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Abstract

This paper considers adaptive point-wise estimations of density functions in GARCH-

type model under the local Hölder condition by wavelet methods. A point-wise lower bound

estimation of that model is first investigated; then we provide a linear wavelet estimate to

obtain the optimal convergence rate, which means that the convergence rate coincides with

the lower bound. The non-linear wavelet estimator is introduced for adaptivity, although it

is nearly-optimal. However, the non-linear wavelet one depends on an upper bound of the

smoothness index of unknown functions, we finally discuss a data driven version without

any assumptions on the estimated functions.
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1. Introduction

The density estimation for the GARCH-type (Generalized Autoregressive Conditionally

Heteroskedastic) model plays an important role in both statistics and econometrics [5]. In

this current paper, we consider that density estimation model which can be described by the

following mathematical model:

Y = XZ, (1.1)

where X and Z are independent random variables. More precisely, the unknown density func-

tion f of X is to be estimated and supp f ⊆ [0, 1], while the density of Z is known. In general,

we suppose that

Z :=

v∏

i=1

Ui,

where v is a positive integer and U1, · · · , Uv are independent and identically distributed (i.i.d.)

random variables with uniform distribution U(0,1). When v = 1, model (1.1) reduces to the

standard multiplicative concerning model, for which is sometimes called generalized multiplica-

tive censoring model [1–3, 18, 19]. The purpose is to find an estimator f̂n based on the i.i.d.

observed data Y1, · · · , Yn of Y approximating the unknown density f in some sense.

For the GARCH-type model, lots of literatures have been done the density estimations over

Lp-risk by wavelet methods [4, 6–9, 16]. Asymptotic properties of the kernel estimators for a

density derivative have been considered earlier in [15], while the performance of wavelet estima-

tor was discussed in [16]. In 2012, Chesneau & Doosti [9] investigated the wavelet estimation of
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a density in GARCH model under various dependence structures. One year later, Chesneau [8]

provided the upper bounds over L2-risk of wavelet density estimation for GARCH-type model.

Rao [16] considered L2-risk estimation for the derivative of a density in GARCH-type model

over Besov balls by wavelets in 2017. After two years, Cao & Wei [4] extended Rao’s result to

Lp-risk (1 ≤ p <∞).

In contrast to the above Lp-risk estimation, we consider point-wise risk estimations for

model (1.1) in this paper, because it is more concerned in some applications. For a density

function set Σ, the maximal point-wise risk at x ∈ R over Σ means that

Rp,n(f̂n,Σ, x) := sup
f∈Σ

[
E
∣∣∣f̂n(x)− f(x)

∣∣∣
p] 1

p

with 1 ≤ p <∞ and EX being the expectation of X . An estimator f̂∗
n is said to be the optimal

over Σ, if

Rp,n(f̂
∗
n,Σ, x) . inf

f̂n

Rp,n(f̂n,Σ, x),

where the infimum runs over all possible estimator of f ∈ Σ. Here and throughout, A . B

denotes A ≤ cB for some independent constant c > 0; A & B means B . A; A ∼ B stands for

both A . B and A & B. Clearly,

Rp,n(f̂
∗
n,Σ, x) ≥ inf

f̂n

Rp,n(f̂n,Σ, x)

holds automatically.

It is more reasonable to estimate f(x0) (for fixed x0 ∈ R) under some smoothness of f in a

neighborhood Ωx0 of x0 instead of R. For a function f on R
d and x0 ∈ R

d, we introduce the

local Hölder condition of order s (0 < s ≤ 1) at x0 in the sense that with C > 0 and Ωx0 ,

|f(y)− f(x)| ≤ C|y − x|s (1.2)

holds for each x, y ∈ Ωx0 . We use Hs(Ωx0) to denote all those functions satisfying (1.2) with a

fixed constant C > 0.

For s = N + δ with δ ∈ (0, 1] and N ∈ N, define

Hs(Ωx0) :=
{
f, f (N) ∈ Hδ(Ωx0)

}
.

More properties and advantages of the local Hölder space Hs(Ωx0) can be found in Ref. [14,20].

Moreover, Hs(Ωx0 , M) stands for

Hs(Ωx0 , M) := {f ∈ Hs(Ωx0), f is a density and ‖f‖∞ ≤M} .

Obviously, Hs(Ωx0 , M) ⊂ L2(R), because
∫

R

|f(x)|2dx ≤ ‖f‖∞‖f‖1 ≤M‖f‖1 <∞.

This paper is organized as follows. In Section 2, we shall give a lower bound estimation of

a density in GARCH-type model. Let f̂n be an estimator of a function in Hs(Ωx0 , M). Then

with 1 ≤ p <∞,

sup
x∈Ωx0

inf
f̂n

sup
f∈Hs(Ωx0 , M)

[
E
∣∣∣f̂n(x)− f(x)

∣∣∣
p] 1

p

& n− s
2s+2v+1 .
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Section 3 shows firstly the linear wavelet estimator f̂ lin
n attaining the optimal convergence

rate n− s
2s+2v+1 on Hs(Ωx0 , M). Due to the non-adaptivity of f̂ lin

n , the non-linear wavelet

estimation is then provided, which turns out to be adaptive and nearly-optimal (optimal up

to a lnn factor). Because the non-linear wavelet estimator depends on an upper bound of

the unknown parameter s, we finally consider a data driven version in the last section, which

is motivated by the work of Rebelles [17] and Goldonshluger & Lepski [11], and has a better

convergence rate than that of the non-linear wavelet one.

2. Lower Bound

We shall provide a point-wise lower bound estimation for densities in model (1.1) in this

section. Firstly, the relationship between the densities of X and Y should be clarified. By the

assumptions on Z, the density function of Z is

fZ(z) =
1

(v − 1)!
(− ln z)v−1, z ∈ (0, 1). (2.1)

In fact, (2.1) can be proved by induction. Clearly, fZ(z) = 1 with z ∈ (0, 1) for v = 1

(Z = U1 ∼ U(0,1)). Moreover, when v ≥ 2, Z =
∏v

i=1 Ui =
∏v−1

i=1 U1 · Uv. Let

fU1···Uv−1(x) =
1

(v − 2)!
(− lnx)v−2 (0 < x < 1).

Then for z ∈ (0, 1),

P{Z ≤ z} = P

{
v−1∏

l=1

Ul · Uv ≤ z

}
=

∫ 1

0

∫ z

0

fU1···Uv−1(x)dxdy +

∫ 1

z

∫ z
x

0

fU1···Uv−1(x)dydx

=

∫ z

0

fU1···Uv−1 (x)dx +

∫ 1

z

z

x
fU1···Uv−1(x)dx.

Hence,

fZ(z) =

∫ 1

z

1

x
fU1···Uv−1 (x)dx

= −
∫ 1

z

1

(v − 2)!
(− lnx)v−2d(− lnx) =

1

(v − 1)!
(− ln z)v−1

with z ∈ (0, 1).

As in [4, 8, 16], we assume that there exists a positive constant C∗ such that

sup
x∈[0,1]

fY (x) ≤ C∗. (2.2)

For any x ∈ [0, 1], h ∈ Ck([0, 1]), define

T (h)(x) := (xh(x))′ = h(x) + xh′(x), Tk(h)(x) := T (Tk−1(h))(x),

G(h)(x) := −xh′(x), Gk(h)(x) := G(Gk−1(h))(x),

where k is a positive integer. Then the following lemma holds, which can be found in Ref. [4,8].
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Lemma 2.1 ([4, 8]). Let G and T be defined as above. Then

(i). fX(x) = Gv(fY )(x), x ∈ [0, 1];

(ii). For any h ∈ Cv([0, 1]),

∫ 1

0

fX(x)h(x)dx =

∫ 1

0

fY (x)Tv(h)(x)dx.

To show a lower bound estimation of density functions, we introduce and prove the following

proposition.

Proposition 2.1. Let Ψ be a density set and d be a distance function on Ψ×Ψ. If there exist

f0, fn ∈ Ψ (n is sample size in estimator f̂n) and f0,Y , fn,Y are the corresponding densities of

Y in GARCH-type model such that

(i). f0,Y (x) > 0 for x ∈ (0, 1);

(ii). d(fn, f0) ≥ an > 0;

(iii).

∫ 1

0

f−1
0,Y (x)f

2
n,Y (x)dx ≤ n

√
λ with λ ∈ (1, 5),

then with each estimator f̂n(x;Y1, · · · , Yn) of f ∈ Ψ and 1 ≤ p <∞,

inf
f̂n

sup
f∈Ψ

EfY d
p(f̂n, f) & apn.

Proof. It follows from Jensen’s inequality and 1 ≤ p <∞ that

Ef0,Y d
p(f̂n, f0) + Efn,Y d

p(f̂n, fn) ≥ [Ef0,Y d(f̂n, f0)]
p + [Efn,Y d(f̂n, fn)]

p.

Moreover, by f0, fn ∈ Ψ,

2 sup
f∈Ψ

EfY d
p(f̂n, f) ≥ [Ef0,Y d(f̂n, f0)]

p + [Efn,Y d(f̂n, fn)]
p. (2.3)

Since (|a|+ |b|)p ≤ 2p−1(|a|p + |b|p) for p ≥ 1, the right-hand side of (2.3) has a lower bound

21−p[Ef0,Y d(f̂n, f0) + Efn,Y d(f̂n, fn)]
p

&
[
Ef0,Y |d(f̂n, fn)− d(fn, f0)|+ Efn,Y d(f̂n, fn)

]p
.

According to Condition (ii), (2.3) reduces to

sup
f∈Ψ

EfY d
p(f̂n, f)

&dp(fn, f0)
[
Ef0,Y |d−1(fn, f0)d(f̂n, fn)− 1|+ Efn,Y [d

−1(fn, f0)d(f̂n, fn)]
]p

≥apn
[
Ef0,Y |d−1(fn, f0)d(f̂n, fn)− 1|+ Efn,Y [d

−1(fn, f0)d(f̂n, fn)]
]p
.

Therefore, it suffices for the desired conclusion to show

In := Ef0,Y |d−1(fn, f0)d(f̂n, fn)− 1|+ Efn,Y [d
−1(fn, f0)d(f̂n, fn)] & 1. (2.4)

For y = (y1, · · · , yn) ∈ (0, 1)n :=

n︷ ︸︸ ︷
(0, 1)× · · · × (0, 1), denote

F0(y) :=
n∏

l=1

f0,Y (yl), Fn(y) :=
n∏

l=1

fn,Y (yl) and Hn(y) :=
n∏

l=1

(f0,Y )
−1(yl)fn,Y (yl).
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It follows from Condition (i) that Hn is well-defined. Then

Efn,Y [d
−1(fn, f0)d(f̂n, fn)] =

∫

(0,1)n
d−1(fn, f0)d(f̂n, fn)Fn(y)dy

=

∫

(0,1)n
d−1(fn, f0)d(f̂n, fn)Hn(y)F0(y)dy. (2.5)

On the other hand,

Ef0,Y |d−1(fn, f0)d(f̂n, fn)− 1| =
∫

(0,1)n
|d−1(fn, f0)d(f̂n, fn)− 1|F0(y)dy. (2.6)

Combining (2.5) and (2.6), one obtains that

In ≥
∫

(0,1)n

[
|d−1(fn, f0)d(f̂n, fn)− 1|+ d−1(fn, f0)d(f̂n, fn)

]
min{1, Hn(y)}F0(y)dy

≥
∫

(0,1)n
min{1, Hn(y)}F0(y)dy

thanks to |a− 1|+ |a| ≥ 1. According to the fact min{x, y} = 1
2 [(x+ y)− |x− y|],

In ≥ 1

2

∫

(0,1)n

[
1 +Hn(y)− |1−Hn(y)|

]
F0(y)dy.

By
∫ 1

0
f0,Y (y)dy =

∫ 1

0
fn,Y (y)dy = 1,

∫
(0,1)n

F0(y)dy =
∫
(0,1)n

Hn(y)F0(y)dy = 1 and

In ≥ 1− 1

2

∫

(0,1)n
|1−Hn(y)|F0(y)dy =: 1− bn

2
. (2.7)

It follows from Jensen’s inequality that

b2n ≤
∫

(0,1)n
[1−Hn(y)]

2F0(y)dy =

∫

(0,1)n

[
1− 2Hn(y) +H2

n(y)
]
F0(y)dy

= −1 +

∫

(0,1)n
H2

n(y)F0(y)dy.

Furthermore, by the definitions of F0 and Hn,

b2n ≤
[∫ 1

0

(f0,Y )
−1(y)(fn,Y )

2(y)dy

]n
− 1 ≤ λ− 1,

where Condition (iii) is used in the last inequality. This with (2.7) and λ ∈ (1, 5) shows

In ≥ 1− 1

2

√
λ− 1 > 0,

which reaches (2.4). The proof is complete. �

Next, we use Proposition 2.1 to give a point-wise lower bound estimation for densities in

GARCH-type model on Hs(Ωx0 , M).

Theorem 2.1. Let f̂n be an estimator of f ∈ Hs(Ωx0 , M) and 1 ≤ p <∞. Then

inf
f̂n

sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

[
E
∣∣∣f̂n(x)− f(x)

∣∣∣
p] 1

p

& n− s
2s+2v+1 .
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Proof. Clearly, it is sufficient to prove that for some x ∈ Ωx0 ,

sup
f∈Hs(Ωx0 , M)

E
∣∣∣f̂n(x) − f(x)

∣∣∣
p

& n− ps
2s+2v+1 .

Without loss of generality, one takes x0 = 1/2; Otherwise, one could replace the variable x

with x− x0 in all of the following functions f0, fn and g.

Define f0(x) := ce
− 1

1/4−(x−1/2)2 I(0,1)(x) with the constant “c” being a normalized factor such

that ‖f0‖1 = 1 and

g(x) := a
[
e
− 1

1/16−(x−3/4)2 I(1/2,1)(x) − e
− 1

1/16−(x−1/4)2 I(0,1/2)(x)
]
,

where the constant “a” will be determined later on and g(1/2) := 0.

Obviously, f0 ∈ Hs(Ωx0 ,M), supp f0 ⊆ [0, 1] and f0(x) ≥ M1 > 0 for x ∈ [1/2, 3/4]. Let

C∞
0 be the set of all infinitely many times differentiable and compactly supported functions.

Then
∫
R
g(x)dx = 0 and g ∈ C∞

0 with supp g ⊆ [0, 1].

Take aj = 2−j(s+v+ 1
2 ) with 2j ∼ n

1
2s+2v+1 and

fn(x) := f0(x) + ajGv(gj)(x),

where gj(x) = 2
j
2 g(2jx− 2j−1).

Note that supp gj ⊆ [1/2, 3/4] with large j because of supp g ⊆ [0, 1]. Then fn(x) ≥ 0 for

x /∈ [1/2, 3/4]. It is easy to calculate that

Gv(gj)(x) = (−1)v
v∑

u=1

Cux
u(gj)

(u)(x),

where Cu > 0 (u = 1, 2, · · · , v) are some constants. Then for x ∈ [1/2, 3/4] and large j,

fn(x) ≥M1 −
∣∣∣∣∣aj

v∑

u=1

Cux
u(g

(u)
j )(x)

∣∣∣∣∣ ≥M1 − aj2
j/2

v∑

u=1

Cu2
uj‖g(u)(2j · −2j−1)‖∞

≥M1 − 2−js
v∑

u=1

Cu‖g(u)‖∞ ≥ 0 (2.8)

thanks to f0(x)|[1/2,3/4] ≥ M1 and aj = 2−j(s+1/2+v). On the other hand,
∫ 1

0 g(x)dx = 0 and

supp gj ⊆ [1/2, 1/2+ 2−j ] by supp g ⊆ [0, 1]. These with integration by parts shows that

∫ 1

0

xu(gj)
(u)(x)dx = xu(gj)

(u−1)(x)
∣∣∣
1/2+2−j

1/2
− u

∫ 1

0

xu−1(gj)
(u−1)(x)dx

= · · · = (−1)m
u!

(u−m)!

∫ 1

0

xu−m(gj)
(u−m)(x)dx

= · · · = (−1)uu!

∫ 1

0

gj(x)dx = 0

for any u ∈ {1, · · · , v}. Therefore,
∫

R

fn(x)dx =

∫ 1

0

f0(x)dx + (−1)vaj

v∑

u=1

Cu

∫ 1

0

xu(gj)
(u)(x)dx = 1.
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Combining this with (2.8), one concludes that fn is a density function.

To prove fn ∈ Hs(Ωx0), one needs to check ajGv(gj) ∈ Hs(Ωx0). Denote s = N + δ with

δ ∈ (0, 1]. Then for x, y ∈ Ωx0 ,

∣∣∣[ajGv(gj)]
(N)(x)− [ajGv(gj)]

(N)(y)
∣∣∣

=aj

∣∣∣∣∣(−1)v
v∑

u=0

Cux
u(gj,l)

(u)(x)− (−1)v
v∑

u=0

cux
u(gj)

(u+N)(y)

∣∣∣∣∣

≤aj
v∑

u=0

2j/22j(u+N)Cu|xug(u+N)[2j(x− l)− yug(u+N)[2j(y − l)]|

.aj2
j/22j(v+N)

v∑

u=0

|xug(u+N)[2j(x− l)]− yug(u+N)[2j(y − l)]|.

Then with aj = 2−j(s+v+ 1
2 ) and xkg(k

′) ∈ Hδ(R) holds for all positive integers k, k′, the above

inequality reduces to

∣∣∣[ajGv(gj)]
(N)(x) − [ajGv(gj)]

(N)(y)
∣∣∣ . |x− y|δ,

which shows ajGv(gj) ∈ Hs(Ωx0). Then fn ∈ Hs(Ωx0).

Obviously, f0(x) > 0 for x ∈ (0, 1) and

|fn(x)− f0(x)| = aj2
j/2

∣∣∣∣∣

v∑

u=1

Cu

[
2j(x− 1

2
+

1

2
)

]u
g(u)

(
2j(x− 1

2
)

)∣∣∣∣∣ .

Note that [2j(x − 1
2 + 1

2 )]
u =

∑u
l=0

(
u
l

)
[2j(x − 1

2 )]
u−l(12 )

l2lj . Then with |a + b| ≥ |a| − |b|, we
have

|fn(x) − f0(x)|

≥aj2j/2
{
Cv

(
1

2

)v

2vj|g(v)
(
2j(x− 1

2
)

)∣∣∣∣− 2(v−1)j
v∑

u=1

Cu

(
1

2

)u

|g(u)
(
2j(x− 1

2
)

)∣∣∣∣−

− 2(v−1)j
v−1∑

u=1

Cu

u−1∑

l=0

(
u
l

)(1

2

)l∣∣∣∣
(
x− 1

2

)u−l

g(u)
(
2j(x− 1

2
)

)∣∣∣∣

}
. (2.9)

Choosing x = 1
2+

2−j

16 with j large enough, which implies x ∈ Ωx0 (x0 = 1
2 ) and g

(v)(2j(x− 1
2 )) 6=

0. Combining these with (2.9), one obtains that for large j,

|fn(x) − f0(x)| & aj2
j/22jv & 2−js (2.10)

because of aj = 2−j(s+v+ 1
2 ). Then with 2j ∼ n

1
2s+2v+1 , (2.10) reduces to

|fn(x) − f0(x)| & n− s
2s+2v+1 ,

which concludes Condition (ii) of Proposition 2.1.

Finally, according to the formula (46) in Cao & Wei’s work ([4]), we have

fn,Y − f0,Y = ajgj(x) and f0,Y ≥ M1

v!

(
ln 3/4− ln(1/2 + 2−j)

)v
≥M2 > 0,
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where M1 and M2 are two positive constants. Thus,
∫ 1

0

f−1
0,Y (x)f

2
n,Y (x)dx =

∫ 1

0

f−1
0,Y (x)[f0,Y (x) + ajgj(x)]

2dx

=1 +

∫ 1

0

f−1
0,Y (x)a

2
jg

2
j (x)dx ≤ 1 +M−1

2 a2j‖gj‖22.

It follows from the definition of aj and 2j ∼ n
1

2s+2v+1 that a2j . n−1 and

[∫ 1

0

f−1
0,Y (x)f

2
n,y(x)dx

]n
≤
[
1 + M̃2

−1‖g‖22n−1
]n

≤ exp
{
M̃2

−1‖g‖22
}

thanks to (1 + x)n ≤ enx for x ≥ 0. By choosing the constant “a” in the definition of g such

that ‖g‖2 is sufficient small,
(∫ 1

0

f−1
0,Y (x)f

2
n,Y (x)dx

)n

≤ λ

with λ ∈ (1, 5), which reaches Condition (iii) of Proposition 2.1. This completes the proof. �

3. Wavelet Estimations

This section is devoted to show the upper bounds of linear and non-linear wavelet estimators

over point-wise risk respectively.

Let φ and ψ be orthonormal scaling and wavelet function of L2(R). Then for f ∈ L2(R),

f =
∑

k

αj0kφj0k +

∞∑

j=j0

∑

k

βjkψjk

holds in L2-sense, where αj0k := 〈f, φj0k〉 and βjk := 〈f, ψjk〉. As in wavelet analysis, Pj

stands for the orthogonal projection operator from L2(R) onto the scaling space Vj . Then

Pjf =
∑

k αjkφjk. All of these claims can be found in Ref. [12].

The following proposition is important for wavelet estimations over point-wise risk.

Proposition 3.1 ([21]). Let φ be a compactly supported and continuous scaling function

of L2(R) and ψ be the corresponding wavelets with vanishing moments of order N . If f ∈
Hs(Ωx0 , M) with s = N + δ (0 < δ ≤ 1) and βjk =

∫
R
f(y)ψjk(y)dy, then for sufficiently large

j and j0,

(i). sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

∑

k

|βjkψjk(x)| . 2−js;

(ii). f(x) =
∑

k

αj0kφj0k(x) +
∞∑

j=j0

∑

k

βjkψjk(x), x ∈ Ωx0 ;

(iii). sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

|f(x)− Pj0f(x)| . 2−j0s.

Before giving main results of this section, we recall the definitions of linear and non-linear

(hard thresholding) wavelet estimators firstly, which can be found in Ref. [4, 16]. Define

f̂ lin
n (x) :=

∑

k

α̂j0kφj0k(x), f̂non
n (x) := f̂ lin

n (x) +

j1∑

j=j0

∑

k

β̃jkψjk(x), (3.1)
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where

α̂jk :=
1

n

n∑

i=1

Tv(φjk)(Yi), β̂jk :=
1

n

n∑

i=1

Tv(ψjk)(Yi), β̃jk := β̂jkI{|β̂jk|>τj,n}
(3.2)

with τj,n := γ2vj
√
j/n and γ being a positive constant. By the work of [8], Eα̂jk = αjk and

Eβ̂jk = βjk. To use Proposition 3.1, we choose φ and ψ satisfying all conditions, such as

Daubechies’ functions D2N and ψ2N with large N .

The next lemma is useful in later proofs.

Lemma 3.1. Let α̂jk and β̂jk be defined in (3.2). Then for 2j ≤ n and 1 ≤ p <∞,

E|α̂jk − αjk|p . n−p
2 2vjp and E|β̂jk − βjk|p . n− p

2 2vjp,

where the constants in “.” only depend on φ, ψ, C∗ and p.

Proof. Clearly, one only needs to prove the first inequality and the second one is similar.

According to (3.2) and Eα̂jk = αjk, one obtains that

α̂jk − αjk =
1

n

n∑

i=1

Tv(φjk)(Yi)−
1

n

n∑

i=1

E[Tv(φjk)(Yi)] =
1

n

n∑

i=1

ξi (3.3)

with ξi := Tv(φjk)(Yi)−E[Tv(φjk)(Yi)]. Then Eξi = 0 and ξ1, · · · , ξn are i.i.d. samples, because

Y1, · · · , Yn have the same property. These with (3.3) shows

E|α̂jk − αjk|p = n−pE

∣∣∣∣∣

n∑

i=1

ξi

∣∣∣∣∣

p

. (3.4)

By the definition of the operator T ,

Tv(φjk)(x) =

v∑

u=0

Cux
u(φjk)

(u)(x), (3.5)

where Cu (u = 0, 1, · · · , v) are positive constants. Then with M0 = max{Cu, u = 0, 1, · · · , v},

sup
x∈[0,1]

|Tv(φjk)(x)| ≤M0

v∑

u=0

sup
x∈[0,1]

|(φjk)(u)(x)|.

Hence, it follows from the smoothness and compact support of φ that

sup
x∈[0,1]

|Tv(φjk)(x)| . 2(v+1/2)j .

Moreover, combining it with |ξi| ≤ |Tv(φjk)(Yi)| + |E[Tv(φjk)(Yi)]| ≤ 2 supx∈[0,1] |Tv(φjk)(x)|,
one concludes that

|ξi| . 2(v+1/2)j . (3.6)

By E|ξi|2 ≤ E[Tv(φjk)(Yi)]
2, (3.5) tells that

E|ξi|2 ≤ E

[
v∑

u=0

CuY
u
i (φjk)

(u)(Yi)

]2
. (3.7)



Adaptive and Optimal Estimations for Densities in Garch-Type Model 117

On the other hand, due to (2.2),

E
[
(φjk)

(u)(Yi)
]2

. 2(2u+1)j

∫ 1

0

[φ(u)(2jx− k)]2dx . 22uj.

This with (3.7) and Yi ∈ [0, 1] implies that

E|ξi|2 . 22vj . (3.8)

According to Rosenthal’s inequality [12],

E

∣∣∣∣∣

n∑

i=1

ξi

∣∣∣∣∣

p

.

n∑

i=1

E|ξi|pI{p>2} +

(
n∑

i=1

E|ξi|2
) p

2

.

Then with (3.6) and (3.8), the above inequality reduces to

E

∣∣∣∣∣

n∑

i=1

ξi

∣∣∣∣∣

p

. n2(v+1/2)j(p−2)22vjI{p>2} + n
p
2 2vjp = n

p
2 2vjp

[
n1− p

2 2j(
p
2−1)I{p>2} + 1

]
.

Combining this with 2j ≤ n and (3.4), one knows that

E|α̂jk − αjk|p . n−pn
p
2 2vjp = n−p

2 2vjp,

which completes the proof. �

Now, we are in a position to prove the linear wavelet estimation on Hs(Ωx0 , M).

Theorem 3.1. Let 2j0 ∼ n
1

2s+2v+1 and 1 ≤ p <∞. Then

sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

[
E
∣∣∣f̂ lin

n (x) − f(x)
∣∣∣
p] 1

p

. n− s
2s+2v+1 .

Proof. Clearly, it follows from Jensen’s inequality that

E
∣∣∣f̂ lin

n (x)− f(x)
∣∣∣
p

. E
∣∣∣f̂ lin

n (x)− Pj0f(x)
∣∣∣
p

+ |Pj0f(x)− f(x)|p. (3.9)

By Proposition 3.1 (iii) and 2j0 ∼ n
1

2s+2v+1 ,

|Pj0f(x)− f(x)|p . 2−j0sp . n− sp
2s+2v+1 . (3.10)

On the other hand,

∣∣∣f̂ lin
n (x) − Pj0f(x)

∣∣∣

=

∣∣∣∣∣
∑

k

(α̂j0k − αj0k)φj0k(x)

∣∣∣∣∣ ≤
∑

k

|α̂j0k − αj0k||φj0k(x)|
1
p |φj0k(x)|

1
p′

with 1
p + 1

p′
= 1. Then due to the Hölder inequality,

E
∣∣∣f̂ lin

n (x)− Pj0f(x)
∣∣∣
p

≤
∑

k

E|α̂j0k − αj0k|p|φj0k(x)|
(
∑

k

|φj0k(x)|
) p

p′

.
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Combining this with Lemma 3.1 and
∑

k |φ(x − k)| . 1, one obtains that

E
∣∣∣f̂ lin

n (x)− Pj0f(x)
∣∣∣
p

.n−p
2 2vj0p

(
∑

k

|φj0k(x)|
)p

.

(
2(2v+1)j0

n

) p
2

. n− sp
2s+2v+1 (3.11)

thanks to 1+ p
p′

= p and 2j0 ∼ n
1

2s+2v+1 . This with (3.9)–(3.10) leads to the desired conclusion

and the proof is done. �

Remark 3.1. Compared with Theorem 2.1, the linear wavelet estimator f̂ lin
n attains the opti-

mal convergence rate n− s
2s+2v+1 .

The linear wavelet estimator is not adaptive, because f̂ lin
n depends on the unknown param-

eter s. The non-linear wavelet estimator avoids this disadvantage, although it is nearly-optimal

(optimal up to a lnn factor).

Before giving the proof of non-linear one, we introduce a classical inequality.

Lemma 3.2 (Bernstein inequality, [12]). Let X1, · · · , Xn be i.i.d. with EXi = 0 and

|Xi| ≤ ‖X‖∞ (i = 1, · · · , n). Then for each ǫ > 0,

P

{∣∣∣∣∣
1

n

n∑

i=1

Xi

∣∣∣∣∣ ≥ ǫ

}
≤ 2 exp

(
− nǫ2

2(EX2
i + ‖X‖∞ǫ/3)

)
.

Theorem 3.2. Let 2j0 ∼ n
1

2m+2v+1 (s < m) and 2j1 ∼
(

n
lnn

) 1
2v+1 . Then with 1 ≤ p <∞,

sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

[
E
∣∣∣f̂non

n (x)− f(x)
∣∣∣
p] 1

p

. (lnn)1−
1
p

( lnn
n

) s
2s+2v+1

.

Proof. Denote Jn :=
[
E
∣∣∣f̂non

n (x) − f(x)
∣∣∣
p] 1

p

. Then

Jn ≤
[
E
∣∣∣f̂ lin

n (x) − Pj0f(x)
∣∣∣
p] 1

p

+


E

∣∣∣∣∣∣

j1∑

j=j0

∑

k

(β̃jk − βjk)ψjk(x)

∣∣∣∣∣∣

p


1
p

+ |Pj1+1f(x)− f(x)|

thanks to the definition of f̂non
n and Proposition 3.1 (ii). By (3.11) and 2j0 ∼ n

1
2m+2v+1 with

s < m,

sup
x∈Ωx0

sup
f∈Hs(Ωx0 ,M)

[
E
∣∣∣f̂ lin

n (x)− Pj0f(x)
∣∣∣
p] 1

p

.

(
2(2v+1)j0

n

) 1
2

. n− m
2m+2v+1 . n− s

2s+2v+1 .

On the other hand, Proposition 3.1 (iii) with the choice 2j1 ∼
(

n
lnn

) 1
2v+1 tells that

sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

|Pj1+1f(x)− f(x)| . 2−j1s .
( lnn
n

) s
2v+1 ≤

( lnn
n

) s
2s+2v+1

.

Hence, it suffices to show

sup
x∈Ωx0

sup
f∈Hs(Ωx0 ,M)

E

∣∣∣∣∣∣

j1∑

j=j0

∑

k

(β̃jk − βjk)ψjk(x)

∣∣∣∣∣∣

p

. (lnn)p−1
( lnn
n

) sp
2s+2v+1

. (3.12)
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in order to conclude Theorem 3.2. Similar to [10, 13], define

Aj := {k, |β̂jk| > τj,n}, Bj :=
{
k, |βjk| >

τj,n
2

}
and Cj := {k, |βjk| > 2τj,n}.

Then

E

∣∣∣∣∣∣

j1∑

j=j0

∑

k

(β̃jk − βjk)ψjk(x)

∣∣∣∣∣∣

p

. E|e1|p + E|e2|p + E|e3|p + E|e4|p,

where

e1 :=

j1∑

j=j0

∑

k

(β̂jk − βjk)ψjk(x)I{k∈Aj∩Bc
j}
,

e2 :=

j1∑

j=j0

∑

k

(β̂jk − βjk)ψjk(x)I{k∈Aj∩Bj},

e3 :=

j1∑

j=j0

∑

k

βjkψjk(x)I{k∈Ac
j∩Cj}, e4 :=

j1∑

j=j0

∑

k

βjkψjk(x)I{k∈Ac
j∩Cc

j}
.

In order to estimate E|e1|p, one observes that

β̂jk − βjk =
1

n

n∑

i=1

ηi

with ηi := Tv(ψjk)(Yi) − ETv(ψjk)(Yi). Obviously, Eηi = 0 and η1, · · · , ηn are i.i.d. samples.

Similar to (3.6) and (3.8), one knows

‖ηi‖∞ ≤M∞2(v+1/2)j, Eη2i ≤M22
2vj .

Here, M∞ and M2 are two positive constants. Combining these with Lemma 3.2 and τj,n =

γ2vj
√

j
n , one obtains that

P
{∣∣∣β̂jk − βjk

∣∣∣ > τj,n
2

}
≤ 2 exp

(
−

nτ2j,n
8[Eη2i + ‖ηi‖∞τj,n/6]

)

≤ 2 exp

(
− γ2j22vj

8[M222vj +M∞2(v+1/2)jγ2vjj
1
2n− 1

2 /6]

)

≤ 2 exp(−cγj)

with γ > 0 large enough and some c > 0, where one uses 2j ≤ 2j1 ∼ ( n
lnn )

1
2v+1 in last inequality.

Furthermore,

EI{k∈Aj∩Bc
j}

≤ EI{
|β̂jk−βjk|>

τj,n
2

} = P
{
|β̂jk − βjk| >

τj,n
2

}
. 2−cγj. (3.13)

Since |β̂jk| = | 1n
∑n

i=1 Tv(ψjk)(Yi)| . 2(v+1/2)j , |βjk| ≤ E|β̂jk| . 2(v+1/2)j and

E|e1|p . jp−1
1 E

j1∑

j=j0

2(v+
1
2 )jp

[
∑

k

|ψjk(x)|I{k∈Aj∩Bc
j}

]p
.
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By the Hölder inequality with 1
p + 1

p′
= 1, the above inequality reduces to

E|e1|p . jp−1
1 E

j1∑

j=j0

2(v+
1
2 )jp

∑

k

|ψjk(x)|I{k∈Aj∩Bc
j}

(
∑

k

|ψjk(x)|
) p

p′

.

This with (3.13) and
∑

k |ψ(x − k)| . 1 leads to

E|e1|p . jp−1
1

j1∑

j=j0

2(v+
1
2 )jp2

j
2 (1+

p

p′
)
2−cγj . jp−1

1

j1∑

j=j0

2(vp+p−cγ)j.

Similarly, E|e3|p . jp−1
1

∑j1
j=j0

2(2v+1)jp−cγj . Then for sufficiently large γ > vp+p+mp
c ,

E|e1|p + E|e3|p . jp−1
1 2(vp+p−cγ)j0 .

Moreover, it follows from 2j0 ∼ n
1

2m+2v+1 , 2j1 ∼
(

n
lnn

) 1
2v+1 and s < m that

E|e1|p + E|e3|p . (lnn)p−1n− mp
2m+2v+1 ≤ (lnn)p−1

( lnn
n

)− sp
2s+2v+1

. (3.14)

Next, E|e4|p is investigated as follows. Put

2j
∗ ∼

( n

lnn

) 1
2s+2v+1

.

Then j0 ≤ j∗ ≤ j1 holds because of 1
2m+2v+1 ≤ 1

2s+2v+1 ≤ 1
2v+1 and 0 < s < m. Furthermore,

e4 =




j∗∑

j=j0

+

j1∑

j=j∗+1


∑

k

βjkψjk(x)I{k∈Ac
j∩Cc

j}
:= e41 + e42.

According to Proposition 3.1 (i), 2j
∗ ∼ ( n

lnn )
1

2s+2v+1 and 2j1 ∼ ( n
lnn )

1
2v+1 ,

E|e42|p . jp−1
1

j1∑

j=j∗

[
∑

k

|βjkψjk(x)|
]p

. jp−1
1

j1∑

j=j∗

2−jsp

≤ jp−1
1 2−j∗sp . (lnn)p−1

( lnn
n

) sp
2s+2v+1

. (3.15)

On the other hand, |βjk| ≤ 2τj,n . 2vj
√

j
n for k ∈ Cc

j ,. This with
∑

k |ψ(x− k)| . 1 shows

E|e41|p . Ejp−1
1

j∗∑

j=j0

∣∣∣∣∣
∑

k

βjkψjk(x)I{k∈Ac
j∩Cc

j }

∣∣∣∣∣

p

. jp−1
1

j∗∑

j=j0

2(v+
1
2 )jp

( j
n

) p
2 ≤ jp−1

1 n− p
2

(
j∗2(2v+1)j∗

) p
2 .

By the choices 2j
∗

and 2j1 , the above inequality reduces to

E|e41|p . (lnn)p−1
( lnn
n

) sp
2s+2v+1

.
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Combining this with e4 = e41 + e42 and (3.15), one concludes that

E|e4|p . (lnn)p−1
( lnn
n

) sp
2s+2v+1

. (3.16)

Finally, it remains to estimate E|e2|p, in which one writes down

e2 =




j∗∑

j=j0

+

j1∑

j=j∗+1


∑

k

(β̂jk − βjk)ψjk(x)I{k∈Aj∩Bj} := e21 + e22.

It follows from the Hölder inequality with 1
p + 1

p′
= 1 and Lemma 3.1 that

E|e21|p . jp−1
1 E

j∗∑

j=j0

∑

k

|β̂jk − βjk|p|ψjk(x)|
(
∑

k

|ψjk(x)|
) p

p′

. n− p
2 jp−1

1

j∗∑

j=j0

2vjp

(
∑

k

|ψjk(x)|
)p

.

Then with
∑

k |ψ(x − k)| . 1, j1 . lnn and 2j
∗ ∼ ( n

lnn )
1

2s+2v+1 that

E|e21|p . jp−1
1

j∗∑

j=j0

(
2(2v+1)j

n

) p
2

≤ jp−1
1

(
2(2v+1)j∗

n

) p
2

. (lnn)p−1
( lnn
n

) sp
2s+2v+1

.

For E|e22|p, one observes that |βjk| > τj,n
2 for k ∈ Bj and

E|e22|p . jp−1
1

j1∑

j=j∗+1

∑

k

E|β̂jk − βjk|p|ψjk(x)||βjkτ−1
j,n |

(
∑

k

|ψjk(x)βjk|τ−1
j,n

) p

p′

,

where the Hölder inequality with 1
p + 1

p′
= 1 is used in last step. According to Lemma 3.1,

Proposition 3.1 (i) and τj,n ∼ 2vj
√
j/n,

E|e22|p .jp−1
1

j1∑

j=j∗+1

n−p
2 2vjpτ−p

j,n

(
∑

k

|βjkψjk(x)|
)p

.jp−1
1

j1∑

j=j∗+1

j−
p
2 2−jsp . jp−1

1 2−j∗sp.

Moreover, E|e22|p . (lnn)p−1( lnn
n )

sp
2s+2v+1 thanks to the choices 2j1 and 2j

∗

. Therefore,

E|e2|p . (lnn)p−1
( lnn
n

) sp
2s+2v+1

. (3.17)

Furthermore,
∑4

ℓ=1E|eℓ|p . (lnn)p−1( lnn
n )

sp
2s+2v+1 holds due to (3.14), (3.16) and (3.17).

Since all constants in “.” of above arguments do not depend on x ∈ Ωx0 and f ∈ Hs(Ωx0 ,M),

the desired conclusion (3.12) is concluded. This finishes the proof of Theorem 3.2. �
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Remark 3.2. In contract to the Lp-risk estimation [4, 6–9, 16], we do not use the wavelet

characterization theorem in the proofs of Theorem 3.1 and Theorem 3.2, because the local

Hölder condition is only assumed in this paper. In fact, we do not know whether that theorem

holds on Hs(Ωx0) or not. Instead, Proposition 3.1 helps and the Hölder inequality is frequently

used.

On the other hand, the convergence rates of Theorem 3.1 and Theorem 3.2 are exact the

same up to a lnn factor. Compared with Theorem 2.1, the non-linear wavelet estimator not

only attains a nearly-optimal convergence rate but also gets the adaptivity.

We need know an upper bound m of the unknown parameter s for the non-linear wavelet

estimation. The next section considers a data driven version for densities in GARCH-type

model, which dose not need any information on s.

4. Data-driven Estimation

Motivated by the work of Rebelles [17] and Goldonshluger & Lepski [11], we first introduce

selection rules, then provide a totally adaptive point-wise estimation on Hs(Ωx0 , M) in this

section.

Let f̂j0 be the linear wavelet estimator f̂ lin
n given in (3.1). Define

f̂j,j∗(x) :=
∑

k

α̂j∧j∗,kφj∧j∗,k(x)

with j ∧ j∗ = min{j, j∗} and

ν̂j := ν

√
(1 + p

2 )2
(2v+1)j max{1, (ln 2)(2v + 1)j}

n
, (4.1)

where the constant ν will be specified later on.

Let H := {0, 1, 2, · · · , ⌊ 1
2v+1 log2(

n
lnn )⌋} with ⌊x⌋ denoting the largest integer smaller or

equal to x. Then define the integer j0 ∈ N by the following selection rules. For x ∈ Ωx0 and

x+ := max{x, 0},

(i). ξ̂j(x) := max
j∗∈H

[
|f̂j,j∗(x) − f̂j∗(x)| − ν̂j∗ − ν̂j

]
+
;

(ii). ξ̂j0 (x) + 2ν̂j0 := min
j∈H

[
ξ̂j(x) + 2ν̂j

]
.

We need a classical lemma in real analysis, in order to show the data driven estimation.

Lemma 4.1. Let (X,F , µ) be a measurable space and f ∈ Lp(X,F , µ) with 0 < p <∞. Then

with λ(t) := µ{x ∈ X, |f(x)| > t},
∫

X

|f |pdµ = p

∫ +∞

0

tp−1λ(t)dt.

Theorem 4.1. Let j0 be given by the above selection rules. Then the linear wavelet estimator

f̂j0 satisfies that for 1 ≤ p <∞,

sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

[
E
∣∣∣f̂j0(x)− f(x)

∣∣∣
p] 1

p

.
( lnn
n

) s
2s+2v+1

.
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Proof. With the choice j1 := ⌊ 1
2s+2v+1 log2(

n
lnn )⌋, 2j1 ∼ ( n

lnn )
1

2s+2v+1 and j1 ∈ H thanks to

s > 0. According to the proof of Theorem 3.1,

sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

[
E
∣∣∣f̂j1(x)− f(x)

∣∣∣
p] 1

p

.
( lnn
n

) s
2s+2v+1

. (4.2)

By selection rules (i) and (ii),

|f̂j1,j0 − f̂j0 |+ |f̂j1,j0 − f̂j1 | ≤ (ξ̂j1 + ν̂j0 + ν̂j1) + (ξ̂j0 + ν̂j0 + ν̂j1)

= (ξ̂j0 + 2ν̂j0) + (ξ̂j1 + 2ν̂j1) ≤ 2(ξ̂j1 + 2ν̂j1).

Furthermore, the above inequality leads to

|f̂j0(x) − f(x)|p

.
[
|f̂j0(x) − f̂j1,j0(x)|+ |f̂j1,j0(x)− f̂j1(x)|

]p
+ |f̂j1(x)− f(x)|p

.[ξ̂j1 (x)]
p + ν̂pj1 + |f̂j1(x)− f(x)|p.

Clearly, ν̂pj1 . ( lnn
n )

sp
2s+2v+1 due to (4.1) and 2j1 ∼ ( n

lnn )
1

2s+2v+1 . These with (4.2) show that

sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

[
E
∣∣∣f̂j0(x)− f(x)

∣∣∣
p] 1

p

. sup
x∈Ωx0

sup
f∈Hs(Ωx0 , M)

(
E[ξ̂j1(x)]

p
) 1

p

+
( lnn
n

) s
2s+2v+1

,

where (|a|+|b|+|c|)θ . |a|θ+|b|θ+|c|θ for θ > 0 and sup(|x|+|y|+|z|) ≤ sup |x|+sup |y|+sup |z|
are used. Hence, it suffices for concluding the desired conclusion to show

sup
x∈Ωx0

sup
f∈Hs(Ωx0 ,M)

[
Eξ̂j1(x)

p
] 1

p

.
( lnn
n

) s
2s+2v+1

. (4.3)

It follows from f̂j1,j∗ = f̂j∗ for j∗ ≤ j1 that

ξ̂j1 : = max
j∗∈H

[
|f̂j1,j∗ − f̂j∗ | − ν̂j∗ − ν̂j1

]
+
= max

j∗>j1

[
|f̂j1 − f̂j∗ | − ν̂j∗ − ν̂j1

]
+

≤ max
j∗>j1

[
|f̂j1 − Ef̂j1 |+ |Ef̂j1 − f |+ |f − Ef̂j∗ |+ |Ef̂j∗ − f̂j∗ | − ν̂j∗ − ν̂j1

]
+
. (4.4)

Combining Ef̂j(x) = Pjf(x) with Proposition 3.1 (iii) and j∗ > j1, one obtains

|Ef̂j1(x)− f(x)| + |f(x)− Ef̂j∗(x)| . 2−j1s + 2−j∗s . 2−j1s.

This with (4.4) leads to

[ξ̂j1 (x)]
p . 2−j1sp +

[
|f̂j1(x) − Ef̂j1(x)| − ν̂j1

]p
+
+ max

j∗>j1

[
|Ef̂j∗(x)− f̂j∗(x)| − ν̂j∗

]p
+
.

Moreover, by j∗ ∈ H and j∗ ≤ ⌊ 1
2v+1 log2(

n
lnn )⌋,

E[ξ̂j1 (x)]
p . 2−j1sp +

⌊ 1
2v+1 log2(

n
lnn )⌋∑

j=j1

E
[
|f̂j(x)− Ef̂j(x)| − ν̂j

]p
+
. (4.5)
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For each t ≥ 0,

P

{[
|f̂j(x) − Ef̂j(x)| − ν̂j)

]
+
> t

}
= P

{
|f̂j(x) − Ef̂j(x)| − ν̂j > t

}
.

This with Lemma 4.1 implies that

E
[
|f̂j(x) − Ef̂j(x)| − ν̂j

]p
+
= p

∫ ∞

0

tp−1P
{
|f̂j(x)− Ef̂j(x)| > ν̂j + t

}
dt

= pν̂pj

∫ ∞

0

tp−1P
{
|f̂j(x) − Ef̂j(x)| > (1 + t)ν̂j

}
dt. (4.6)

According to the definition of f̂j , f̂j(x) − Ef̂j(x) =
1
n

∑n
i=1Wi with

Wi :=
∑

k

φjk(x)[Tv(φjk)(Yi)− ETv(φjk)(Yi)].

Clearly, W1,W2, · · · ,Wn are i.i.d. and EWi = 0. Similar to the proofs of (3.6) and (3.8),

‖Wi‖∞ ≤ L∞2(v+1)j and EW 2
i ≤ L22

(2v+1)j due to
∑

k |φ(x − k)| . 1, where L∞ and L2 are

two positive constants.

Using Lemma 3.2, one knows that

P
{
|f̂j(x)− Ef̂j(x)| > (1 + t)ν̂j

}

≤2 exp

{
−

n(1 + t)2ν̂2j
2[L22(2v+1)j + L∞2(v+1)j · (1 + t)ν̂j/3]

}
. (4.7)

For j ≤ ⌊ 1
2v+1 log2(

n
lnn )⌋, j2(2v+1)j ≤ n and ν̂j . 1 thanks to (4.1). Furthermore,

2

[
L22

(2v+1)j +
L∞

3
2(v+1)j · (1 + t)ν̂j

]
≤ L02

(2v+1)j(1 + t) (L0 > 0).

This with (4.1) shows that the right hand side of (4.7) is bounded by

2 exp

{
−1 + t

L0
ν2
(
1 +

p

2

)
max{1, (ln 2)(2v + 1)j}

}
.

With the choice ν ≥
√
L0, (4.7) reduces to

P
{
|f̂j(x) − Ef̂j(x)| > (1 + t)ν̂j

}

≤2 exp
{
−(1 + t)

(
1 +

p

2

)
max{1, (ln 2)(2v + 1)j}

}

≤2 exp
{
−
(
1 +

p

2

)
t
}
exp

{
−(ln 2)

(
1 +

p

2

)
j(2v + 1)

}

≤2e−t · 2−(1+p
2 )(2v+1)j . (4.8)

Substituting (4.8) into (4.6), one obtains that

E
[
|f̂j(x)− Ef̂j(x)| − ν̂j

]p
+
.

(∫ ∞

0

tp−1e−tdt

)
ν̂pj 2

−(1+p
2 )(2v+1)j

. 2−(2v+1)j

(
j

n

) p
2

. 2−(2v+1)j

(
lnn

n

) p
2

(4.9)
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thanks to (4.1) and j ≤ ⌊ 1
2v+1 log2(

n
lnn )⌋. Finally, it follows from (4.5) and (4.9) that

E[ξ̂j1 (x)]
p . 2−j1sp + 2−(2v+1)j

(
lnn

n

) p
2

. 2−j1sp +

(
lnn

n

) p
2

.

(
lnn

n

) sp
2s+2v+d

due to the choice of j1 and s
2s+2v+1 ≤ 1

2 .

Because all constants in “.” of the above agruments are independent of x ∈ Ωx0 and

f ∈ Hs(Ωx0 , M), the desired (4.3) is concluded. The proof is done. �

Remark 4.1. For p > 1, the upper bound ( lnn
n )

s
2s+2v+1 in Theorem 4.1 is little better than

(lnn)1−
1
p

( lnn
n

) s
2s+2v+1

in Theorem 3.2. In addition, we do not have to know an upper bound m of s in this case. On

the other hand, we need to pay more computational prices for finding j0 in selection rules (i)

and (ii) than the traditional non-linear wavelet method.
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