~——
n n

So

[(adz)™(T),y] = (adz)" ([T’ y]). (3.6)

By Lemma 2.1, we know that the equality (3.5) holds if and only if n = 0. Hence, we have
proved the following remark.

Remark 3.2  The law [m,n] = 0 (m,n > 3) does not imply C(k,¢) for any k > 4 and

nontrivial ¢.
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