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Abstract

We analyze the convergence of the weighted nonlocal Laplacian (WNLL) on the high

dimensional randomly distributed point cloud. Our analysis reveals the importance of the

scaling weight, µ ∼ |P |/|S| with |P | and |S| being the number of entire and labeled data,

respectively, in WNLL. The established result gives a theoretical foundation of the WNLL

for high dimensional data interpolation.
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1. Introduction

In this paper, we consider the convergence of the weighted nonlocal Laplacian (WNLL) on

high dimensional randomly distributed data. WNLL is proposed in [11] for high dimensional

point cloud interpolation, which successfully resolves the curse of dimensionality issue in the

classical basis function-based approaches. High dimensional point cloud interpolation is a fun-

damental problem in machine learning, which can be mathematically formulated as follows: Let

P = {p1, · · · ,pn} and S = {s1, · · · , sm} be two sets of points in R
d. Suppose u is a function

defined on the point cloud P̄ = P ∪ S, which is known only over the set S, and we denote the

function u as b(s) for any s ∈ S. We use interpolation methods, e.g. WNLL, to compute u

over the whole point cloud P̄ leveraging the given values over S.

Nonlocal Laplacian is widely used in nonlocal methods for image processing [2,3,6,7], and in

nonlocal Laplacian, the interpolating function is obtained by minimizing the following energy

functional

J (u) =
1

2

∑

x,y∈P̄

w(x,y)(u(x)− u(y))2, (1.1)

with the constraint

u(x) = b(x), x ∈ S. (1.2)

Here, w(x,y) is a given weight function, typically chosen to be Gaussian, i.e. w(x,y) =

exp(−‖x − y‖2/σ2) with σ > 0 being a hyperparameter, and ‖ · ‖ is the Euclidean norm in
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R
d. In graph theory and machine learning literature, nonlocal Laplacian is also called graph

Laplacian [4, 16].

Graph Laplacian works very well with a high labeling rate, i.e., there is a large portion of

labeled data. However, when the labeling rate is low, i.e. |S|/|P̄ | ≪ 1, the solution of the graph

Laplacian is found to be discontinuous at the labeled points [11,12]. WNLL is devised to fix the

issues related to the low-labeling rate, and in WNLL, the energy functional in (1.1) is modified

by adding the weight, |P̄ |
|S| , to balance the labeled and unlabeled terms, which resulting in

min
u

∑

x∈P





∑

y∈P̄

w(x,y)(u(x) − u(y))2



+
|P̄ |
|S|

∑

x∈S





∑

y∈P̄

w(x,y)(u(x)− u(y))2



 , (1.3)

with the constraint

u(x) = b(x), x ∈ S.

When the labeling rate is high, WNLL is close to graph Laplacian. However, when the labeling

rate is low, the specially designed weight forces the solution to be close to the given values near

the labeled points, such that the discontinuities are removed. Furthermore, The optimization

problem (1.3) is easy to solve numerically. With a symmetric weight function, i.e. w(x,y) =

w(y,x), the corresponding Euler-Lagrange equation of (1.3) is a simple linear system

2
∑

y∈P

w(x,y) (u(x)− u(y)) +

( |P |
|S| + 2

)

∑

y∈S

w(y,x)(u(x) − b(y)) = 0, x ∈ P,

u(x) = b(x), x ∈ S.

This linear system can be solved efficiently by the conjugate gradient iteration. The advantages

of the WNLL over the graph Laplacian have been shown evidently in image inpainting [11,12],

scientific data interpolation [15], and more recently deep learning [13].

1.1. Main Result

We consider the error of the WNLL in a model problem, where the whole computational

domain is set to be a k-dimensional closed manifold M embedded in R
d. The point cloud P ,

uniformly distributed on M, gives a discrete representation of M. Let D ⊂ M be a labeled

subset of M, and S is a uniform sample of D. In S, we have u(x) = b(x). An illustration of

the computational domain and the point cloud is shown in Fig. 1.1.

In WNLL, we solve the following linear system, (1.4), to extend the label function u to the

entire domain P .
∑

y∈P

Rδ(x,y) (uδ(x)− uδ(y)) + µ
∑

y∈S

Rδ(x,y)(uδ(x)− b(y)) = 0, x ∈ P, (1.4a)

uδ(x) = b(x), x ∈ S, (1.4b)

where Rδ(x,y) is kernel function given as

Rδ(x,y) = CδR

(‖x− y‖2
4δ2

)

, (1.5)

where Cδ = 1
ωkδk

with ωk is the volume of the unit ball in R
k. R : [0,+∞) → R is a kernel

functions satisfying the conditions listed in Assumption 1.1.
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D

M

Fig. 1.1. Illustration of the computational domain. Gray points: sample of M; Black points: sample

of D ⊂ M.

In this paper, we will prove that when δ goes to 0 and n = |P |,m = |S| goes to infinity,

solution of WNLL converges to the solution of following Laplace-Beltrami equation:

{

∆Mu(x) = 0, x ∈ M\D,

u(x) = b(x), x ∈ D,
(1.6)

where ∆M is the Laplace-Beltrami operator on M.

In the analysis, we need to impose following assumptions:

Assumption 1.1. • Assumptions on the manifold: M be a k-dimensional closed C∞ man-

ifold isometrically embedded in a Euclidean space Rd. D and ∂D are smooth submanifolds

of Rd. Moreover, b(x) ∈ C1(D).

• Assumptions on the kernel functions:

(a) Compact support: R(r) = 0 for r > 1 and R is continuous in [0, 1);

(b) Nonnegativity: 0 ≤ R(r) ≤ 1 for any r ≥ 0.

(c) Nondegeneracy: ∃δ0 > 0 such that R(r) ≥ δ0 for 0 ≤ r ≤ 1/2.

(d) ∃η0 > 0 such that R̄(r) ≤ η0R(r) for r ≥ 0 with R̄(r) =
∫ 1

x
R(s)ds

• Assumptions on the point cloud: P and S are uniformly distributed on M and D, respec-

tively.

Remark 1.1. The assumption on the kernel function R is very mild actually. Most often used

kernel functions all satisfy these assumptions, for instance,

R(r) =

{

1, 0 ≤ r < 1,

0, r ≥ 1.

When δ is small enough, locally the manifold M, D and the boundary ∂D can be well approx-

imated by Eucleadian space. Then it is easy to check that

In the analysis, we consider the limit as δ → 0 and n,m → ∞. So, we assume that δ is

small enough, i.e.

δ ≤ T0, (1.7)

where T0 > 0 is a constant only depend on M,D. It is easy to check that ω̄0 > 0.



868 Z.Q. SHI AND B. WANG

Proposition 1.1. Let

ω̄0 = inf
0<δ≤T0

inf
x∈M\D

(

∫

M\D
R̄δ(x,y)dy

)

,

ωDc = inf
0<δ≤T0

inf
x∈Dδ\D

(∫

D
Rδ(x,y)dτy

)

,

ω0 = inf
0<δ≤T0

inf
x∈M

∫

M
(Rδ(x,y)dy) ,

ω1 = sup
0<δ≤T0

sup
x∈M

∫

M
(Rδ(x,y)dy) ,

ω̄∂D = sup
0<δ≤T0

sup
x∈M

(

δ

∫

∂D
R̄δ(x,y)dτy

)

,

where Dδ = {x ∈ M, dist(x,D) ≤ δ} and

R̄δ(x,y) = CδR̄

(‖x− y‖2
4δ2

)

. (1.8)

Then we have

0 < ω̄0, ωDc , ω0, ω1, ω̄∂D < +∞.

The proof is straightforward and is deferred to appendix.

For samples, P and S, we assume they are large enough. More specifically, we assume

1

δk+3
√
n
(lnn− 2 ln δ + 1)

1/2 ≤ C0,
1

δk+2
√
m

(lnm− 2 ln δ + 1)
1/2 ≤ C0, (1.9)

where C0 > 0 is a constant independent on δ, P and S.

In this paper, we abuse the notation C to denote any constant independent on δ, P and S.

The constant may be different in different places.

The main contribution of this paper is to analyze the relation between the solutions of the

Laplace-Beltrami equation (1.6) and the WNLL (1.4). More precisely, we prove the following

theorem:

Theorem 1.1. Let uδ solves (1.4) with µ = |P |/|S| and u solves (1.6). Under (1.7) and

Assumption 1.1, with probability at least 1− 1/(2min{m,n}), where n = |P |,m = |S|, we have

|uδ(x)− u(x)| ≤ Cδ, ∀x ∈ P.

Remark 1.2. In above theorem, the error is bounded in terms of δ. We can also bound the

error in terms of n and m based on assumption (1.9),

1

δk+3
√
n
(lnn− 2 ln δ + 1)

1/2 ≤ C0,
1

δk+2
√
m

(lnm− 2 ln δ + 1)
1/2 ≤ C0.

Theorem 1.1 is a direct consequence of the maximum principle (Theorem 1.2) and the error

estimation (Theorem 1.3).

Theorem 1.2. Under the assumptions in Assumption 1.1, with probability at least 1− 1/(2n),

n = |P |, Lδ,n has the comparison principle, i.e.

|Lδ,nu(x)| ≤ Lδ,nv(x) → |u(x)| ≤ v(x), ∀x ∈ P
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where

Lδ,nu(x) =
∑

y∈P

Rδ(x,y) (u(x)− u(y)) + µ
∑

y∈S

Rδ(x,y)u(x), x ∈ P. (1.10)

Based on the maximum principle, Theorem 1.1 can be proved if we can find an auxiliary

function v such that |Lδ,n(uδ − u)| ≤ CδLδ,nv.

Theorem 1.3. Let uδ and u solve (1.4) and (1.6) respectively. v is the solution of (1.11),

{ −∆Mv(x) = 1, x ∈ M\D,

v(x) = 1, x ∈ D.
(1.11)

Under the assumptions in Assumption 1.1, with probability at least 1−1/(2min{m,n}), n = |P |,

|Lδ,n(uδ − u)| ≤ CδLδ,nv,

C > 0 is a constant independent on δ, P and S.

Theorems 1.2 and 1.3 will be proved in Sections 2 and 3 respectively. In Section 4, a technical

theorem is proved. Some discussions are made in Section 5.

2. Maximum Principle (Theorem 1.2)

First, we introduce some notations. For any two points x,y ∈ P ∪ S, we say that they are

neighbors if and only if Rδ(x,y) > 0, denoted as x ∼ y or y ∼ x. x and y are connected if

there exist z1, · · · , zm ∈ P ∪ S such that

x ∼ z1 ∼ · · · ∼ zm ∼ y.

We say point cloud P is S-connected if for any point x ∈ P , there exists y ∈ S, such that x

and y are connected.

If P is S-connected, it is easy to check that Lδ,n has maximum principle, i.e.

Lδ,nu(x) ≥ 0, x ∈ P → u(x) ≥ 0, x ∈ P, (2.1)

Lδ,nu(x) ≤ 0, x ∈ P → u(x) ≤ 0, x ∈ P, (2.2)

and consequently

|Lδ,nu(x)| ≤ Lδ,nv(x) → |u(x)| ≤ v(x), ∀x ∈ P. (2.3)

The maximum principle can be proved by contradiction. Suppose that Lδ,nu(x) ≥ 0, x ∈ P ,

but u(x0) = minx∈P u(x) < 0. Since P is S-connected, there exist z ∈ S and z1, · · · , zm ∈ P ,

such that x0 ∼ z1 ∼ · · · ∼ zm ∼ z.

Lδ,nu(x0) ≥ 0 and u(x0) = minx∈P u(x) < 0 imply that u(x) = u(x0) as long as x ∼ x0.

More specifically, u(z1) = u(x0). Then, we move to z1 to get that u(z2) = u(z1). Repeating

this process, we can show that u(zm) = · · · = u(z1) = u(x0) = minx∈P u(x).

Now, we compute Lδ,nu(zm). First, u(zm) = minx∈P u(x), so

∑

y∈P

Rδ(x,y) (u(zm)− u(y)) ≤ 0.
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Moreover, u(zm) < 0 and zm ∼ z give that
∑

y∈S

Rδ(x,y)u(zm) ≤ Rδ(zm, z)u(zm) < 0.

Then we have Lδ,nu(zm) < 0 which contradicts Lδ,nu(zm) ≥ 0.

In the rest of this section, we will prove that with high probability, P is S-connected. To

prove this, we need a theorem which will be proved in Section 4.

Theorem 2.1. With probability at least 1− 1/(2n), n = |P |,

sup
f∈Rδ

|I(f)− In(f)| ≤
C

δk
√
n
(lnn− 2 ln δ + 1)

1/2
, (2.4)

where k is the dimension of M,

I(f) =
1

|M|

∫

M
f(x)dx, In(f) =

1

n

∑

x∈P

f(x),

|M| is the volume of M and Rδ is a function class defined as

Rδ = {Rδ(x, ·) : x ∈ M}.

Suppose P is not S-connected. Let

S̄ = {x ∈ P ∪ S : x is connected to S}, S̄c = (P ∪ S)\S̄.

Then S̄c 6= ∅. Denote

S̄δ =





⋃

x∈S̄

B(x; δ/2)



 ∩M, S̄c
δ =





⋃

x∈S̄c

B(x; δ/2)



 ∩M

where B(x; δ) = {y ∈ R
d : ‖x− y‖ ≤ δ}.

Using the definition of S̄ and S̄c, we know that S̄δ ∩ S̄c
δ = ∅, hence

∂S̄δ ∩ S̄c
δ = ∅,

where ∂S̄δ is the boundary of S̄δ in R
d. Furthermore, since M is connected, we have

∂S̄δ ∩M 6= ∅.

Choose any x0 ∈ ∂S̄δ ∩M, we also have that x0 /∈ S̄c
δ , which implies that

Rδ/4(x0,y) = 0, ∀y ∈ P.

It follows that

In(Rδ/4(x0, ·)) =
1

n

∑

x∈P

Rδ/4(x0,x) = 0.

On the other hand, using Theorem 2.1 and Proposition 1.1,

In(Rδ/4(x0, ·)) ≥
1

|M|

∫

M
Rδ/4(x0,x)dx− C

δk
√
n
(lnn− 2 ln δ + 1)1/2 ≥ 1

2
ω0 > 0.

Here we also use the assumption that n is large enough (1.9). Then it has been proved P is

S-connected with probability at least 1− 1/(2n) by contradiction.
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3. Error Estimate (Theorem 1.3)

Let u and v solve (1.6) and (1.11) respectively. First, we list several facts and notations

which will be used in the subsequent analysis.

• u and v are both Lipschitz continuous in M. The Lipschitz constants are denoted as ξu
and ξv respectively.

• u, v are both smooth functions in M\D and D. We need that u, v ∈ C3 in M\D and

u, v ∈ C1 in D.

Let eδ(x) = uδ(x) − u(x). uδ and u solve (1.4) and (1.6) respectively. Direct calculation

shows that for x ∈ P

Lδ,neδ(x) =
∑

y∈P

Rδ(x,y)(u(x)− u(y)) + µ
∑

y∈S

Rδ(x,y)(u(x)− b(y)). (3.1)

We need to find an upper bound of the right hand side of (3.1). First, we have

1

n
|Lδ,neδ(x)|

≤

∣

∣

∣

∣

∣

∣

1

n

∑

y∈P

Rδ(x,y)(u(x)− u(y))

∣

∣

∣

∣

∣

∣

+ ξuµ

∣

∣

∣

∣

∣

∣

1

n

∑

y∈S

Rδ(x,y)‖x− y‖

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

|M|

∫

M
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

+ ξuδ

∣

∣

∣

∣

∣

∣

1

m

∑

y∈S

Rδ(x,y)

∣

∣

∣

∣

∣

∣

+ Ξn

≤
∣

∣

∣

∣

1

|M|

∫

M
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

+ ξuδ

∣

∣

∣

∣

1

|D|

∫

D
Rδ(x,y)dy

∣

∣

∣

∣

+ Ξn + Ξm, (3.2)

where

Ξu
P = sup

x∈M

∣

∣

∣

∣

∣

∣

1

n

∑

y∈P

Rδ(x,y)(u(x)− u(y))− 1

|M|

∫

M
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

∣

∣

, (3.3)

ΞS = sup
x∈M

∣

∣

∣

∣

∣

∣

1

m

∑

y∈S

Rδ(x,y)−
1

|D|

∫

D
Rδ(x,y)dy

∣

∣

∣

∣

∣

∣

. (3.4)

To find an upper bound of the first term of (3.2), we need the following theorem which can

be found in [8].

Theorem 3.1. Let u(x) ∈ C3(M) and

Ibd =

d
∑

j=1

∫

∂M
nj(y)(x− y) · ∇(∇ju(y))R̄t(x,y)dτy, (3.5)

Iin =
1

δ2

∫

M
Rδ(x,y)(u(x)−u(y))dy+

∫

M
R̄δ(x,y)∆Mu(y)dy

−
∫

∂M
R̄δ(x,y)

∂u

∂n
(y)dτy−Ibd,
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where n(y) = (n1(y), · · · , nd(y)) is the out normal vector of ∂M at y, ∇j is the jth component

of gradient ∇, R̄δ(x,y) = CδR̄
(

‖x−y‖2

4δ2

)

and R̄(r) =
∫∞
r R(s)ds.

Then there exist constants C, T0 depending only on M, so that,

|Iin| ≤ Cδ‖u‖C3(M), (3.6)

as long as δ ≤ T0.

Since u is piecewise smooth in M\D and D, we estimate the error in M\D and D separately.

For x ∈ M\D, using above theorem, for u solves (3.6), we have
∣

∣

∣

∣

∣

∫

M\D
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

∣

≤ Cδ3‖u‖C3(M\D) + δ2
∣

∣

∣

∣

∫

∂D
R̄δ(x,y)

∂u

∂n
(y)dSy

∣

∣

∣

∣

+ δ2|Ibd(D)|

≤ Cδ3‖u‖C3(M\D) + C
(

δ2‖u‖C1(M\D) + δ3‖u‖C2(M\D)

)

∫

∂D
R̄δ(x,y)dSy, (3.7)

where

Ibd(D) =

d
∑

j=1

∫

∂D
nj(y)(x− y) · ∇(∇ju(y))R̄t(x,y)dSy. (3.8)

The integral over D can be bounded based on the Lipschitz continuity of u,
∣

∣

∣

∣

∫

D
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

≤ 2ξuδ

∫

D
Rδ(x,y)dy . (3.9)

Then, we get for x ∈ P ∩ (M\D),
∣

∣

∣

∣

∫

M
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

≤ Cδ3‖u‖C3(M\D) + C
(

δ2‖u‖C1(M\D)+δ3‖u‖C2(M\D)

)

∫

∂D
R̄δ(x,y)dSy

+2ξuδ

∫

D
Rδ(x,y)dy. (3.10)

Next, we try to bound
∫

∂D R̄δ(x,y)dSy. For x ∈ P ∩ (M\D) with dist(x, ∂D) ≤ δ, using

proposition 1.1,
∫

∂D
R̄δ(x,y)dSy ≤ ω̄∂D

δ
≤ ω̄∂D

δωDc

∫

D
Rδ(x,y)dy. (3.11)

For x ∈ P ∩ (M\D) with dist(x, ∂D) > δ
∫

∂D
R̄δ(x,y)dSy ≤

∫

∂D

(x− y) · n(y)
δ

R̄δ(x,y)dSy

=
1

δ

∫

D
div
(

(x− y)R̄δ(x,y)
)

dy

=
k

δ

∫

D
R̄δ(x,y)dy +

1

δ

∫

D

‖x− y‖2
4δ2

Rδ(x,y)dy

≤C

δ

∫

D
Rδ(x,y)dy. (3.12)
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In the last inequality, we use the assumption that R̄(r) ≤ η0R(r). Combining (3.11) and (3.12),

we have for x ∈ P ∩ (M\D)

∫

∂D
R̄δ(x,y)dSy ≤ C

δ

∫

D
Rδ(x,y)dy. (3.13)

Substituting (3.13) in (3.10), we get for x ∈ P ∩ (M\D),

∣

∣

∣

∣

∫

M
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

(3.14)

≤ Cδ3‖u‖C3(M\D) + Cδ
(

‖u‖C1(M\D) + δ‖u‖C2(M\D) + 2ξu
)

∫

D
Rδ(x,y)dy.

For x ∈ P ∩ D, the bound is straightforward, just using the Lipschitz continuity of u,

∣

∣

∣

∣

∫

M
Rδ(x,y)(u(x)− u(y))dy

∣

∣

∣

∣

≤ ξuδ

∫

M
Rδ(x,y)dy ≤ ω1ξuδ, x ∈ P ∩ D. (3.15)

Substituting (3.14) and (3.15) in (3.2), we have

1

n
|Lδ.neδ(x)| ≤

ω1ξuδ

|M| +
ξuδ

|D|

∫

D
Rδ(x,y)dy + ΞP + ΞS , x ∈ P ∩ D, (3.16)

1

n
|Lδ.neδ(x)| ≤

Cδ3

|M|‖u‖C3(M\D) +
Cδ

|D|

∫

D
Rδ(x,y)dy + ΞP + ΞS , x ∈ P ∩ (M\D). (3.17)

Next, we want to get a lower bound of Lδ.nv(x) with v given in (1.11).

1

n
Lδ,nv(x) =

1

n

∑

y∈P

Rδ(x,y)(v(x)− v(y)) + v(x)
1

m

∑

y∈S

Rδ(x,y) (3.18)

≥ 1

|M|

∫

M
Rδ(x,y)(v(x)− v(y))dy +

1

|D|

∫

D
Rδ(x,y)dy − Ξv

P − ΞS ,

where

Ξv
P = sup

x∈M

∣

∣

∣

∣

∣

1

n

∑

y∈P

Rδ(x,y)(v(x)− v(y)) − 1

|M|

∫

M
Rδ(x,y)(v(x) − v(y))dy

∣

∣

∣

∣

∣

, (3.19)

ΞS = sup
x∈M

∣

∣

∣

∣

∣

1

m

∑

y∈S

Rδ(x,y)−
1

|D|

∫

D
Rδ(x,y)dy

∣

∣

∣

∣

∣

.

Using Theorem 3.1 again, we have for x ∈ M\D
∫

M\D
Rδ(x,y)(v(x)− v(y))dy

≥ δ2
∫

M\D
R̄δ(x,y)dy − 2δ2

∣

∣

∣

∣

∫

∂D
R̄δ(x,y)

∂v

∂n
(y)dSy

∣

∣

∣

∣

− Cδ3‖v‖C3(M\D)

≥ δ2
∫

M\D
R̄δ(x,y)dy − Cδ2‖v‖C1(M\D)

∣

∣

∣

∣

∫

∂D
R̄δ(x,y)dSy

∣

∣

∣

∣

− Cδ3‖v‖C3(M\D)

≥ ω̄0δ
2 − Cδ‖v‖C1(M\D)

∫

D
Rδ(x,y)dy − Cδ3‖v‖C3(M\D),
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and
∫

D
Rδ(x,y)(v(x) − v(y))dy =

∫

D
Rδ(x,y)(v(x)− 1)dy ≥ 0, x ∈ M\D.

This is due to the fact that v(x) ≥ 1, x ∈ M. Then we have for x ∈ M\D
∫

M
Rδ(x,y)(v(x)− v(y))dy

≥ω̄0δ
2 − Cδ‖v‖C1(M\D)

∫

D
Rδ(x,y)dy − Cδ3‖v‖C3(M\D). (3.20)

In P ∩ D, using the Lipschitz continuity of v,
∫

M
Rδ(x,y)(v(x)− v(y))dy ≥− ξvδ

∫

M
Rδ(x,y), x ∈ P ∩ D. (3.21)

Combining (3.18), (3.20) and (3.21), we obtain

1

n
Lδ.nv(x) ≥

1

|D|

∫

D
Rδ(x,y)dy − ξvω1δ

|M| − Ξv
P − ΞS , x ∈ P ∩ D, (3.22)

1

n
Lδ,nv(x) ≥

1

2|D|

∫

D
Rδ(x,y)dy +

ω̄0δ
2

2|M| − Ξv
P − ΞS , x ∈ P ∩ (M\D). (3.23)

Now we need to deal with Ξu
P , Ξ

u
P and ΞS which are given in (3.3), (3.19) and (3.4).

Theorem 3.2. With probability at least 1− 1/(2n), n = |P |,

sup
f∈Rδ

|I(f)− In(f)| ≤
C

δk
√
n
(lnn− 2 ln δ + 1)

1/2
, (3.24)

where k is the dimension of M,

I(f) =
1

|M|

∫

M
f(x)dx, In(f) =

1

n

∑

x∈P

f(x),

|M| is the volume of M and Rδ is a function class defined as

R̄δ = {Rδ(x, ·), Rδ(x, ·)u(·), Rδ(x, ·)v(·) : x ∈ M, u and v solves (1.6) and (1.11) respectively.}

This theorem will be proved in Section 4 using the empirical process theory.

1

δk+3
√
n
(lnn− 2 ln δ + 1)

1/2 ≤ C0,
1

δk+2
√
m

(lnm− 2 ln δ + 1)
1/2 ≤ C0. (3.25)

Using Theorem 3.2 and the assumption (1.7) we know that with high probability,

Ξu
P ≤ C0δ

3, Ξv
P ≤ C0δ

3, ΞS ≤ C0δ
2.

Under the assumption that C0 is sufficiently small, using (3.22) and (3.23), we have

1

n
Lδ.nv(x) ≥























1

2|D|

∫

D
Rδ(x,y)dy, x ∈ P ∩ D,

1

4|M|δ
2ω̄0 +

1

2|D|

∫

D
Rδ(x,y)dy, x ∈ P ∩ (M\D).
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It follows from (3.17) and (3.16) that

1

n
|Lδ.neδ(x)| ≤























Cδ +
Cδ

|D|

∫

D
Rδ(x,y)dy, x ∈ P ∩ D,

Cδ3 +
Cδ

|D|

∫

D
Rδ(x,y)dy, x ∈ P ∩ (M\D).

Finally we have

|Lδ,neδ(x)| ≤ CδLδ.nv(x), x ∈ P. (3.26)

The proof of Theorem 1.3 is completed. 2

4. Entropy Bound

In this section, we will prove Theorems 2.1 and 3.2. The method we use is to estimate

the covering number of the function classes. First, we introduce the definition of the covering

number.

Let (Y, d) be a metric space and set F ⊂ Y . For every ǫ > 0, denote by N(ǫ, F, d) the

minimal number of open balls (with respect to the metric d) that are needed to cover F . That

is, the minimal cardinality of the set {y1, · · · , ym} ⊂ Y with the property that every f ∈ F has

some yi such that d(f, yi) < ǫ. The set {y1, · · · , ym} is called an ǫ-cover of F . The logarithm

of the covering numbers is called the entropy of the set. For every sample {x1, · · · , xn}, let µn

be the empirical measure supported on that sample. For 1 ≤ p < ∞ and a function f , put

‖f‖Lp(µn) =
(

1
n

∑n
i=1 |f(xi)|p

)1/p
and set ‖f‖∞ = max1≤i≤n |f(xi)|. Let N(ǫ, F, Lp(µn) be the

covering numbers of F at scale ǫ with respect to the Lp(µn) norm.

We will use following theorem which is well known in empirical process theory.

Theorem 4.1 (Theorem 2.3 in [9]). Let F be a class of functions from M to [−1, 1] and set

µ to be a probability measure on M. Let (xi)
∞
i=1 be independent random variables distributed

according to µ. For any ǫ > 0 and every n ≥ 8/ǫ2,

P

(

sup
f∈F

| 1
n

n
∑

i=1

f(xi)−
∫

M
f(x)µ(x)dx| > ǫ

)

≤ 8Eµ[N(ǫ/8, F, L1(µn))] exp(−nǫ2/128).

Note that

L1(µn) ≤ L∞(µn) ≤ L∞,

where ‖f‖L∞
= maxx∈M |f(x)|. Then we get

N(ǫ, F, L1(µn)) ≤ N(ǫ, F, L∞),

which implies following corollary.

Corollary 4.1. Let F be a class of functions from M to [−1, 1] and set µ to be a probability

measure on M. Let (xi)
∞
i=1 be independent random variables distributed according to µ. For

any ǫ > 0 and every n ≥ 8/ǫ2,

P

(

sup
f∈F

| 1
n

n
∑

i=1

f(xi)−
∫

M
f(x)µ(x)dx| > ǫ

)

≤ 8N(ǫ/8, F, L∞) exp(−nǫ2/128),

where N(ǫ, F, L∞) is the covering numbers of F at scale ǫ with respect to the L∞ norm
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To estimate the error, we need to rewrite Corollary 4.1 in another form:

Corollary 4.2. Let F be a class of functions from M to [−1, 1]. Let (xi)
∞
i=1 be independent

random variables distributed according to p, where p is the probability distribution. Then with

probability at least 1− δ, we have

sup
f∈F

|p(f)− pn(f)| ≤
√

128

n

(

lnN(
√

2/n, F, L∞) + ln
8

δ

)

,

where

p(f) =

∫

M
f(x)p(x)dx, pn(f) =

1

n

n
∑

i=1

f(xi).

Proof. Using Corollary 4.1, with probability at least 1− δ,

sup
f∈F

|p(f)− pn(f)| ≤ ǫδ,

where ǫδ is determined by

ǫδ =

√

128

n

(

lnN(ǫδ/8, F, L∞) + ln
8

δ

)

.

Notice that N(ǫδ/8, F, L∞) ≥ 1 and 0 < δ < 1, we have

ǫδ ≥
√

128 ln8

n
>

√

128

n
= 8

√

2

n
,

which gives that

N(ǫδ/8, F, L∞) ≤ N

(

√

2

n
, F, L∞

)

.

Then, we have

ǫδ ≤

√

√

√

√

128

n

(

lnN(

√

2

n
, F, L∞) + ln

8

δ

)

,

which proves the corollary. 2

The above corollaries provide a tool to estimate the integral error on random samples. To

apply the above corollaries in our problem, the key point is to obtain the estimates of the

covering number of function class Rδ.

Since the kernel R ∈ C1(M) and M ∈ C∞, we have for any x,y ∈ M
∣

∣

∣

∣

R

(‖x− y‖2
4δ2

)

−R

(‖z − y‖2
4δ2

)∣

∣

∣

∣

≤ C

δ
‖x− z‖.

This gives an easy bound of N(ǫ,Rδ, L∞),

N(ǫ,Rδ, L∞) ≤
(

C

ǫδ

)k

. (4.1)

Using the Corollary 4.2, with probability at least 1− 1/(2n),

sup
f∈Rδ

|p(f)− pn(f)| ≤
C

δk
√
n
(lnn− 2 ln δ + 1)

1/2
. (4.2)

This proves Theorem 2.1. Theorem 3.2 can be proved similarly using the fact that u (solution

of (1.6)) and v (solution of (1.11)) are both smooth.
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5. Discussion and Future Works

In this paper, we analyzed the convergence of the weighted nonlocal Laplacian (WNLL) on

the random point cloud. The analysis reveals that the scaling weight in WNLL is critical in

the convergence guarantee and it should have the same order as |P |/|S|, i.e. µ ∼ |P |/|S|. The
result in this paper provides a theoretical foundation for WNLL.

D

M

Fig. 5.1. Illustration of the computational domain with extremely low labeling rate.

As illustrated in Fig. 5.1, if sample S is very sparse such that assumption (1.7) does not hold.

Then we cannot guarantee the convergence even in the WNLL. With very low labeling rate,

actually, the whole framework of harmonic extension fails [10,14]. We should use other approach

to get a smooth interpolation. Furthermore, our analysis also shows that the convergence may

fail with extremely low labeling rate. In this case, we should consider other approaches. One

interesting option is to minimize L∞ norm of the gradient instead of the L2 norm, i.e. to solve

the following optimization problem

min
u






max

x∈P∪S





∑

y∈P∪S

w(x,y)(u(x)− u(y))2





1/2





,

with the constraint

u(x) = b(x), x ∈ S.

This approach is closely related to the infinity Laplacian [1,5]. The above optimization problem

can be solved by the split Bregman iteration. An interesting observation is that the WNLL can

accelerate the convergence of the split Bregman iteration and improve its efficiency. We will

further explore these aspects in our future work.

A. Proof of Proposition 1.1

Since M,D, ∂D are smooth enough, when δ is small, in the support of the kernel functions,

they can be well approximated by the tangent space. To prove Proposition 1.1, we only need

to compute the integrals with M,D, ∂D are approximated by tangent space.
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With the tangent space approximation, it is easy to check that for x ∈ M\D
∫

M\D
R̄δ(x,y)dy =

∫

(M\D)∩supp(R̄δ(x,·))
R̄δ(x,y)dy

=

∫

(M\D)∩B(x,2δ)

R̄δ(x,y)dy

≥ 1

2
sk

(∫ 1

0

sR̄(s)ds

)

−O(δ).

For x ∈ M,
∫

M
Rδ(x,y)dy =

∫

M∩supp(Rδ(x,·))
Rδ(x,y)dy

=

∫

M∩B(x,2δ)

Rδ(x,y)dy

≥ sk

(∫ 1

0

sR(s)ds

)

−O(δ),

where sk is the area of unit sphere in R
k.

Using tangent space approximation, upper bound is also easy to get.
∫

M
Rδ(x,y)dy =

∫

M∩supp(Rδ(x,·))
Rδ(x,y)dy

=

∫

M∩B(x,2δ)

Rδ(x,y)dy

≤sk

(∫ 1

0

sR(s)ds

)

+O(δ).

Notice that ∂D is k− 1 dimensional manifold, using tangent space of ∂D at x ∈ ∂D to approx-

imate ∂D ∩B(x, 2δ), we obtain

δ

∫

∂D
R̄δ(x,y)dτy = δ

∫

∂D∩supp(R̄δ(x,·)
R̄δ(x,y)dτy

≤ δ

∫

∂D∩B(x,2δ)

R̄δ(x,y)dτy

≤ sk−1

(∫ 1

0

sR̄(s)ds

)

+O(δ)

where sk−1 is the area of unit sphere in R
k−1.

For dist(x,D) < δ,
∫

D
Rδ(x,y)dy =

∫

D∩supp(Rδ(x,·))
Rδ(x,y)dy

≥
∫

D∩B(x,
√
2δ)

Rδ(x,y)dy

≥
∫

D∩B(x̄,(
√
2−1)δ)

Rδ(x,y)dy ≥ 1

2
(
√
2− 1)kδ0 −O(δ)

where x̄ = argminx∈∂D |x− x̄|.
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