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Abstract. Transport networks such as blood vessel systems and leaf venation are uni-

versally required for large-size living organisms in order to overcome the low efficiency

of the diffusion in large scale mass transportation. Despite substantial differences in liv-

ing organisms, such networks have many common patterns — viz. biological transport

networks are made up of tubes and flows in tubes deliver target substances. Besides,

these networks maintain a tree-like backbone attached with small loops. Experimen-

tal and mathematical studies show many similarities in biological mechanisms, which

drive structural optimisation in biological transport networks. It is worth noting that

the structural optimisation of transport networks in living organisms is achieved in the

sense of energy cost as a consequence of natural selection. In this review, we recall the

exploration history and show mathematical structures used in the design of biological

transport networks.
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1. Introduction

Transport networks play important role in natural and industrial systems. Rivers carry

water to oceans and lakes, highways and railways transport people and goods all around

the world, telecommunications networks transmit information, and blood vessels and leaf

veins transport substances in living organisms.

However, the transport capacity of various networks is limited by the flow processing

capacity of network nodes (aviation networks), by the conductance and width of network

edges (rivers and blood circulation systems), or by both factors mentioned (internet). In

general, the conservation of matter leads to constraints on the flow in different edges.

If there is no node capacity, the flow constraints are instantaneously satisfied. Otherwise,

a delay is allowed to satisfy the flow constraints. For information networks, such constraints

are weakened greatly by a possible information replication on nodes. The limitations in

transport capacity and constraints in flows determine the main geometrical and topological
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characteristics of the networks — e.g. biological transport networks usually contain various

loops while maintaining an impression of a tree-like backbone [23, 29]. Here, we review

the exploration of the designing principle of biological transport networks.

The first breakthrough in biological transport networks was the experimental finding

of an approximate cubic law in blood vessel bifurcation — viz. D3 = D3
l
+ D3

r
, where

D, Dl , and Dr are the radii of the parent vessel and its left and right daughter vessels,

respectively [71]. This law is now referred to as Murray’s law due to Murray’s deep insight

between the bifurcation relation and the optimisation principle in energy cost. According

to Murray explanations, this is a consequence of another cubic relation between blood flow

Q and vessel radius D, Q∝ D3. In Murray’s theory, the latter cubic relation is obtained by

the optimisation of the total energy cost – i.e. the fluidic cost in driving blood flow in the

vessel and the biological cost in metabolism and material, which includes the material cost

in producing blood cells and building the blood vessel wall and the energy consumption

in functioning of these cells [54]. Murray’s law is also observed in plant vessels and leaf

venation [49].

Murray’s law provides the deep understanding of the local structure of biological net-

works. Following the idea of energy-cost optimisation, mathematical models have also

been used to understand the geometrical and topological characteristics of an entire bio-

logical transport network. For different transport networks, a power law relation Em = Cγ

can be generally introduced for the metabolic and material cost Em and flow resistance C .

This relation is used to show that for fixed flow sources (sinks) a network has a tree-like

structure if γ < 1 [5,6,14]. In general, there are many loops attached to the tree-like back-

bone in biological transport networks [9, 11, 29, 34, 55]. Animals and plants can benefit

from such loop structures in various ways. By incorporating the risk tolerance in network

damages [29] or the effects of fluctuating flow distributions [9,29,30], optimal structures

are shown to be loopy networks while maintaining a major structure of a tree-like back-

bone. Such a structure is also believed to afford great benefits to living systems for their

mechanical robustness [34].

Optimisation of the energy cost can be viewed as the consequence of natural selection.

Highly efficient and robust transport networks, which optimise the energy cost while satis-

fying tissue demanding, bring tremendous competitive advantages to species. Nevertheless,

in order to achieve such an optimisation, life systems have to find special mechanisms such

as an adaptation dynamics driven by specific stimuli (which means signals sensed by cells

and modulate their cellular dynamics).

The Murray’s law also suggests that the wall shear stress, which is proportional to Q/D3,

is a constant in the entire circulation system at optimal state. This implies that the wall

shear stress should be an important stimulus that drives blood vessel adaptation to achieve

the optimisation of the network structure. Indeed, experimental studies verified that the

wall shear stress in a circulation system lies in a relatively narrow range [19, 23, 25, 58–

60]. Further studies have shown that endothelial cells, which form the inner layer blood

vessel walls, can really sense the wall shear stress [31–33]. The wall shear stress acts as

a key stimulus for both blood flow regulation in the short term response and blood vessel

adaptation in the long term response [19,23,25,31–33,58–60].
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Mathematical models are build up to describe the adaptation of the vessel diameter in

response to wall shear stress [19,23,25,59]. It is interesting to not that the parallel vessel

systems where two or more vessels start from the same point and converge to different

points, are unstable in such kind of adaptation dynamics [19, 25]. More precisely, the

diameter of one of two parallel vessels converges to zero as time tends to infinity. One

may worry about the adaptation stability of arterial trees, which are very similar to parallel

systems since the blood pressures at the inlets of capillaries are maintained close to a fixed

value [25]. In fact, by incorporating the short term response of blood flow regulation, the

adaptation of arterial trees becomes stable [25].

The two research lines of structural optimisation and vessel adaptation merge back

again in Cai-Hu’s adaptation model and later adaptation models for biological transport

networks [23,61,62]. This adaptation model is driven by local stimuli, mainly the second

moment of the wall shear stress. This adaptation dynamics can be regarded as a gradient

flow to optimise the total energy cost for both fixed and fluctuation flow distribution. In

particular, a number of loops in the network can be stabilised for sufficiently strong fluc-

tuation in flow distribution. The adaptation model is successfully used in predicting vessel

pruning (which means disappearance of the existing blood vessels) observed in embryo

zebra-fish [8]. This success shows that the adaptation in response to the wall shear stress

is indeed employed by animals to optimise the efficiency of their circulation system. Prun-

ing of unnecessary blood vessels as a sequent of vessel adaptation has been shown to be

a significant means in optimising the network structures [8,23,66].

With a pre-given network, the optimisation and adaptation models can provide an opti-

mal network. Nevertheless, how biological transport networks are initially formed remains

yet to be answered. Active explorations have also been undertaken to the mechanisms

for emergence of biological transport networks. The importance of hormone transport has

been shown experimentally in the initiation process of biological transport networks in

both animals and plants. For embryo vasculogenesis [26], self aggregation of endothe-

lial cells leads to the formation of the earliest circulation system before the heart starts to

beat. Agent based modeling and numerical studies suggest the essentiality of migration and

elongation of endothelial cells in vasculogenesis and angiogenesis [35, 51]. For leaf bud-

ding [4,11,48,69], cell differentiation is induced along concentrated pathways for delivery

of auxin, which is an important plant hormone for growth and cell differentiation. Cells on

this pathway eventually develop to form the leaf venation. Canalisation, a gene regulation

model for cell differentiation stimulated by auxin, was hypothesized in the formation of

leaf veins as a response to auxin delivery [11,17,48,52,53,63–65].

Although the above agent based models have been successful in relating the signals of

hormone transport with cell differentiation and emergence of vascular networks, they are

silent in the optimisation of network structures. Cai and Hu developed a continuum model

for the initiation process of biological transport networks [24] such that initiation and adap-

tation processes are integrated in a single model. By coupling the hormone transport and

the adaptation process, this model naturally optimises the total energy cost, including the

energy cost in transportation and metabolic and material costs. In this model the energy

cost function decreases continuously and drives the canalisation. As the result, optimal
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structures are obtained as the steady state of the evolution dynamics. The new mathe-

matical structure in the Cai-Hu continuum model has attracted widespread attention and

interest. A series of work has been done on the well-posedness [2,20,21,38–41,43,68,72]

and numerical methods [1,16,22] for the model. It should be noted that some of the works

appeared before the Cai-Hu model was published and just make references to their lectures.

Despite the widespread success, more efforts are needed in biological transport network

studies. First, the optimisation and adaptation models of biological transport networks

must be integrated into cellular biological processes. It remains unclear how the micro-

scopic cellular dynamics is connected with the macroscopic adaptation. Second, the adap-

tation of vessel segments plays an important role in angiogenesis and root development.

However, it is still far from a clear picture on what stimuli help to maintain the stability of

capillary networks while meeting the needs of the tissue, and efficient numerical methods

are extremely important in simulations of such large scale systems [44]. Finally, new math-

ematical structures of biological transport networks may provide new insights and tools for

applications in other fields, such as graph theory and matrix optimisation. It also allows

further applications on designing efficient network for transmission of mass, energy, and

information [27]. Studies on the models can also shed lights on the optimisation of trans-

port networks with different cost functions and different constraints. The models can also

be used in the design of artificial blood vessel networks [46]. From this point of view, fur-

ther studies are important in discovering the properties and exploring the applications of

the discrete and continuum models. This review aims to provide a complete picture on the

state of research and promote interdisciplinary studies on biological transport networks.

2. Necessity of Biological Transport Networks

Typically, the diffusion coefficient D0 of a molecule to move within its local tissue en-

vironment is of the order 10 ∼ 1000 µm2/s [66]. From a simple dimensional analysis, we

can estimate the time T0 ∼ L2/D0 required for a molecule to traverse a given distance L.

This quadratic dependence indicates the inefficiency of the diffusion for mass delivery in

organisms with large body size. Biological transport networks are designed to overcome

this inefficiency of the diffusion for large scale transport. It is interesting to see that simi-

lar network structures appear in silicon-on-insulator (SOI) circuits for heat removal due to

a similar quadratic dependence for heat conduction [7,57].

Biological transport networks consist of hollow tubes. Flows in tubes are used to deliver

target molecules — e.g. oxygen, carbon dioxide, and water molecules. In this way, convec-

tion is used for efficient mass transport. Diffusion is used for transport only between the

tissue and terminal branches of the transport networks, such as capillaries, hairy roots, and

terminal leaf veins. A typical spacing between neighboring capillaries and between termi-

nal leaf veins is of the order 100µm [44,66]. On this spacial scale, diffusion is sufficiently

efficient for the time scale of living organisms.

2.1. Kirchhoff’s equation for biological transport networks

A blood vessel can be regarded as a cylindrical tube, whereas the leaf vein is usually
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formed by a bundle of small tubes. The blood flow in large blood vessels can be very

complex, which can indeed affect the geometry (vessel diameter and vessel wall thickness)

of blood vessels [59, 60]. In this review, we discard this complex effect and consider only

small vessels.

For fluids in small tubes — e.g. with luminal diameters smaller than 0.6mm, the

Reynolds number is sufficiently low and the flow in the tube can be well approximated

by the Poiseuille flow [19,59,60]. More exactly the fluid velocity along the cylindrical tube

satisfies

v(r) = v0

�

1−
�

r

R0

�2
�

,

where v0 is the maximal velocity at the center of the cross section, r the polar radius, and

R0 the vessel radius. In this case, the volumetric flow rate Q = 2π
∫ R0

0
v (r) rd r in the tube

and the wall shear stress τw = µ
∂ v
∂ r

�

�

r=R0
on the wall is determined by the force balance

(note that the inertial force is negligible when the Reynolds number is small)

Q =
△PπD4

128µL
, τw =

32µQ

πD3
=
△PD

4L
, (2.1)

where µ is the viscosity of the fluid, △P the pressure drop, L the tube length, and D = 2R0

the tube diameter. The resistance R of a vessel, such as a blood vessel or a leaf vein and its

reciprocal, the conductance C , are defined as

R=
△P

nQ
=

128µL

πnD4
, C =

πnD4

128µL
, (2.2)

where n is the number of parallel tubes in the vessel. For blood vessels, n is usually equal to

1, whereas for vessels in plants such as leaf veins, n is greater than 1 except for the terminal

branches of the networks. The conductance depends only on the geometry of the vessel. It

is very sensitive to the diameter change due to the quartic power in the Eq. (2.2). In fact,

this sensitivity is artfully employed by blood vessel systems by accurately controlling the

luminal diameter via contraction and dilation of smooth muscle cells [31–33].

The flow distribution in biological transport networks is determined by the conductance

of all edges and the boundary conditions at the inlets and outlets of the network. Due to the

mass conservation, we can use the Kirchhoff law to determine flow rate Q i j on the edges

and the pressure Pi at the vertices

∑

j∈Ni

Q i j = si, (2.3)

Q i j =
�

Pi − Pj

�

Ci j, (2.4)

where the lowercase subscripts i and j are used for network vertices — e.g. inlets, outlets,

bifurcation points, Ni is the neighbour set of the vertex i, si the given flow source (sink) at

the vertex i, Q i j = −Q ji the flow on the edge {i, j}, and Ci j = C ji the conductance of edge
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{i, j}. In particular, if two nodes i and j are not connected, both Q i j and Ci j are zero. We

can reformulate the Eqs. (2.3) and (2.4) as

∑

j 6=i

�

Pi − Pj

�

Ci j = si

or

AP= s, (2.5)

where P = (P1, P2, . . . , PN )
T , s = (s1, s2, . . . , sN )

T , N is the total number of vertices and the

coefficient matrix A has the form

A=















∑

j 6=1

C1 j −C12 . . . −C1N

−C21

∑

j 6=2

C2 j . . . −C2N

. . . . . . . . . . . .

−CN1 −CN2 . . .
∑

j 6=N

CN j















.

Note that −A is the graph Laplacian operator of the corresponding weighted graph with the

weights are given by the conductances. The Eq. (2.5) is a positive (semi) definite equation

set for the pressure at all vertices. Once the boundary conditions — e.g. the pressure or

flow at the inlets and outlets are given, the solution can be determined. The Eq. (2.1) can

be then used to calculate the wall shear stresses.

3. Murray’s Law

As was already mentioned, the Murray law is widely observed in different animals [71].

At a bifurcation point of the vessel network, it is observed that the three radii D, Dl , and

Dr of the parent vessel and its left and right daughter vessels, respectively, approximately

satisfy the cubic relation

D3 = D3
l
+ D3

r
. (3.1)

Murray provided an insightful explanation for this experimental observation — viz. the

energy cost for a vessel segment consists of two terms

E0 =∆PQ+ cmV =
128µLQ2

πD4
+
πcm

4
D2 L,

where cm is a metabolic constant. The term ∆PQ is the energy cost to drive the blood

flow and cmV the metabolic energy cost for the production and function of the blood in the

vessel.

Note that the blood flow Q is demanded by the downstream tissue and may be regarded

as a constant. Any discount of the blood flow can lead to dysfunction of the downstream

tissue. Minimising the total energy cost E0 with respect to the vessel diameter D, we obtain

the optimised energy cost

Em =min E0 = c1Q
2
3 L
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with the diameter

Q = c2D3, (3.2)

where

c1 =
π

4
cmc
− 2

3

2
, c2 =

π

32

√

√ cm

µ
.

Interestingly, in order to satisfy the optimality condition (2.1), an optimal shear stress need

is required uniformly

τe =
32µQ

πD3
=
p

µcm. (3.3)

Note that the flow rate Q in the parent vessel is equal to the sum of the flow rate in the

two daughter vessels — i.e.

Q = Q l +Qr .

Substituting the optimality condition (2.1) into the above equation leads to the Murray

law (3.1).

Murray’s theory initiated various studies of the network structure of circulation systems

and stimulated the researches on adaptation dynamics based on mechanical stresses such

as the wall shear stress.

4. Optimisation of General Biological Transport Networks

4.1. Optimisation frameworks

There are different mathematical models for optimisation of general biological trans-

port networks. Here, we discuss the equivalence of three optimisation frameworks used in

previous models. This can help us to understand the relations between the models intro-

duced in previous studies.

4.1.1. Framework 1

According to Murray arguments, the total energy cost for a biological transport network is

E1

�

C̃
�

=
∑

{i, j}

�

Q2
i j

C̃i j

+ cmC̃
γ

i j

�

Li j ,

where C̃i j = Ci j/Li j is the conductivity of the edge {i, j} and γ ∈ (0,1). In particular, for

blood vessels γ = 1/2. For leaf veins, we have 1/2 < γ < 1 due to the fact that a leaf vein

is a bundle of small tubes [23]. In a more general form, the metabolic or material cost

function m(C̃) of an edge has to satisfy the following conditions:

m (0) = 0, m′(C̃) > 0, m′′(C̃)< 0.

We can check that m(C̃) = cmC̃γ satisfies these conditions if γ ∈ (0,1).
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The flow rates Q i j are determined by the Kirchhoff law (2.3), (2.4). For given flow

sources, we can see that the solution Q i j is determined by the conductance vector C̃, which

appears in the coefficient matrix A. Therefore, the total energy cost is a function of C̃.

Noting that C̃i j = C̃ ji and Q i j = −Q ji, we compute the gradient of the total energy cost

with respect to C̃kl , viz.

∂ E1

�

C̃
�

∂ C̃kl

= 2

�

cmγC̃
γ−1

kl
−

Q2
kl

C̃2
kl

�

Lkl + 2
∑

{i, j}

Q i j Li j

C̃i j

∂Q i j

∂ C̃kl

= 2

�

cmγC̃
γ−1

kl
−

Q2
kl

C̃2
kl

�

Lkl + 2
∑

{i, j}

�

Pi − Pj

� ∂Q i j

∂ C̃kl

= 2

�

cmγC̃
γ−1

kl
−

Q2
kl

C̃2
kl

�

Lkl + 4
∑

{i, j}
Pi

∂Q i j

∂ C̃kl

= 2

�

cmγC̃
γ−1

kl
−

Q2
kl

C̃2
kl

�

Lkl + 4
∑

i

Pi

∂
∑

j∈Ni

Q i j

∂ C̃kl

= 2

�

cmγC̃
γ−1

kl
−

Q2
kl

C̃2
kl

�

Lkl .

It is worth noting that the gradient depends only on local information. For optimised states,

we have

Qkl =
1
p

cmγ
C̃
γ+1

2

kl
. (4.1)

This is a generalised form of the cubic relation (3.2).

In the previous studies [5,6,9,14,15,29], the metabolic energy cost is not considered

as a part of the energy cost. Instead, a constraint is applied on the total metabolic cost —

viz. the sum of C̃
γ

i j
is regarded as a constant and a nonlocal Lagrangian multiplier is added

to the Lagrangian gradient.

4.1.2. Framework 2

In the second framework, the total energy cost

E2

�

Q, C̃
�

=
∑

{i, j}

�

Q2
i j

C̃i j

+ cmC̃
γ

i j

�

Li j

is optimised under the flow source constraints (2.3), but the Olhm law (2.4) is omitted.

Although the total energy cost is the same as in Framework 1, Q and C̃ are now viewed as

independent variables of E2. Clearly, the Lagrangian is

L2

�

Q, C̃
�

= E2

�

Q, C̃
�

−
∑

i

λi

�

∑

j∈Ni

Q i j − si

�

.
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Noting that Q i j = −Q ji in general, we obtain the gradient of the Lagrangian

∂ L2

�

Q, C̃
�

∂Qkl

= 2
Qkl

Ckl

−λk +λl ,

∂ L2

�

Q, C̃
�

∂ C̃kl

= 2

�

cmγC̃
γ−1

i j
−

Q2
kl

C̃2
kl

�

Lkl .

With given conductances, the Olhm law (2.4) is spontaneously achieved by optimising

L2(Q, C̃) with respect to Q. The pressure Pk = λk/2 is simply given by the Lagrangian

multipliers. The optimisation based on Framework 1 can be considered as the alternating

direction method based on Framework 2.

4.1.3. Framework 3

Using the optimal condition (4.1) at the critical points, the total energy cost can be written

in the form

E3 (Q) =
∑

{i, j}
c3QΓi j Li j , (4.2)

where Γ = 2γ/(1+ γ) ∈ (0,1). The energy cost is also optimised under the flow source

constraint (2.3). In this case, the conductance is invisible in the model. We can regard the

optimisation of conductance in response to the change of flow rate to be extremely fast.

Therefore, the conductance is always given by the optimal condition (4.1).

As far as the alternating direction optimisation in Framework 2 is concerned, the op-

timisation on the Q-direction leads to the Eq. (2.5), which is incorporated implicitly in

Framework 1 and the optimisation on the C̃-direction leads to the Eq. (4.1), which is incor-

porated implicitly in Framework 3. In fact, the alternating direction iterations based on the

Eqs. (2.5) and (4.1) can be used to find optimal structures of transport networks. From this

point of view, the optimal network structures remain the same under the three frameworks.

However, due to the nonconvexity in the total energy cost, there exists a variety of optimal

structures. Nevertheless, different frameworks generate different optimisation processes

and numerical algorithms. Optimisation processes based on the three frameworks may

produce different optimal network structures even when they start from the same initial

configuration.

Although optimal structures stay the same within the above optimisation frameworks,

the constraints under different frameworks, they can be generalised in a different way.

The first framework can be generalised to describe systems with diameter-dependent con-

ductances and general relations between the metabolic-cost and conductance — e.g. the

Non-Newtonian effect in blood flow is significant when the vessel diameter is close to the

diameter of red blood cells. In this case, the effective viscosity is diameter-dependent. How-

ever, the constraint of the Ohm law means that the flow is driven by an effective pressure.

In the second framework, there is no requirement of the Ohm law. Thus it can be used in

the study of systems with more general flow fields. Nevertheless, the conductance idea is
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still important. Since there is no conductance in the third framework, this allows the most

genera extensions. The only requirement in this framework is the mass conservation.

4.2. Topology of optimal biological transport networks

Using the total energy cost, we can study the topology of those biological transport

networks, which have a treelike network skeleton and maintains loop-forming bridge edges

between the branches.

4.2.1. Optimal structure for fixed flow sources

It has been proved that for fixed flow source constraint, the optimal structure is a loopless

treelike network under Framework 1 [15]. We can employ the reduction to absurdity to

prove this by using the cost function (4.2) and the flow constraint (2.3). The proof relies

on the concavity of the total energy cost under perturbations. It is slightly different from

the corresponding proof [15].

Let Q̄ i j be optimal flow rates satisfying the flow constraint (2.3). Assume that there

is a loop with K vertices i1, i2, . . . , iK in the optimal network — viz. Q̄ im im+1
6= 0 for m =

1,2, . . . , K and iK+1 = i1. We add an circulation flow x in the loop

Q im im+1
(x) = Q̄ im im+1

+ x ,

while keeping the flow rate on other edges unchanged. It is easily seen that the flow con-

straint (2.3) is still satisfied. After changing the flow rate, the change of total energy cost

is

∆E3(x) =

K
∑

m=1

c3

�

QΓim im+1
(x)− Q̄Γim im+1

�

Li j .

According to our assumption, on any edge of the loop the flow rate Q̄ im im+1
is not equal to

zero. Thus we have
d2
∆E3(x)

d x2 |x=0 < 0 for Γ ∈ (0,1), which is inconsistent with the optimality

assumption. Therefore, for fixed flow sources, the optimal network structure is a loopless

tree. In fact, ∆E3(x) becomes non-differentiable and attains a local minimum if and only

if the additional circulation flow x cancels the flow on an edge of the loop.

Optimal network structures obtained in our numerical simulations are shown in Fig. 1.

If γ > 1, the optimisation problem is rigorously convex and there is only one optimal solu-

tion with a large number of small loops. When γ decreases, the loop density also decreases

slightly. A first order phase transition in loop density can be observed at γ = 1 in the op-

timal structures. For γ = 1, the optimisation problem is convex but not rigorously convex.

As the result, there can be multiple optimal structures. As evidence, we see that the opti-

mal structure in Fig. 1(c) is slightly asymmetric. For γ < 1, the optimal network structure

becomes a loopless tree structure. Note that the energy function becomes non-convex in

this case. There are a huge amount of optimal structures (local minima), each of which

corresponds to a tree-like network structure.
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(a) (b)

(c) (d)

Figure 1: Optimal structures for fixed source-sinks. The bottom node is set to be the single source
node and a unit sink is set on all other nodes. (a) The initial geometry. (b)-(d) The optimal structures
for γ = 2.0, γ = 1.0, and γ = 0.5, respectively. The widths of edges are proportional to C̃1/3. The initial
conductivities are given as 1+ r, where the random perturbation r is uniformly distributed in [−0.5, 0.5].

4.2.2. Loops in biological transport networks

Loops exist widely in different transport networks. Theoretical studies show multiple ad-

vantages of loopy structures, such as resilience to damage [29] and optimisation of energy

cost under fluctuating flow demands [9,23,29]. Here we only review in detail the optimi-

sation of network structures under fluctuating flow demands.

Fluctuating flow demands are observed in different biological transport networks, in-

cluding the open-close switch of stomata [29], the flow regulation of capillary flows [25],

and the fluctuating contraction and dilation of the cell membrane of Slime Mold P. poly-
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cephalum [70]. Such fluctuating flow demands have been modeled as a moving sink [29]

or random sinks [9, 23]. In general, we can regard the sink, si, i = 2,3, . . . , N , in the

Eq. (2.4) as a random variable (the flow source at the root node s1 = −
∑N

i=2 si). Although

the neighboring sinks can be correlated [18] for the sake of simplicity we assume that they

are uncorrelated. Naturally, the total energy cost function becomes

E1

�

C̃
�

=
∑

{i, j}





¬

Q2
i j

¶

C̃i j

+ cmC̃
γ

i j



 Li j .

The second moment of flow rate can be evaluated by

¬

Q2
i j

¶

=

*
�

N
∑

k=2

skQ i j,k

�2+

=

N
∑

k=2

σ2
k
Q2

i j,k
+

�

N
∑

k=2

ekQ i j,k

�2

,

where ek = −〈sk〉 and σ2
k

are the expectation and variance of the random flow sinks at sink

k, whereas Q i j,k is the flow in edge {i, j} at the single-sink state that only s1 = −sk = 1

are nonzero. In particular, when the random sinks are independent identically distributed

(i.i.d.), we have
¬

Q2
i j

¶

= σ2
N
∑

k=2

Q2
i j,k
+ e2Q

2

i ,

where Qi =
∑N

k=2 Q i j,k.

In what follows, we only consider i.i.d. random sinks. In this case, we can use dimen-

sional arguments to show that the topology of the optimal network structure depends on the

ratio σ/e only. Since the open-close switch for the sinks is observed in different biological

transport networks, uniform open probability p and uniform strength 1/
p

P are introduced

for all sinks — cf. [25]. More exactly, each sink has a probability p to be open independently

with s = 1/
p

P, whereas s = 0 when the sink is closed. In this case, σ/e =
p

(1− p)/p,

and the second moment of flow rate is

¬

Q2
i j

¶

= (1− p)

N
∑

k=2

Q2
i j,k
+ pQ

2

i .

The open probability can be used to quantitatively describe the strength of fluctuation.

Thus a greater open probability p means a smaller fluctuation in flow rate. For p = 1, the

fixed sink case reemerges. For p→ 0, the moving-sink case is obtained in [29].

Optimal network structures obtained with fluctuating flow sinks (sources) are shown

in Fig. 2. We observe that even if γ < 1, there are numerous loops in the optimal transport

network when fluctuation in flow is sufficiently strong (sufficiently small p). The loop

number is an increasing function of γ and a decreasing function of p. For fixed γ, as the

open probability increases, the number of loops decreases and reaches zero at a sufficiently

large p. For γ= 0.25 and p = 0.5 the optimal structure does not contain any loop.
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Figure 2: Optimal structures for fluctuating sinks. The bottom node is set to be the single source node
and all other nodes are endowed with random sinks with open probability p. The upper panel: p = 0.1;
The bottom panel: p = 0.5. The left-, the middle-, and the right-panels correspond to γ= 0.75, γ= 0.5,
and γ= 0.25, respectively. Other settings are as same as in Fig. 1.

Similar to the network formed by the Slime Mold P. polycephalum, any node can be

a source or sink node at random and 〈sk〉 = 0,
∑N

k=1 sk = 0. In this case, we have

¬

Q2
i j

¶

=

*
�

N
∑

k=1

�

sk −
1

N

N
∑

l=1

sl

�

Q i j,k

�2+

=

N
∑

k=1

σ2
k

�

Q i,k −
1

N
Qi

�2

.

The corresponding optimal structures embedded in a two dimensional plane are shown

in Fig. 3. We note that for the variance σ2
k

uniform for all nodes (a)-(c), the optimal

structure is a decentralised network. In each of these networks, all nodes maintain a similar

degree of connections to other nodes. For γ > 1, there are numerous long range connections

and it is not convenient to show the network in a figure. For γ = 1, the optimal network

appears to be well clustered locally. As γ decreases, the number of loops becomes smaller

and smaller. In the limit case, the network becomes loopless and maintains a relatively small

total length. It is interesting that we can effectively control the total number of edges (or

the degree of each node) by selecting suitable γ. When the variance is extremely different

((d) in Fig. 3), nodes with large variances become the centers in optimal networks.
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(a) γ = 0.1 (b) γ = 0.5 (c) γ= 1.0 (d) γ= 0.5

Figure 3: Optimal structures for random source-sinks (shown by the red dots). The distance between
two nodes is given by their Euclidean distance. An all-to-all network with uniform conductivity 1 is
used as the initial value. (a)-(c) Optimal networks for random source-sinks with uniform variances σ2

k
.

(d) Optimal networks for random source-sinks with extremely nonuniform variances σ2
k
.

4.3. Matrix optimisation and optimal transport networks

Using the Kirchhoff law (2.5), the energy cost function for random source-sinks with

uniform variances can be written in the form

E1

�

C̃
�

=



sT A−1s
�

+cm

∑

{i, j}
C̃
γ

i j
Li j

= t r
�

A−1
Σ

�

+cm

∑

{i, j}
C̃
γ

i j
Li j,

where Σ is the covariance matrix of the sources. In particular, for i.i.d. random flow sinks

we have

E1

�

C̃
�

= σ2 t r
�

A−1
�

+cm

∑

{i, j}
C̃
γ

i j
Li j

= σ2
∑

i

λ−1
i +cm

∑

{i, j}
C̃
γ

i j
Li j , (4.3)

where λi, i = 1,2, . . . , N are the eigenvalues of A. In this case, network optimisation is

closely related to many matrix optimisation problems such as maximisation of the smallest

eigenvalue with given constraints or minimisation of the ratio between maximal and mini-

mal eigenvalues [3,56]. In this case, the optimised network structure is called “entangled

network” [3,12]. This kind of network structures usually maintains good robustness.

Eigenvalues obtained from the matrix optimisation problem (4.3) under different geo-

metrical setups are shown in Fig. 4. As γ decreases, the number of edges also decreases.

As the consequence, the average distance between network nodes k grows, which enlarges

the ratio between the maximal and minimal eigenvalues.

5. Adaptation of General Biological Transport Networks

Circulation systems of animals are well designed to respond to both short-term and long-

term change of tissue demands. The short-term response, called the blood flow regulation,
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(a) (b)

Figure 4: Eigenvalues of the coefficient matrix A. (a) The distances Li j are given by the Euclidean
distances between the nodes in a plane. (b) The distances Li j of all edges are set to be 1.

includes multiple means — viz. the blood pressure controlling at the heart, the luminal

diameter changes of blood vessels, and the open rate modulation of the capillary flows [13,

31–33,58]. Meanwhile, as the long-term response, the chronic adaptation of the circulation

system also involves multiple structural changes including the luminal diameters, the micro-

vessel density, and the vessel wall thicknesses [10, 36, 37, 45, 47, 50, 67]. By means of the

blood flow regulation and the adaptation of blood vessels, the efficiency and robustness of

circulation systems are maintained spontaneously. This is closely related to the structural

optimisation of the circulation system.

The shear stress on blood vessel walls plays an important role in both short-term and

long-term response. For example, as a short-term response, the vessel dilates when the

blood flow increases whereas contracts when the blood flow decreases. As the consequence,

the change wall shear stress due to flow changes is buffered and it leads to a relatively

steady-going level of the wall shear stress [31–33,58]. The endothelial cells of blood vessels

are responsible for sensing the wall shear stress. Meanwhile, a long-term change of blood

flows also leads to structural changes in the vessel luminal diameter [60]. As the Murray

law shows, the wall shear stress is relatively uniform in the entire circulation system in

optimal structures. This has been further validated by different experiments [28,42].

Using the experimental observations of [28,31–33,42,58], Hacking et al. [19] and Pries

et al. [59] introduced the following minimal model of the blood vessel diameter adaptation:

dDi j

d t
= c0(τi j −τe)Di j = c0

�

32ηQ i j

πD3
i j

−τe

�

Di j, (5.1)

where c0 is a positive constant corresponding to the growth rate of the diameters. This

model describes the balance between an intrinsic decreasing tendency due to cell death and

other effects, −c0τeDi j , and a growth effect c0τwi Di j stimulated by the wall shear stress.
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Figure 5: (a) Phase-plane illustration of the adaptation process of the two parallel vessels. The icons in
(b) are borrowed from that used in electric circulation. The two black squares in (a) denote the stable
steady states, whereas the two blue dots denote the unstable steady states. An arrow starting at a point
(D1, D2) is used to show the changing rate of the two diameters.

Taking into account the relation between conductance and the vessel diameter (2.2), one

can write the adaptation model in the form

dCi j

d t
= 4c0(τi j −τe)Ci j .

The most important feature of the adaptation model (5.1) is that the adaptation of in

parallel-vessel systems is unstable [19]. As shown in Fig. 5, in the parallel systems there

can be at most one survived vessel at the stable states. In Fig. 5(a), we show the adaptation

process of the two diameters in a parallel system shown in Fig. 5(b). A fixed pressure drop

is maintained in the simulation. The adaptation of two parallel vessels with fixed total flow

rates is similar. The instability of parallel systems indicates that it is energetically favorable

to deliver the fluid together instead of distributing the fluid into different tubes. This is

consistent with the concavity of the energy cost function E3 defined in the Eq. (4.2).

In Ref. [23], a model in the form of gradient flow with respect to the total energy

cost function E1(C̃) is introduced to describe the adaptation of general biological transport

networks

dC̃i j

d t
= c′





¬

Q2
i j

¶

C̃
γ+1

i j

− τ̃2
e



 C̃i j , (5.2)

where τ̃2
e = cmµ is the optimal wall shear stress (3.3). Note that the new form can be

used to naturally incorporate the fluctuation of flow rates into the model. In the sense of

linearisation, the behavior of this model is very similar to that of the adaptation model (5.1).

Thus the corresponding experimental observations are also consistent with this gradient

flow model. Optimal network structures are obtained at steady states as time tends to

infinity. From this point of view, the steady states shown in Fig. 5 are the local minima of

the total energy cost function and the adaptation trajectories are the gradient flows. This
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new model clearly shows that the adaptation process is a tool employed by life systems to

optimise the structure of transport networks.

6. Continuum Models of Initiation of Biological Transport Networks

Although the adaptation processes can lead to optimisation of biological transport net-

works, the emergence of transport networks in life systems is also of a particular interest.

As was already noted, there are different cell-based models, which emphasize the impor-

tance of such cellular mechanisms as cell migration and elongation. In the canalisation

hypothesis, the importance of auxin transport has been singled out as the stimulus in the

emergence of leaf veins. However, the importance of structural optimisation during the

network initiation has hardly been explored in these models.

Despite the migration and reuse of the endothelial cells of pruned vessels [8], initially

optimised biological transport networks may prevent frequent vessel pruning in vasculo-

genesis or angiogenesis processes. From this point of view, the cellular pathways, which

can incorporate structural optimisation during the initiation process of biological transport

networks, can significantly reduce the cost of the energy needed toe construct blood ves-

sel systems. For plants, their vascular cells cannot move freely. As the result, for plants

the pruning processes are even more energy-costly than for animals. Therefore, the initial

optimisation of transport networks is more important for plants.

In Ref. [24], a continuum model has been constructed as a general macroscopic princi-

ple underlying the cellular mechanisms in the initiation process. In this model, it is conjec-

tured that the total effective energy cost function is optimised during the initiation process

of biological transport networks.

Since transport processes are usually much faster than initiation ones, the transport

process of auxin and other mass can be described by the steady state diffusion equation

∇ ·
�

A(x, t) · ∇P(x, t)
�

= s, (6.1)

where P is the partial pressure generated by hormone — e.g. auxin, s the hormone source

produced in the tissue, and x and t are the spatial and temporal coordinates. The transport

tensor A is used to account pure diffusion effects, active transport, and pipe flow in veins.

The discretisation of the Eq. (6.1) is similar to discretisation of the Eq. (2.5). Adaptation

models for the transport tensor are introduced below. According to the restricted form of

A, continuum adaptation models are called scalar-, vector-, and tensor-based. The three

models have similar energy-cost functionals and all of them can lead to the formation of

optimal transport networks, though their dynamic behavior are slightly different.

6.1. Vector based model

As experimentally observed [4, 11, 48, 69], active transport of auxin in leaf budding is

localised at specific paths. Transmembrane proteins are lined up along specific directions,

which determine the transport path. Following such observations, one describes the en-

hancement of active transport by polarisation vector m. The direction of m stands for the
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direction of active transport whereas its amplitude |m| quantifies the transport strength.

Consequently, the transport tensor is modeled as

A= DI+ Ã = DI+m⊗m,

where D is the diffusion constant of the background substrate, I the identity tensor, and

⊗ the tensor product. If |m| is sufficiently large — e.g. it exceeds a critical value m0, the

vein of the transport network is formed. In this case, |m|2 represents the conductivity of

the tube per unit area.

The total energy cost functional has the form

E =

∫

Ω

�

〈∇P ·A · ∇P〉+M(|m|2) +α|∇m|2
�

d x ,

where Ω is the tissue domain and x the spatial coordinate. The term 〈∇P ·A·∇P〉 represents

the average energy cost in mass transport for all different states with fluctuating fluxes and

M(|m|2) shows the material and metabolic energy cost of maintaining the active transport

or constructing the transport network edges. This function is usually assumed to be concave

for the formation of vascular segments, and very often one uses the power function M(C) =

cmCγ. We also note that α|∇m|2 is the entropy cost associated with the diffusion of proteins

responsible for active transport.

The adaptation dynamics optimising the energy cost functional can be modeled by the

equation
∂m

∂ t
= D0△m+ c0

�

〈(m · ∇P)∇P〉 −M ′(|m|2)m
�

, (6.2)

where c0 determines the time scale of the initiation process and D0 = 2c0α is the diffusion

constant of the polarisation signal. The process is dominated by two factors competition —

viz. the polarisation of cells driven by hormone fluxes to enhance the delivery power and

the background contracting tendency to reduce the material and metabolic cost.

The energy cost functional E for the coupled system (6.1)-(6.2) satisfies the estimate

dE

d t
= − 1

c0

∫

Ω

�

D0△m+ c0

�

〈(m · ∇P)∇P〉 −M ′(|m|2)m
��2

d x ≤ 0.

This inequality implies that the energy consumption of the system decreases continuously.

As time increases, the state of the system approaches a stability point where an optimised

structure is obtained.

6.2. Scalar-based model

If transport power is isotropic instead of direction-specific, one can use Ã= ÃI to model

the enhancement of the transport power. In this case, an adaptation dynamics of Ã satisfies

the equation

∂ Ã

∂ t
= D0△Ã+ c0

�

〈∇P · ∇P〉 −M ′(Ã)
�

, (6.3)
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which can also lead the system to an optimal structure due to the following relation for the

energy cost functional:

dE

d t
= − 1

c0

∫

Ω

�

D0△Ã+ c0

�

〈|∇P|2〉 −M ′(Ã)
��2

d x .

Tensor-based model

The adaptation dynamics can be also described by the polarisation tensor Ã by the

equation

∂ Ã

∂ t
= D0△Ã+ c0

�

〈∇P ⊗∇P〉 −M ′(|Ã|) Ã

|Ã|

�

, (6.4)

where |Ã| is the Frobenius norm of Ã. Similarly, the energy cost functional satisfies

d

d t
= − 1

c1

∫

Ω

�

�

�

�

D0△Ã+ c1

�

〈∇P ⊗∇P〉 −M ′(|Ã|) Ã

|Ã|

��

�

�

�

2

d x .

In the canalisation model [11], the authors consider the critical strength of active trans-

port. Above this critical strength, the cells are assumed to undergo cell differentiation to

form vessel segments. In continuum models, this idea is represented by the dual role of

the polarised transport tensor |A|— viz. if the magnitude |A| is greater than some critical

value A0, the signal is strong enough and a vascular segment is formed at the principal

direction of |A|. In this case, the integral of |A| in a cross-section can be regarded as the

conductivity of the vascular segment. Furthermore, after the discretisation, the Eq. (6.1)

can be viewed as the Kirchoff laws (2.5) for flow distributions in the network, while (6.2)-

(6.4) are effectively reduced to the adaptation process of the segments (5.2), cf. [8,23,66].

In other words, the initiation and adaptation processes are integrated into a single model.

The domain |A| > A0 forms a network-like structure, which can be regarded as the space

occupied by the biological transport network.

Fig. 6 shows that continuum models exhibit rich dynamics, which leads to the forma-

tion of a plethora of optimal structures. Note that for a fixed source distribution s, loopless

tree-like structures are obtained at steady states due to the concavity of the metabolic and

material cost function M . Besides, because of background diffusion in the transport equa-

tion (6.1), the bifurcation of branches ends at a particular length scale, below which the

pure diffusion is sufficiently effective to undertake the transportation tasks. The diffusion

term in the Eqs. (6.2)-(6.4) introduces another length scale corresponding to the width of

the vascular segments. If both diffusion constants vanish in a limiting case, the bifurcation

never ends and a fractal structure is obtained.

Fig. 6 demonstrates that the network obtained by a tensor-based model appears to be

more regular than the one obtained by the vector-based model. This is due to the fact that

the polarisation direction changes more easily in the tensor based model. Similarly, in the

isotropic scalar-based model, the tree-like structure can be even more regular because of

the absence of polarisation directions. Fig. 6(a) contains fuzzy areas, which arose because

of the long time required to approach steady state in vector-based models.
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(a) (b)

Figure 6: Optimal tree-like network structures obtained with (a) the vector-based model and (b) the
tensor-based model. Colors are used to indicate the amplitude of log(|Ã|2 + D). A constant source (s = s0)
is uniformly distributed in the entire domain and a single sink is located at the center. The variance of
the random initial value of the polarisation vector is given by the diffusion constant

p
D. The Neumann

boundary conditions are used in the simulation for both Eqs. (6.1) and (6.2). Parameters: D = 1×10−3,
α = 1× 10−6, c0 = 5× 10−3, b = 1, s0 = 1, γ= 0.5, and hexagon edge length is 1.

(a) (b)

Figure 7: An optimal loopy network obtained with the vector-based model with fluctuating sources.
(a) Magnitude of the polarisation vector. (b) Angle of the polarisation direction, which shows that the
polarisation vector on an edge is approximately tangential to the edge. The entire domain is divided into
900 small sub-domains. At each simulation step, sources on only 10 sub-domains are randomly selected
to be open. The Dirichlet boundary condition is applied for the Eq. (6.1) on the short left edge. The
Neumann boundary conditions are used for other boundaries and the adaptation equation. Parameters:
D = 1× 10−6, α = 1× 10−6, c0 = 5× 10−3, b = 1, s0 = 1, and γ = 0.5. The length of the diamond edge
is 1.

In the case of fluctuations in the production of hormone source s, there are loops in

the networks formed by the initiation dynamics — cf. Fig. 7. The loop density is still an

increasing function of the fluctuation strength and a decreasing function of γ.

7. Conclusion and Discussion

We have reviewed the development history on modeling and theoretical studies of bi-

ological transport networks. Following Murray’s theoretical work, studies on biological

transport network have been carried out along two paths — one emphasizes optimisation
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of energy cost and the other focuses on adaptation mechanism and relevant stimuli. These

approaches merge into a single model by incorporating the gradient flow of the total en-

ergy cost in the adaptation dynamics and the optimal network structures are obtained at

the steady states of the adaptation dynamics.

It is worth noting that the adaptation governed by the gradient flow with local stimuli

is in great consistency with experimental observations. It has been successfully employed

to explain the vessel pruning in embryol zebra fish [8]. The canalisation mechanism driven

by the gradient flow is also qualitatively consistent with experimental observations of the

leaf venation formations. In other words, under the stress of natural selection, life systems

develop various ways to optimise the total energy consumption for mass transportation.

For plants, the optimisation of the network structure is mainly achieved in the initiation

process since the cells cannot move freely. For animals, the structural optimisation is mainly

achieved by the adaptation process – endothelial cells of the pruned vessels can be reused

to form new vessels.

Nevertheless, there is a large amount of loops in the capillary bed. Current models still

cannot explain the stability of many loops. Meanwhile, the efficiency of capillary networks

is very crucial for animals. It remains a mystery how the angiogenesis and adaptation pro-

cess lead to stable and high-efficiency capillary networks. Note that only macroscopic sig-

nals such as the wall shear stress in blood vessels are involved in the macroscopic dynamics,

whereas the cellular dynamics, which achieves such an adaptation is masked. The optimi-

sation principle should also provide critical insights in the complete adaptation model for

the entire circulation system.

The beautiful mathematical structures of the models for biological transport networks

have attracted widespread interest. The nice robustness and high efficiency of optimal

transport networks can have wide applications in industrial and biomimetic network design

[27,46], such as three-D printed vascular networks.
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