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1 Introduction

We consider the persistence of lower dimensional tori for a family of random real analytic

Hamiltonian systems of the parameterized action-angle form

H = e + 〈ω, y〉 +
1

2
〈z, Mz〉+ εP (x, y, z, θt), (1.1)

where (x, y, z) ∈ Td × Rd × R2m varies in a complex neighborhood D(r, s) = {(x, y, z) :

|Imx| < r, |y| < s2, z < s} of Td × {0} × {0}, ω ∈ O (a bounded closed region in Rd), ε is a

small parameter, θt : Ω ⊂ Rd → Ω , t ∈ R1
+, is a continuous stationary stochastic processes

with θ0 = id, and (Ω , P,F) is a stochastic basis. Hereafter, all θt dependence function are

of class Cl0 for some l0 ≥ d, and P is a small perturbation.

This kind of systems describes dynamics of harmonic oscillator under perturbations such

as white noise, or under some effects of some noise θt which are neither periodic, quasi-

periodic nor almost periodic.

With the symplectic form
d

∑

i=1

dxi ∧ dyi +

m
∑

j=1

dzj ∧ dzd+j,
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the equation of motion of (1.1) reads































ẋ = ω + ε
∂P

∂y
,

ẏ = −ε
∂P

∂x
,

ż = JMz + J
∂P

∂z
,

where M(θt) is a 2m × 2m real symmetric matrix for each θt ∈ Ω , and J is the standard

2m × 2m symplectic matrix. Hence the associated unperturbed motion of (1.1) is simply

described by the equation















ẋ = ω,

ẏ = 0,

ż = JMz,

which implies that the unperturbed system admits a family of invariant tori Tω = Td ×
{0} × {0} parameterized by the frequency vectors ω ∈ O.

Similar to the classical KAM theorem (see [1]–[3]), Melnikov[4],[5] posed the persistence

problem of lower dimensional tori in the deterministic Hamiltonian systems, which concludes

that under some appropriate non-degenerate and non-resonance conditions, there exits a

Cantor set O∗ ⊂ O, such that those lower dimensional invariant d-tori with the frequencies

ω ∈ O∗ will persist as ε sufficiently small; moreover, in the sense of Lebesgue measure

O∗ → O, as ε → 0. Some achievements on Melnikov persistence problem can be found in

[6]–[20].

However, what happens to the Melnikov persistence for random or non-periodical per-

turbed systems (1.1)? In this paper, we are concern with this problem. We prove that for

most of frequencies ω ∈ Ω , there exists a set of Cantor set Ωγ ⊂ Ω such that the associated

unperturbed lower dimensional invariant torus Tω, ω ∈ Ωγ , persists as a set of Cantor frag-

ments of the invariant torus with the“random frequency” close to ω(θt) for the perturbed

system (1.1), provided ε is sufficiently small.

The persistence of lower dimensional tori problem can describe the stability of non-

autonom-ous systems. Different from previous, we need not to assume that the perturbation

P is periodic or not. Applying the results, we know that there is a Cantor set Ωγ , such

that when θt ∈ Ωγ , the lower dimensional invariant tours of unperturbed system persists,

provided ε is sufficiently small.

The paper is organized as follows. In Section 2, we state our theorem for a general random

Hamiltonian system and the corollary A of non-autonomous systems. Then, a parameter-

depended iterative scheme is described in Section 3 for one cycle. In Section 4, we derive

the proof of our result by deriving an iteration lemma and giving measure estimates.



NO. 1 LI Y. et al. KAM TPYE-THEOREM FOR DIMENSIONAL TORI 83

2 Main Results

We consider the random parameter-dependent, real analytic Hamiltonian system

H = e(θt) + 〈ω(θt), y〉 +
1

2
〈M(θt)z, z〉+ P (x, y, z, θt), (2.1)

where(x, y, z) lies in a complex neighborhood D(r, s) = {(x, y, z) : |Imx| < r, |y| < s, |z| <

s} of Td × {0} × {0} ⊂ Td × Rd × R2m. As above, θt : Ω → Ω is a continuous stationary

stochastic processes with stochastic basis (Ω , P,F) , where Ω ⊂ Rd is a bounded closed

region. Also, all θt dependence are of class Cl0 for some l0 ≥ d. Then, the motion of

associated unperturbed system is simply described as














ẋ(t) = ω(θt),

ẏ(t) = 0,

ż(t) = JM(θt)z.

Definition 2.1 (simi-torus) Let g : Td ×O × Ω → Rd be continuous and

L = {x(t) ∈ Td : ẋ = ω(θt) + g(x, θt)}.
We call L × {0} a simi-torus with the frequency ω(θt) + g(x, θt).

Definition 2.2 (Cantor fragment) For given Cantor Ωγ ⊂ Ω, to make the definition

clearly, we first denote

Tγ = {t : t ∈ [0,∞), θt ∈ Ωγ}.

Then we call the set Fγ ⊂ Td the Cantor fragment of Td, if

Fγ = {x(t) ∈ Td : ẋ = ω(θt) + g(x, θt), t ∈ Tγ}.

Consider (2.1) and let λ1(θt), · · · , λ2m(θt) be the eigenvalues of JM(θt). We assume the

weak form of Melnikov’s second non-resonance condition, i.e.,

A1) The set

{θt ∈ Ω :
√
−1〈k, ω(θt)〉 − λi(θt) − λj(θt) 6= 0, ∀ k ∈ Zd \ {0}, 1 ≤ i, j ≤ 2m}

admits full Lebesgue measure relative to Ω ;

A2) θt is ergodic on Ω ;

A3) M(θt) is nonsingular for each θt ∈ Ω .

The main result of the present paper is the following.

Theorem A Consider (2.1). Let τ > d(d − 1) − 1 be fixed, and d∗ = max{d0, d}.
1) Assume A1), A2), A3). Then there exists a sufficiently small µ = µ(r, s, m, l0, τ) > 0

such that if

|∂l
θt

P |D(r,s)×Ω ≤ γ(|l0|+1|)4m2τs2µ, |l| ≤ l0, (2.2)

then there exist a Cantor set Ωγ ⊂ Ω with |Ω \Ωγ | = O(γ
1

d∗−1 ) and a Cl0−1 Whitney smooth

family of C2 symplectic transformations

Ψθt
: D

( r

2
,
s

2

)

→ D(r, s), θt ∈ Ωγ ,

which is real analytic in x and C2 uniformly close to the identity such that

H ◦ Ψθt
(x, y) = e∗(θt) + 〈ω∗(θt), y〉 +

1

2
〈M(θt)z, z〉+ P∗(x, y, θt),
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where, for all θt ∈ Ωγ and (x, y) ∈ D
(r

2
,
s

2

)

, we have

∂j
y∂k

z P∗|(y,z)=(0,0) = 0,

for |j|+ |k| ≤ 2, and ω∗(θt)−ω(θt), M∗−M = O(µ). Thus, for each θt ∈ Ωγ , corresponding

to the unperturbed torus Tθt
of (2.1), the associated perturbed invariant torus of Hamiltonian

(2.1) can be described as














ẋ(t) = ω∗,

ẏ(t) = 0,

ż(t) = JM∗(θt)z.
Namely, the Cantor fragments of the unperturbed torus Tθt

associated to the toral frequency

ω(θt) as θt ∈ Ωγ , persists and gives rise to a Cantor fragments F ∗
γ of an analytic, Diophan-

tine, simi-torus with the toral frequency ω∗(θt), where

F ∗
γ = {x(t) ∈ Td, ẋ = ω∗(θt), t ∈ Tγ}.

Moreover, these perturbed tori form a Cl0−1 Whitney smooth family.

2) There holds that

lim
t→∞

1

t

∫ t

0

Ω∗(θs(p))ds =

∫

Ω

Ω∗(q)dq a.e. Ω ,

and

lim
t→∞

1

t
|{s ∈ [0, t] : θs(p) ∈ Ωγ}| = |Ωγ | a.e. Ω .

3 KAM Step

In this section, we show a quasi-linear iterative scheme for the Hamiltonian (2.1) in one

KAM cycle, say, from a νth KAM step to the (ν + 1)th-step. Then, one can find that

the new perturbation get smaller, and the frequencies ων+1 and matrix Mν+1 are of small

deformation. For simplicity, we set l0 = d.

Set

r0 = r, γ0 = γ, Λ0 = Ω ,

H0 = H, e0 = e, ω0 = ω,

M0 = M, P0 = P,

N0 = e0(θt) + 〈ω0(θt), y〉 +
1

2
〈M0(θt)z, z〉.

Without loss of generality, let 0 < r0, γ0 ≤ 1. Then, for µ small, (2.2) becomes

|∂l
θt

P0|D(r0,s0) ≤ γa
0s2

0µ0, |l| ≤ d, (3.1)

where

a = (l0 + 1)4m2τ.

Now, suppose that after a νth-step, we have arrived at the following real analytic Hamil-

tonian:

Hν = Nν + Pν , (3.2)

Nν = eν(θt) + 〈ων(θt), y〉 +
1

2
〈Mν(θt)z, z〉,
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which is defined on a phase domain D(rν , sν) and depends smoothly on θt ∈ Λν . In addition,

Mν(θt) is non-singular and symmetry for each θt ∈ Λν , and,

Pν = Pν(x, y, θt)

satisfies

|∂l
θt

Pν |D(rν ,sν) ≤ γa
νs2

νµν , |l| ≤ d, (3.3)

for some 0 < µν ≤ µ0, 0 < γν ≤ γ0. We try to find a symplectic transformation Φν+1 on

a small phase domain D(rν+1, sν+1) and a smaller parameter domain Λν+1. It transforms

the Hamiltonian (3.2) into the Hamiltonian of the next KAM cycle, i.e.,

Hν+1 = H ◦ Φν+1 = Nν+1 + Pν+1,

Nν+1 = eν+1(θt) + 〈ων+1(θt), y〉 +
1

2
〈Mν+1(θt)z, z〉,

|∂l
θt

Pν+1|D(rν+1,sν+1) ≤ γa
ν+1s

2
ν+1µν+1, |l| ≤ d. (3.4)

Also, Mν+1 is non-singular and symmetric for each θt ∈ Λν+1.

For simplicity, we shall omit index for all quantities of the present KAM step (the νth-

step) and index all quantities (Hamiltonian, normal form, perturbation, transformation, and

domains, etc.) in the next KAM step (the (ν +1)-th step) by “+”. All constants ci, c below

are positive and independent of the iteration process. To simplify the notations, we shall

suspend the θt dependence in most terms of this section.

Define

r+ =
r

2
+

r0

4
, γ+ =

γ

2
+

γ0

4
,

s+ =
1

8
αs, α = µ

1
3 , µ = s

1
2 ,

β+ =
β

2
+

β0

4
, K+ =

([

log
1

µ

]

+ 1
)3η

,

Diα = D(r+ +
i − 1

8
(r − r+), iαs), i = 1, 2, · · · , 8,

D+ = Dα = D(r+, s+), D̃+ = D
(

r+ +
3

4
(r − r+), β+

)

,

D(ξ) = {y ∈ Cd : |y| < ξ}, D̂(ξ) = D
(

r+ +
7

8
(r − r+), ξ

)

, ξ > 0,

Γ (r − r+) =
∑

0<|k|≤K+

|k|2|l0|+(|l0|+1)4m2τe−|k| r−r+

8 .

3.1 Truncation

First, we write P in the Taylor-Fourier series and let R be the truncation, i.e.,

P =
∑

k∈Zd,∈Zd
+

pkıy
ıze

√
−1〈k,x〉,

R =
∑

|k|≤K+

(pk00 + 〈pk10, y〉 + 〈pk01, z〉 + 〈z, pk02z〉)e
√
−1〈k,x〉, (3.5)

where K+ will be specified below.
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Lemma 3.1 Assume that

H1)

∫ ∞

K+

td+3e−t
r−r+

16 dt ≤ µ.

Then, there is a constant c1 such that

|∂l
θt

(P − R)|D7α
≤ c1γ

as2µ2, |∂l
θt

R|D7α
≤ c1γ

as2µ, ∀ |l| ≤ d, θt ∈ Λ0.

Proof. See [20] for details.

3.2 Linearized Equations

In this subsection, we construct the time 1 map generating by the Hamiltonian F to elimi-

nating resonant terms R. The construction of F is as follows:

F =
∑

0<|k|≤K+

(fk00 + 〈fk10,y〉 + 〈fk01, z〉 + 〈z, fk02z〉)e
√
−1〈k,x〉 + 〈f001, z〉, (3.6)

where fk are (matrix valued) functions of θt. Let

[R] =
1

(2π)d

∫

Td

R(x, ·)dx.

If F matches the equation

{N, F} + R − [R] + 〈p001, z〉 = 0, (3.7)

then

H ◦ φ1
F = (N + [R]) ◦ φ1

F + (P − R) ◦ φ1
F ,

= N + [R] − 〈p001, z〉 +

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F ,

where

Rt = (1 − t)([R] − R − 〈p001, z〉) + R,

and

N+ = N + [R] − 〈p001, z〉, P+ =

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F .

Substituting (3.5) and (3.6) into (3.7) yields

−
∑

0<|k|≤K+

√
−1〈k, ω(θt)〉(fk00 + 〈fk10,y〉 + 〈fk01, z〉 + 〈z, f02z〉)e

√
−1〈k,x〉

+
∑

0<|k|≤K+

(〈M(θt)z, Jfk01〉 + 2〈M(θt)z, Jfk02z〉)e
√
−1〈k,x〉

= −
∑

0<|k|≤K+

(pk00 + 〈pk10, y〉 + 〈pk01, z〉 + 〈z, pk02z〉)e
√
−1〈k,x〉 − 〈P001, z〉.

Comparing the coefficients above, and assuming fk02 is symmetric, we deduce the following

linear equations for all 0 < |k| ≤ K+:
√
−1〈k, ω(θt)〉fk00 = Pk00,

√
−1〈k, ω(θt)〉fk10 = Pk10, (3.8)

−
√
−1〈k, ω(θt)〉fk01 + MJfk01 = −Pk01, (3.9)

−
√
−1〈k, ω(θt)〉fk02 + MJfk02 − fk02JM = −Pk02, Mf001 = −P001. (3.10)



NO. 1 LI Y. et al. KAM TPYE-THEOREM FOR DIMENSIONAL TORI 87

Denote

L0k =
√
−1〈k, ω(θt)〉,

L1k =
√
−1〈k, ω(θt)〉I2m − MJ,

L2k =
√
−1〈k, ω(θt)〉I4m2 + (MJ) ⊗ I2m + I2m ⊗ (JM).

The linear equations (3.8)–(3.10) are equivalent to

L0kfkj0 = Pkj0, j = 0, 1,

L1kfk01 = Pk01, L2kfk02 = Pk02,

for 0 < |k| ≤ K+. Obviously, the above equations are solvable if L0k, L1k, L2k are invertible.

Consider the set

Λ+ = {θt ∈ Λ : |L0k| >
γ

|k|τ , |detL1k| >
γ2m

|k|2τm
, |detL2k| >

γ4m2

|k|4τm2 , 0 < |k| ≤ K+}.

Since M is non-singular, the above linear equations (3.8)–(3.10) are uniquely solvable. Also,

the norm of F is controlled.

In the usual manner, we have the following:

Lemma 3.2 Assume that

H2)

|∂l
θt

M − ∂l
θt

M0|, |∂l
θt

ω − ∂l
θt

ω0| ≤ µ∗, 0 ≤ |l| ≤ d, (3.11)

where µ∗ will be specified below. Then, there exits a constant c2 such that the following hold:

(1) On Λ+,

|∂l
θt

fk00| ≤c2|k||l|+(|l|+1)τs2µe−|k|τ ,

|∂l
θt

fk10| ≤c2|k||l|+(|l|+1)2mτsµe−|k|τ ,

|∂l
θt

fk01| ≤c2|k||l|+(|l|+1)2mτsµe−|k|τ ,

|∂l
θt

fk02| ≤c2|k||l|+(|l|+1)4m2τµe−|k|τ , |∂l
θt

f001| ≤ c2sµ,

for all 0 < |k| ≤ K+;

(2) On D∗ × Λ+,

|F |, |Fx|, s|Fy|, s|Fz| ≤ c2s
2µΓ (r − r+) + c2s

2µ,

and on D̃ × Λ+,

|∂l
θt

∂i
x∂

(p,q)
(y,z)F | ≤ c2µΓ (r − r+) + c2µ,

for all 0 ≤ |l|, |i| ≤ d, |p| ≤ 1, |q| ≤ 2.

Lemma 3.3 Assume

H3) c2µΓ (r − r+) + c2µ <
1

8
(r − r+);

H4) c2sµΓ (r − r+) + c2sµ < s+.

Let φt
F be the flow generated by F . We have that

1) For all 0 ≤ t ≤ 1,

φt
F : D3 → D4

are well defined, real analytic and depend smoothly on θt ∈ Λ+;

2) Let Φ+ = φ1
F . Then for all θt ∈ Λ+,

Φ+ : D+ → D;
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3) There is a constant c3 such that

|∂l
θt

(φt
F − id)|D(s)×Λ+

≤ c3sµΓ (r − r+),

|∂l
θt

Di(Φ+ − id)|D̃+×Λ+
≤ c3µΓ (r − r+),

for all |l| ≤ d, 0 ≤ t ≤ 1, i = 0, 1, where

D = ∂(x,y,z).

3.3 New Normal Form

For the new normal form N+, we have

Lemma 3.4 There is a constant c4 such that for all 0 ≤ |l| ≤ d the following hold:

|∂l
θt

(e+ − e)|Λ+
≤ c4γ

as2µ,

|∂l
θt

(ω+ − ω)|Λ+
≤ c4γ

asµ,

|∂l
θt

(M+ − M)|Λ+
≤ c4γ

aµ.

3.4 Melnikov’s Conditions

Lemma 3.5 Assume that

H5) c4µKτ+1
+ ≤ γ − γ+

γa
0

;

H6) c4µK2mτ+2m
+ ≤ γ2m − γ2m

+

γ2am
0

;

H7) c4µK4m2τ+4m2

+ ≤ γ4m2 − γ4m2

+

γ4am2

0

.

Then, for all 0 < |k| ≤ K+, and θt ∈ Λ+, the following hold:

|L+
0k| >

γ+

|k|τ ,

|detL+
1k| >

γ2m
+

|k|2mτ
,

|detL+
2k| >

γ4m2

+

|k|τ4m2τ
.

3.5 New Perturbation P+

Now we estimate the new perturbation P+:

Lemma 3.6 On D+ × Λ+, there exits a constant c5, such that

|∂l
θt

P+| ≤ c5γ
a(s3µ2Γ (r − r+) + s3µ2 + s2µ2), |l| ≤ d.

Let c0 = max{1, c1, · · · , c5} and assume that

H9) c0γ
a(s3µ2Γ(r − r+) + s3µ2 + s2µ2) ≤ γa

+s2
+µ+.

Then, on D+ × Λ+,

|∂l
θt

P+| ≤ γa
+s2

+µ+, |l| ≤ d.

This completes one cycle of KAM steps.
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4 Proof of Main Result

4.1 Iteration Lemma

Set

Hν = Nν + Pν , Nν = eν + 〈ων , y〉 +
1

2
〈z, Mνz〉,

rν = r0

(

1 −
ν

∑

i=1

1

2i+1

)

, γν = γ0

(

1 −
ν

∑

i=1

1

2i+1

)

,

βν = β0

(

1 −
ν

∑

i=1

1

2i+1

)

, ην = µ
1
3
ν , µν = s

1
2
ν = µ

7
6

ν−1,

sν =
1

8
αν−1sν−1, αν = µ

1
3
ν , Kν =

([

log
1

µν−1

]

+ 1
)3η

,

Diα = D
(

rν +
i − 1

8
(rν−1 − rν), iαν−1sν−1

)

, i = 1, 2, · · · , 8,

Dν(ξ) = {y ∈ Cd : |y| < ξ}, D̂ν(ξ) = D(rν +
7

8
(rν−1 − rν), ξ), ξ > 0,

for all ν = 1, 2, · · · .

Lemma 4.1 If µ0 = µ0(r0, β0, m, d, τ), or equivalently, µ = µ(r, s, m, d, τ), is sufficiently

small ,then the KAM step described in Section 3 is valid for all ν = 0, 1, · · · . Consider the

sequences

Λν , Hν , Nν , eν , ων , Mν , Pν , Φν , ν = 1, 2, · · · .

Then the following properties hold:

1) Φν : Dν ×Λν −→ Dν−1 is symplectic for each θt ∈ Λ0 or Λν , and is of class C2,d, and

|∂l
θt

Di(Φν − id)|(D̂ν×Λ0)
≤ µ

1
4∗

2ν
,

where i = 0, 1, µ∗ = µ1−σ
0 , σ ∈

[3

4
, 1

)

;

2) On D̂ν × Λν ,

Hν = Hν−1 ◦ Φν = Nν + Pν ,

where

Nν = eν + 〈ων , y〉 +
1

2
〈z, Mνz〉.

For all |l| ≤ d,

|∂l
θt

eν − ∂l
θt

eν−1|Λν
≤ γa

0

µ∗
2ν

,

|∂l
θt

eν − ∂l
θt

e0|Λν
≤ γa

0µ∗,

|∂l
θt

ων − ∂l
θt

ων−1|Λν
≤ γa

0

µ∗
2ν

,

|∂l
θt

ων − ∂l
θt

ω0|Λν
≤ γa

0µ∗,

|∂l
θt

Mν − ∂l
θt

Mν−1|Λν
≤ γa

0

µ∗
2ν

,

|∂l
θt

Mν − ∂l
θt

M0|Λν
≤ γa

0µ∗,

|∂l
θt

Pν |Dν×Λν
≤ γa

νs2
νµν .
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Moreover, Mν is real symmetric and non-singular on Λν ;

3)

Λν = {θt ∈ Ων−1 : |Lν
0k| >

γν

|k|τ , |detLν
1k| >

γ2m
ν

|k|2τm
, |detLν

2k| >
γ4m2

ν

|k|4τm2 , Kν−1 ≤ |k| ≤ Kν}.

Proof. We have to verify H1)–H9) for all ν to guarantee the KAM cycle in section 3. For

simplicity, let r0 = β0 = 1, and s0, µ0 be sufficiently small. Note that

µν = µ
(7/6)ν

0 , sν = s
(7/6)ν

0 . (4.1)

It follows from (4.1) that

log(d + 3)! + (ν + 6)(d + 3) log 2 + 3ηd log
([

log
1

µν

]

+ 1
)

− Kν+1

2ν+2
− log µν ,

≤ log(d + 3)! + (ν + 6)(d + 3) log 2 + 3ηd log
([

log
1

µν

]

+ 2
)

+ (7/6)ν − (7/6)3ην

2ν+2

≤ 0,

as µ0 is small and (7/6)3ην−1 ≫ 2, so
∫ ∞

Kν+1

td+2e−
t

2ν+3 dt ≤ (d + 3)!2(ν+6)(d+2)Kn
ν+1e

−Kν+1

2ν+2 ≤ µν , (4.2)

i.e., H1) holds. Also, we have

γ4m2

ν − γ4m2

ν+1

γ4m2a
0

≤ c∗γ
4m2

ν ,

c0c∗µνKν+1
4m2 ≤ 1

24m2 ,

so H7) holds. H6) and H5) hold similarly, and we omit the details. Note that

Γν = Γ (rν − rν+1)

≤
∫ ∞

1

λ2d+(d+1)4m2τ+1e−
λ

2ν+6 dλ

≤ (2d + [(d + 1)4m2τ ] + 2)!2(ν+6)(2d+(d+1)4m2τ+1).

Let

a∗ = (2d + [(d + 1)4m2τ ] + 2)!64(2d+(d+1)4m2τ+1), (4.3)

b∗ = 2d + (d + 1)4m2τ + 1. (4.4)

Then

Γν ≤ a∗(2b∗)ν . (4.5)

It is clear that H3) and H4) are equivalent to
8c0µνΓν

rν − rν+1
≤ 16a∗µν2(b∗+1)ν ,

c0sµΓν ≤ 8a∗µ
2
3
ν 2b∗ν . (4.6)

Observe that H9) and (4.1) imply

c0γ
a
ν (s3

νµ2
νΓν + s3

νµ2
ν + s2µ2

ν)

γa
ν+1s

2
ν+1µν+1

≤ 2ac0

( s3
νµ2

νΓν

s2
ν+1µν+1

+
s3

νµ2
ν

s2
ν+1µν+1

+
s2µ2

ν

s2
ν+1µν+1

)

≤ 2a+3c0(s
5
6 µ

4
5 2b∗ν

+ s
5
6 µ

4
5 + µ

2
15 ). (4.7)
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Then, we only to show that

c∗µ(1/3)
ν 2(b∗+1)ν ≤ 1

2
, (4.8)

where c∗ = 2a+3c0a
∗. Since

µ(1/3)
ν 2(b∗+1)ν ≤ (µ

1
3

0 )(1+(ν/5))2(b∗+1)ν ≤ (µ
1
3

0 )(µ
1
15

0 2b∗+1)ν ,

(4.10) holds. Then H3), H4), H9) are verified, as µ0 is sufficiently small. From (4.8), we

have

µνΓν ≤ 1

2
µ(3/4)

ν ≤ µ
1
4

0

2ν+1
,

where µ∗ = µ1−σ
0 , σ ≥ 3

4
, so

c0µνΓν ≤ µ∗
2ν+1

, c0γ
aµνΓν ≤ γaµ∗

2ν+1
, (4.9)

for all ν = 0, 1 · · · .
In the following, we are to prove H2). For ν∗ = 0, Lemma 3.4 automatically holds. For

ν∗ ≥ 1, assume that Lemma 3.4 holds. Then we have

|∂l
θt

(Mν∗+1 − M0)|Dν∗+1×Λν∗+1
≤

ν∗
∑

ν=0

|∂l
θt

(Mν+1 − Mν)|Dν+1×Λν+1

≤
ν∗
∑

ν=0

c0γ
a
0µν

≤ γa
0

ν∗
∑

ν=0

µ∗
2ν+1

≤ γa
0µ

1
4

0

< µ∗.

The case for ω can be handled similarly. Then H2) holds for ν∗+1. Therefore all assumptions

in Section 3 hold for all ν. Moreover, µ∗ < 1 and

|Mν+1|Λν+1
≤ |(M0)

−1|Λ0

1 − µ(1/4)|(M0)−1|Λ0

≤ 2|(M0)
−1|Λ0

,

so Mν+1 is invertible.

3) is obvious.

4.2 Convergence

In this section, we prove the convergence of the sequences from Section 3. Let

Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν : Dν+1 × Λν+1 → D0,

H ◦ Ψν = Hν = Nν + Pν ,

Nν = e(θt)ν + 〈ων(θt), y〉 +
1

2
〈z, Mν(θt)z〉,

ν = 0, 1, · · · , which satisfy all properties described in Lemma 3.1. By the iteration lemma,

it is easy to verify that Ψν converges to a function Ψ∞ ∈ C2,d−1
(

D
(r0

2
,
β0

2

)

× Λ0

)

, in
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C2,d−1
(

D
(r0

2
,
β0

2

)

× λ0

)

norm, and each Ψθt
, θt ∈ Λ0, is symplectic and C2. Let

Λ∗ =

∞
⋂

ν=0

Λν , G∗ = D
(r0

2
,
β0

2

)

× Λ∗.

Then Λ∗ is a Cantor-like set, and {Ψθt
: θt ∈ Λ∗} is a Cd−1 Whitney smooth family of

analytic symplectic transformations on D
(r0

2
,
s0

2

)

.

By Lemma 3.1 2), it is clear that eν , ων and Mν converge uniformly on Λ∗. We denote e∞,

ω∞ and M∞ as their limits, respectively. It follows from the Whitney’s extension theorem

(see [21]) that these limits are also Hölder continuous in θt. Moreover, by Lemma 3.1 1), we

have that

|e∞ − e0|Λ∗
= O(γa

0 µ∗),

|ω∞ − ω0|Λ∗
= O(γa

0 µ∗),

|M∞ − M0|Λ∗
= O(γa

0 µ∗).

Thus, on G∗, Nν converges uniformly to

N∞ = e∞ + 〈ω∞, y〉 +
1

2
〈z, M∞z〉,

and the perturbation Pν converges uniformly to

P∞ = H ◦ Ψ∞ − N∞.

Clearly, these limits above are uniformly continuous in θt ∈ Λ∗ and analytic in (x, y, z) ∈
D

(r0

2
,
β0

2

)

.

Note that

|Pν |Dν
≤ γa

νs2
νµν .

It follows from Cauchy’s estimate that, for any θt ∈ Λ∗, j ∈ Zd
+, k ∈ Z2m

+ with |j|+ |k| ≤ 2,

|∂j
y∂k

z Pν |D(rν+i,
1
2
sν) ≤ γa

νµν .

Since, by (4.8), the right hand side of the above converges to 0 as ν → 0, we have

∂j
y∂k

z P∞|(y,z)=0 = 0

for all x ∈ Tn, θt ∈ Λ∗, j ∈ Zd
+, k ∈ Z2m

+ with |j| + |k| ≤ 2.

Next, we prove Theorem A-2). Since θt is stationary and ergodic, we have

lim
t→∞

1

t

∫ t

0

Ω∗(θs(p))ds =

∫

Ω

Ω∗(θ0(q))dq

=

∫

Ω

Ω∗(q)dq a.e. Ω .

According to the ergodic theorem, we choose the characteristic function of Ωγ , i.e.,

χ(Ωγ)(x) =

{

1, x ∈ Ωγ ;

0, others,
and have

lim
t→∞

1

t
|{s ∈ [0, t] : θs(p) ∈ Ωγ}| = lim

t→∞
1

t

∫ t

0

χ(Ωγ)(θs(p))ds

=

∫

Ω

χ(Ωγ)(q)dq

= |Ωγ | a.e. Ω .
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4.3 Measure Estimate

The measure estimate can be completed by applying the following lemmas. See Section 5.2

of [12] for the details.

Lemma 4.2 Let A1) hold and λi(θt) (i = 1, 2, · · ·m) be the eigenvalues of JM0(θt). Then

the following hold:

1) For all k ∈ Zd,

detL0
1k =

2m
∏

i=1

(
√
−1〈k, ω(θt)〉 − λi(θt)),

detL0
2k =

2m
∏

i,j=1

(
√
−1〈k, ω(θt)〉 − λi(θt) − λj(θt)).

2)

{θt ∈ Λ0 : 〈k, ω(θt)〉 6= 0, detL0
1k 6= 0, detL0

2k 6= 0, ∀k ∈ Zd \ 0}

admits full Lebesgue measure relative to Λ0.

Lemma 4.3 Let Λ ⊂ Rd, d > 1, be a bounded closed region and g : Λ → Rd be such that

rank
{∂αg

∂λα
: |α| ≤ d − 1

}

= d.

Then, for a fixed τ > d(d − 1) − 1,
∣

∣

∣
{λ ∈ Λ : |〈g(λ), k〉| ≤ γ

|k|τ }
∣

∣

∣
≤ c(Λ, d, τ)

(

γ

|k|τ+1

)
1

d−1

, k ∈ Zd \ {0}, γ > 0.

Proof. See [22, 23].

5 Application

Consider the system

H(y, x, θt) = h(y) + εP (y, x, θt), (5.1)

where (y, x) varies in a complex neighbourhood of G × Td, G ⊂ Rd is a closed bounded

region, θt is defined as Section 1; h and P are real analytic in (y, x) and Cl0 differentiable

in parameter θt; h satisfies the standard nondegeneracy condition det
∂2h

∂y2
6= 0 in G, P is a

perturbation and ε > 0 is a small parameter.

We denote

ω(y) =
∂h

∂y
(y) = (ω1(y), · · · , ω2(y)).

ω(y) is called nonresonant if 〈k, ω(y)〉 6= 0 for any k ∈ Zd \ {0}. Otherwise, ω(y) is resonant.

Let aij =
ωi

ωj
. If each aij is a rational number, then the vector ω is commensurable. It

is obvious that there exits a rank d − 1 subgroup Gd−1 of Zd, such that 〈k, ω(y)〉 = 0 for

any k ∈ Gd−1 and 〈k, ω(y)〉 6= 0 for all k ∈ Zd \ Gd−1. Thus

O(Gd−1, G) = {y ∈ G : 〈k, ω(y)〉 = 0, k ∈ Gd−1}
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is a one dimensional surface and we call it Gd−1-resonant surface.

By the group theory, there are independent integer vectors τ1, · · · , τd−1, τd such that

det(τ1, · · · , τd−1, τd) = 1, Gd−1 is generated by τ1, · · · , τd−1 and Zd is generated by τ1, · · · ,
τd−1, τd. We say that h(y) is Gd−1-nondegenerate if h(y) is nondegenerate and

det(τ1, · · · , τd−1)
T ∂2h

∂y2
(y)(τ1, · · · , τd−1) 6= 0, y ∈ O(Gd−1, G).

For the general case, Gd̄ is a given subgroup generated by independent integer vectors

τ1, · · · , τd̄, such that 〈k, ω(y)〉 = 0 for any k ∈ Gd̄ and 〈k, ω(y)〉 6= 0 for all k ∈ Zd \ Gd̄.

Then

O(Gd̄, G) = {y ∈ G : 〈k, ω(y)〉 = 0, k ∈ Gd̄}

is called a Gd̄-resonant surface, and its dimension is d̃ = d − d̄.

We set

K = (τ ′
1, · · · , τ ′

d̃
, τ1, · · · , τd̄), K̃ = (τ ′

1, · · · , τ ′
d̃
), K̄ = (τ1, · · · , τd̄),

where K, K̃, K̄ are d× d, d× d̃, d× d̄ matrices respectively, K generates Zd, and detK = 1.

h(y) is called Gd̄-nondegenerate if h(y) is nondegenerate and

det
(

K̄T ∂2h

∂y2
(y)K̄

)

6= 0, for all y ∈ O(Gd̄, G).

Write P (y, x, θt) in its Fourier’s expansion:

P (y, x, θt) =
∑

k∈Zd

Pke
√
−1〈k,x〉.

For the subgroup Gd̄ ⊂ Zd, let

p̄(y, ϕ, θt) =
∑

k∈Gd̄

pke
√
−1〈k,x〉 =

∑

l∈Zd̃

pK̄le
√
−1〈l,ϕ〉, (5.2)

where ϕ = K̄T x. Clearly, p̄ has at least d̄ critical points on Td̄. For the subgroup Gn−1,

there are at least two critical points (see [24]).

We have the following Poincaré Theorem for the random Hamiltonian system (5.1).

Theorem A1 Suppose that H = h + εP is analytic, ω is commensurable and all the

critical points of p̄(ϕ, y) are nondegenerate. Then there exits an ε0 (depending on h, Gd−1, p̄)

sufficiently small such that for 0 < ε < ε0 the system (5.1) has at least two periodic solutions.

For the resonant group Gd̄, we have the following resonant KAM theorem for (5.1).

Theorem A2 (General Case) Suppose that H = h + εP is analytic, and p̄(ϕ, y) has an

analytic family of nondegeneracy critical points for all y ∈ O(Gd̄, G). Then there exists

an ε0 (depending on h, Gd̄, p̄) sufficiently small and a Cantor set Λ∗ ⊂ O(Gd̄, G) such

that for 0 < ε < ε0 the system (5.1) admits a set of Cantor fragments of an analytic,

Diophantine d̃-dimensional invariant torus Iy0
parametrized by y0 ∈ Λ∗. Moreover, the

measure of |O(Gd−1, G) \ Λ∗| → 0 as ε → 0.

For any y0 ∈ O(Gd̄,G), we expand the Hamiltonian (5.1) into Taylor’s series:

H(y, x, θt) = 〈ω(y0), y − y0〉 +
1

2

〈∂2h

∂y2
(y0), y − y0

〉

+ εP (y, x, θt) + O(|y − y0|3).
And then we use the linear transformation.

y − y0 = Kp, q = KT x,



NO. 1 LI Y. et al. KAM TPYE-THEOREM FOR DIMENSIONAL TORI 95

and the symplectic canonical coordinate transformation

(p, q mod2π) → (Y, X mod2π) : p =
∂S(q, Y )

∂q
, X =

∂S(q, Y )

∂Y
,

where

S = 〈Y, q〉 + ε
∑

k∈Zd̄\{0}

√
−1hk

〈k, ω〉 (q′′e
√
−1〈k,q′〉),

with

hk =

∫

P̄ (q, 0)e
√
−1〈k,q′〉dq′,

p′ = Y ′ +
√
−1ε

∑

k∈Zd̄

kSke
√
−1〈k,q′〉),

Sk =

√
−1hk

〈k, ω〉 ,

p′′ = Y ′′ + O(ε),

X = q.

Hence, we get the desired normal form:

H(y, x, z, θt) = 〈ω, y〉 +
δ

2
〈Mz, z〉+ O(ε2) + ε(O|y|2 + |y||z| + |z|3),

where δ is a small positive number and (x, y, z) ∈ Td × Rd × R2d̄ varies in a complex

neighborhood D(r, s) = {(x, y, z) : |Imx| < r, |y| < s2, z < s}. By the Main Theorem, we

can prove Theorems A1 and A2.

See [25] for details.
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