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Abstract. We consider the following problem on bounded open set () of R":

n+2

—Au=Vun—2 in QCR", n=4,5,
u>0 in Q.

We assume that :

Ve ch(Q), 0<p<1,
0<a<V<b< +oo,
VV| <A, |VITPV|<B in Q.

Then, we have a sup X inf inequality for the solutions of the previous equation, namely:
p
(supu) xi?)fugc:c(a,b,A,B,,B,K,Q) for n =4,
K

1/3
(supu) xigfugc:c(a,b,A,B,K,Q) for n=5 and B=1
K

Key Words: sup X inf, dimension 4 and 5, blow-up, moving-plane method.

AMS Subject Classifications: 35]J61, 35B44, 35B45, 35B50

1 Introduction and main result

We work on Q CC R* and we consider the following equation:

(E)

—Au=Vui3 in QOCR", n=45,
u>0 in Q.
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with
Ve Clh(Q),
O<a<V<<b<+o in Q,
. (Cp)
IVV| < A in O,
|IVI+PV| < B in Q.

Without loss of generality, we suppose () = By (0) the unit ball of R".
The corresponding equation in two dimensions on open set Q of R? is:

—Au = V(x)e". (E")

Eq. (E’) was studied by many authors and we can find very important result about a
priori estimates in [8,9,12,16,19]. In particular in [9] we have the following interior
estimate:
<c=c(infV, ||V~ fKQ)
supi < ¢ = c(inf V, ||Vl infu

And, precisely, in [8,12,16,19], we have:
CSI;pu —|—igfu <c= c(ing,HVHLw(Q),K,Q),
5111<pu ~|—igfu <c= c(ing, HVHCA(Q),K,Q),

infq V

Sup TV and,

where K is a compact subset of (), C is a positive constant which depends on
a € (0,1].

For n > 3 we have the following general equation on a Riemannian manifold:

n+2

—Au+hu=V(x)u=2, u>0, (Ex)

where &, V are two continuous functions. In the case c,i = R, the scalar curvature, we
call V the prescribed scalar curvature. Here ¢, is a universal constant.

Eq. (E,) was studied alot, when M = Q) C R" or M = S, see for example, [2-4,11,15].
In this case we have a sup x inf inequality.

In the case V = 1 and M compact, Eq. (E,) is Yamabe equation. T. Aubin and R.
Schoen proved the existence of solution in this case, see for example [1,14] for a complete
and detailed summary.

When M is a compact Riemannian manifold, there exist some compactness result for
Eq. (E,) see [18]. Li and Zhu see [18], proved that the energy is bounded and if we
suppose M not diffeormorfic to the three sphere, the solutions are uniformly bounded.
To have this result they use the positive mass theorem.

Now, if we suppose M Riemannian manifold (not necessarily compact)and V =1, Li
and Zhang [17] proved that the product sup x inf is bounded. Also, see [3,5, 6] for other
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Harnack type inequalities, and, see [3,7] about some caracterization of the solutions of
this equation (E,) in this case (V = 1).

Here we extend a result of [11] on an open set of R", n = 4,5. In fact we consider
the prescribed scalar curvature equation on an open set of R”, n = 4,5, and, we prove a
sup X inf inequality on compact set of the domain when the derivative of the prescribed
scalar curvature is f-holderian, g > 0.

Our proof is an extension of Chen-Lin result in dimension 4 and 5, see [11], and the
moving-plane method is used to have this estimate. We refer to Gidas-Ni-Nirenberg for
the moving-plane method, see [13]. Also, we can see in [10], one of the application of this
method.

We have the following result in dimension 4, which is the consequence of the work of
Chen-Lin.

Theorem 1.1. Forall a,b, A, B > 0, and for all compact K of (), there exists a positive constant
c=c(ab, A B,K,Q) such that:
supu x inf <,

K Q

where u is solution of (E) with V, C* satisfying (Cg) for p = 1.

Here, we give an inequality of type sup x inf for Eq. (E) in dimension 4 and with
general conditions on the prescribed scalar curvature, exactly we take a C'"# condition.
In fact we extend the result of Chen-Lin in dimension 4.

Here we prove:

Theorem 1.2. For all a,b,A,B > 0,1 > B > 0, and for all compact K of (), there exists a
positive constant ¢ = c(a,b, A, B, B, K, Q)) such that:

(s%pu)ﬁ X igfu <,

where u is solution of (E) with V satisfying (Cg).

We have the following result in dimension 5, which is the consequence of the work of
Chen-Lin.

Theorem 1.3. For all a,b,m,A,B > 0, and for all compact K of (), there exists a positive
constant ¢ = c(a,b,m, A, B, K, Q) such that:

supu <c, if infu>m,
K Q

where u is solution of Eq. (E) with V satisfying (Cg) = (Cy) for B = 1.

Here, we give an inequality of type sup x inf for Eq. (E) in dimension 5 and with
general conditions on the prescribed scalar curvature, exactly we take a C? condition
(B =1in (Cg)). In fact we extend the result of Chen-Lin in dimension 5.

Here we prove:
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Theorem 1.4. Forall a,b, A, B > 0, and for all compact K of (), there exists a positive constant
c=c(ab, A B,K,Q) such that:

/3
(sup u) x infu <g,
K Q

where u is solution of (E) with V satisfying (Cg) for p = 1.

2 The method of moving-plane

In this section we will formulate a modified version of the method of moving-plane for
use later. Let () an open set and ()¢ the complement of (). We consider a solution u of the
following equation:

{Au —I—f(x,u) =0, (E//)

u >0,

where f(x, 1) is nonegative, Holder continuous in x, C!in u, and defined on Q) x (0, +o0).
Let e be a unit vector in R”. For A < 0, welet Ty = {x € R",(x,e) = A}, X, = {x €
R", (x,e) > A}, and ¥} = x + (21 — 2(x,e))e to denote the reflexion point of x with
respect to Ty, where (-, -) is the standard inner product of R". Define:

A =sup{A <0, Q°C X},

) =%y —Qf for A < Ay, and £ the closure of ¥. Let u*(x) = u(x") and w)(x) =
u(x) — u(x) for x € £. Then we have, for any arbitrary function b, (x),

Awy(x) + by (x)wa(x) = Q(x,br(x)),

where

QU by (x)) = F(x, 1) — (x,10) + by (1) ().
The hypothesis () is said to be satisfied if there are two families of functions b, (x) and
h!(x) defined in X, for A € (—o0, A1) such that, the following assertions holds:

0 < ba(x) < e(x)[x| 7%,
where ¢(x) is independent of A and tends to zero as |x| tends to +oo,
n(x) € CH{ZANQ),
and satisfies:

ARM(x) > Q(x,ba(x)) in ZxNQ,
n(x) >0 in 2, NQ,
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in the distributional sense and,
W(x)=0 on Ty and h*(x)=0(]x|""),
as |x| — +oo for some constant t; > 0,
W (x) + e < wy(x),
in a neighborhood of d(), where € is a positive constant independent of x.

W (x) and V,h" are continuous with respect to both variables,
x and A, and for any compact set of Q, w, (x) > h*(x),
holds when —A is sufficiently large.

We have the following lemma:

Lemma 2.1. Let u be a solution of (E"). Suppose that u(x) > C > 0 in a neighborhood of 9Q)
and u(x) = O(|x|~*2) at +oo for some positive t,. Assume there exist by (x) and h(x) such that
the hypothesis (x) is satisfied for A < Aq. Then wy(x) > 0in X}, and (Vu,e) > 0 on T, for
A e (—OO, )\1)

For the proof see Chen and Lin, [11].

Remark 2.1. If we know that wy, — h* > 0 for some A = Ay < A; and by and #* satisfy
the hypothesis (x) for Ag < A < Ay, then the conclusion of the Lemma 2.1 holds.

3 Proof of the result

Proof of the Theorem 1.2. When n = 4 : to prove the theorem, we argue by contradiction
and we assume that the (sup)? x inf tends to infinity.

Step 1: blow-up analysis. We want to prove that:

- B
R?*( supu) x inf u<c=c(ab,A,B,B).
<BR(§) ) B;z(0) ( ‘B)

If it is not the case, we have:

_ p
Rlz( sup uz-) x inf u; = i% — 400,
B, (0) Bsg, (0

for positive solutions u; > 0 of Eq. (E) and R; — 0. Thus,

[ =

- (1+p)/2
.RZ-< sup ui) — +o0.
! Bg,(0)
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Let a; such that:
ui(ai) = maxX U;.

Bz, (0)

We set

si(x) = (Ri =[x — ai ) "+Puy(x),
we have

si{(%;) = max s; > s;(a;) = ng/(1+ﬁ) sup u; — +0o,

B, (ai) By, (0)

we set 1
R; = E(Rl — |fl' —a,“).

We have, for |x — %;| < %,

Ri—|x—ai| > Ry — |% — aj] — |x — %] = 2R; — R; = R;.

Thus
Mi(X) <Bi < 22/(1+)
ui(x;) — 70
with B; — 1. We set
) . ui (% + M1
M; = ui(%;), vi(y) = Wr
1 1
1 - 1 4
y| < ?RiMfH’S)/Z = 2L, isz%Mf X inf u; — +oco.
By, (0)

Without loss of generality, we can assume X; a local maximum of u;.
By the elliptic estimates, v} converge on each compact set of R* to a function U > 0
solution of :

—AU; = V(0)ug® in R,
U;(0) =1 = maxgs Uj.

For simplicity, we assume that 0 < V(0) = n(n —2) = 8. By a result of Caffarelli-Gidas-
Spruck, see [10], we have:

Us(y) = (1+ [y~
We set
vi(y) =vi (v +e),

where v} is the blow-up function. Then, v; has a local maximum near —e

Uo(y) = Up(y +e).
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We want to prove that:
min v’ < (1+¢e)Uj(r
{0§|y\§r}z_( )Up ()
for0 < r < L;, with L; = 2R;M P72
We assume that it is not true, then, there is a sequence of number r; € (0,L;) and
€ > 0, such that:
min o > (1+e)Uj(r;).
fin o 2 (1+e)Up(r)
We have:
r; — —+oo.

Thus, we have for r; € (0, L;) :

i > (1 /).
o, v = A+ ethlr)

Also, we can find a sequence of number /; = +o0 such that:
"2 |of — Uollca(p, (0y) = O-

Thus,
in o > (1—e/2)Uy(L;).
(in, @ > (1—e/2)Uo(h)

Step 2 : The Kelvin transform and the Moving-plane method.

1. alinear equation perturbed by a term, and, the auxiliary function D; = |V V;(x;)| —
0. We have the same estimate as in the paper of Chen-Lin. We argue by contradic-
tion. We consider r; € (0, L;) where L; is the number of the blow-up analysis

1 5 (14p)/2
Li = 5:RiM; :
We use the assumption that the sup times inf is not bounded to prove w, > h, in
Yy = {y,y1 > A}, and on the boundary.

The function v; has a local maximum near —e and converge to Up(y) = Uj(y +e)
on each compact set of R°. Uy has a maximum at —e. We argue by contradiction
and we suppose that:

D; = |VV(xi)| # 0.

Then, without loss of generality we can assume that:
VVi(xi) - e=(1,0,---,0).
Where x; is :

xj =% + M le,

1
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with ¥; is the local maximum in the blow-up analysis.

As in the paper of Chen-Lin, we use the Kelvin transform twice and we set (we take
the same notations):

SN
) = T () — vi(1s(y))
Io(y) (‘%_54)2’ l(y) |y\”_2\y—e/5]"—2'
Uo(Ls(y))

Vs(y) = Vz‘(xi'f'Mi_lLS(y))/ Us(y) = IyI”*ZIy—e/(SI”*Z'

Then, U; has a local maximum near es — —e when § — 0. The function v? has a
local maximum near —e.

We want to prove by the application of the maximum principle and the Hopf lemma
that near e; we have not a local maximum, which is a contradiction.

We set on

D= {py g < T En- ko)l 2
M) = = [ Galy.mQulndn
with

Qi) = (V) = Vs(n™)) (v (n"))°.
And, by the same estimates, we have forn € A1 = {5, || < R =¢€,/5},

Vs(i7) = V(™) = M (= A) + o ()M i,
and we have forny € Ay =X, — Ax:
Vs(r) = Vs(™)| < CM; ([ Is(n) |+ [ Ts(™) -

And we have for some A\yg < —2 and Cy > 0:

_ Y
wA(y)—vf(y)—vf(y °) > Co m

for Y1 > Ag.

Because, by the maximum principle:

e
min v; = min v > (1—€)Us| =
(<l (y)|<ri} {{w( My ey } (1=¢) ‘5<5)

>(1 46— e)ug((a)A) > (1+c10 —2€)0 (y"),
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and for |I;(y)| < I; we use the C? convergence of v to Us.

Thus,
wy(y) > 2e >0,

By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second
section), and by our hypothesis on v;, we have:

0 < Ia(y) = O()M; > (y1 = 1) (1 + |y]) ™" < 2e <wa(y),

also, we have the same estimate on the boundary, |I;(17)| = r; or [y —e/d| = cor; *.

For
|V Vi(xi) [P [ui(x:)] < C.

Here, also, we argue by contradiction. We use the same computation as in Chen-
Lin paper, we choose the same /1, except the fact that here we use the computation

with M, (+A) in front the regular part of ). Here also, we consider r; € (0,L;),
where L; is the number of the blow-up analysis.

1 5 A(0+p)/2

L= ZRiMi .
We argue by contradiction and we suppose that:
MiﬁDl‘ — —+o0.

Then, without loss of generality we can assume that:

VVi(x;)
—— = e=1(1,0,---,0).
Vi) ( )

We use the Kelvin transform twice and around this point and around 0.

i) = er2Gr (v, 5) = [ GalymQulndy

with
Q) = (Vs(n) = Vs(y")) (v} (1))

And, by the same estimates, we have for 7 € A;
Vs(n) = Vs(r) = M Di((m — A) +o(1) 7)),
and, we have for 7 € Ay, |I5(n)| < czMiDg/ﬁ,

Vs(17) = V()| < CMDi([1s(n)| + [ 1:(™)]),
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and for M;D;"P < |I;(n)| <,
. -
[Vs(n) = Vs(r)| < M, Dills )]+ My P 1s(p) 0.
By the same estimates, we have for |I5(17)| < r; or |y —e/8| > car; k:

—A —A
(y) ~er;2Ga (v, 5 ) +C4Mi1Di(yl|y|n) —|—o(1)Mi1Di(y1|y‘n)

—(1+p) ¢
+o(1)M; TG, <y, 5)
with ¢4 > 0.
And, we have for some Ay < —2 and Cy > 0:

5 —A
20 (y) — o (y'0) > Coiy1 0

W) =) = oy
for Y1 > Ag.
By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second
section), and by our hypothesis on v;, we have:

0 <hy(y) <2e <w(y),

also, we have the same etimate on the boundary, |I5(17)| = r; or |y —e/6| = csr; !

2. Conclusions : a linear equation perturbed by a term, and, the auxiliary function.
Here also, we use the computations of Chen-Lin, and, we take the same auxiliary
function h) (which correspond to this step), except the fact that here in front the
regular part of this function we have M, (1+p ), Here also, we consider r; € (0, L;)
where L; is the number of the blow-up analysis.

Li= %RiMfH’S)/z.
We set
vi(z) = v (z+e),
where v is the blow-up function. Then, v; has a local maximum near —e

Uo(z) = Uj(z+e).
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Then, for simplicity, we can assume that, 7; has a local maximum near ¢* = (—5,0,
-+-,0). Also, we have:

Vit M) = il M) [ < Py,

ha(y) = er;2Ga(y,0) — /Z Ga(y,1)Qa(1)dn,

A

where, 2 = %) — {5, || < Vfl}, and

Qi = (W(x+ w7 ) v+ ) ) ()

we have by the same computations that:
/Z, Galy,mQu(m)dy < CM; PGy (y,0) < er72G,(y,0).
A

By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second
section), and by our hypothesis on v;, we have:

0 < hy(y) < 2e < wy(y),

also, we have the same estimate on the boundary, |y| = rll O

Proof of the Theorem 1.4. When n = 5: to prove the theorem, we argue by contradiction
and we assume that the (sup)!/? x inf tends to infinity.

Step 1: blow-up analysis. We want to prove that:
. 1/3
R3(sup u) x inf u <c=c(ab, A, B).
Bz (0) B3z (0)
If it is not the case, we have:

. /3 P
R; ( sup ui> X inf u; =1i> — +oo.
Bz, (0) Bz, (0)

For positive solutions u; > 0 of Eq. (E) and R; — 0. Thus,
1. 2/3
*.Ri< sup ui> —r +o00.
! Bg,(0)

Let a; such that:

ui(a;) = éna(%() uj.
R;
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We set
si(x) = (Ri — [x — a;])* *ui(x),
we have
si(%;) = max s; > s;(a;) = R?M sup u; — +oo,
B, (ai) Bz, (0)
we set 1
R;, = E(Rl — ‘fi —a,“).

We have, for |x — %;| < %,
R —|x —aj| > R — |% — a;j| — |x — %] > 2R; — R; = R;.

Thus

ui(x) < ,B < 29/4
— 1=

with B; — 1. We set

And .
S RMY3 x inf u; — 4o
i3 ! Bag,
Without loss of generality one can assume X; a local maximum of u;.
By the elliptic estimates, v} converge on each compact set of R® to a function U > 0

solution of :

—AU; = v(o)ug’? in R®,
Uj(0) = 1 = maxgs Uj.

For simplicity, we assume that 0 < V(0) = n(n — 2) = 15. By a result of Caffarelli-Gidas-
Spruck, see [10], we have:
Us(y) = (1+ |y~

We set

vi(y) =vi(y+e),
where v} is the blow-up function. Then, v; has a local maximum near —e

Uo(y) = Us(y +e).
We want to prove that:

i < (1 us
oin < (1+¢€)U(r)
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for 0 < r < L;, with L; = 3. R;M;"°.
We assume that it is not true, then, there is a sequence of number r; € (0,L;) and
€ > 0, such that:

{Ogrr‘;i‘rglri}v? > (1+e€)Uy(r:).

We have:
i — +00.
Thus, we have for r; € (0, L;)

i > (1 ).
omin v > (1+e)Up(r;)

Also, we can find a sequence of number /; — +o0 such that:
"2 |of — uOHCZ(Bli(O)) — 0.

Thus,
i > (1 —€e/2)Up(l;).
{Oé?ylgli} Ui =2 ( 6/ ) 0( 1)

Step 2 : The Kelvin transform and the Moving-plane method.

1. A linear equation perturbed by a term, and the auxiliary function: D; = |VV;(x;)| — 0.
We have the same estimate as in the paper of Chen-Lin. We argue by contradiction.
We consider r; € (0,L;), where L; is the number of the blow-up analysis

15 3 ra/9
Li = 5 RiM}”.

We use the assumption that the sup times inf is not bounded to prove w) > h) in ¥, =
{y,y1 > A}, and on the boundary.

The function v; has a local maximum near —e and converge to Up(y) = Uj(y +¢) on
each compact set of R®. Uy has a maximum at —e.

We argue by contradiction and we suppose that:

Di = |VVi(xi)| # 0.
Then, without loss of generality we can assume that:
VVi(xi) »e=(1,0,---,0).

Where x; is :
= -2/3
Xi = X + Mi / e,

with #; is the local maximum in the blow-up analysis.
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As in the paper of Chen-Lin, we use the Kelvin transform twice and we set (we take

the same notations):
W se
[yP? s vi(Is(y))
Is(y) = 2 % (Y) = s n2’
(| — ae) yI"=2ly —e/d]
Uo(Ls(y))

5(v)), Us(y) = ly[* 2y —e/o[ 2

Then, U has a local maximum near ¢; — —e when 6 — 0. The function Uf has a local

maximum near —e.
We want to prove by the application of the maximum principle and the Hopf lemma
that near e; we have not a local maximum, which is a contradiction.

We set on
e C
b= T~y )| = i),

with
Qu(n) = (Vs(n) = Vsl ) (o6 (7)) 2/ -2,

And, by the same estimates, we have forn € Ay = {7, || < R =€/d},
Vs(r) = Vs(r") = M7 (i = A) + o(1) M|,

and we have forny € Ay =X, — Ar:
Vs(n) — Vs(n™)| < CM;23(|1s(n) ] + I ()]).-

And we have for some A\yg < —2 and Cy > 0:
y1— Ao

00 (y) — 9 (y S

for y1 > Ao.
By the same estimates, and by our hypothesis on v;, we have, for ¢c; > 0:

0<hy(y) <2e<wy(y),
1

also, we have the same estimate on the boundary, |I5(1)| = r; or |y —e/d| = cor;
For |VV;(x;)|[ui(x;)]*/® < C. Here, also, we argue by contradiction. We use the same

computation as in Chen-Lin paper, we take & = 2 and we choose the same h,, except the
4/3 in front the regular part of 1.

fact that here we use the computation with M~
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Here also, we consider r; € (0, L;) where L; is the number of the blow-up analysis

15 3 ra/9
Li = o Rim!”°.

We argue by contradiction and we suppose that:
MZ-Z/BDZ' — +-o00.
Then, without loss of generality we can assume that:

V‘/i(xi)
— —e=1(1,0,---,0).
NZES)] ( )

We use the Kelvin transform twice and around this point and around 0

e

ha(y) = er;*Ga (v, 5) - /ZA Galy, m)Qa()dy

with
Qu() = (Vs(ip) = Vi()) (8 () 2/ (n=2)

And by the same estimates, we have for 7 € A4
Vs(n) = Vs(n*) = M;2PDi(( = A) +o(1) 1)),
and, we have for 7 € Ay, |I5(n)| < CzMZ-Z/3D,'
Vs() = Vs(n)| < CM72PDi(| ()| + 11 (™)),
and for MZ.2/3DZ' <|Is(n)| <,
[Vs() = Vs(n™)| < M2 Dills ()] + M |15 (1) .

By the same estimates, we have for |I5(17)| < r; or [y —e/8| > c3r; :

h(y) ~er°Gy (y, *) +cyM; 23D, 1 —A)

6 ly|"
23 (11 —A) —4/3 e
oM PPDE S o()M; G, (v5)
with ¢qy > 0.
And, we have for some A\g < —2 and Cy > 0:
Y1 — Ao

00 (y) — 0 (yo A
z(y> z(y >2C0(1+|y‘)n
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for y; > Ao.
By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second
section), and by our hypothesis on v;, we have:

0 < ha(y) <2 <wy(y),

also, we have the same estimate on the boundary, |I;(17)| = r; or [y — e/d| = c5r; "

Step 2. conclusions : a linear equation perturbed by a term, and, the auxiliary function.
Here also, we use the computations of Chen-Lin, and, we take the same auxiliary function

h, (which correspond to this step), except the fact that here in front the regular part of

this function we have M.~ 4/3,

Here also, we cons1der ri € (0,L;) where L; is the number of the blow-up analysis

15 3 ra/9
Li= o Rim!”°.

We set
vi(z) = vj(z+e),

where v} is the blow-up function. Then, v; has a local maximum near —e
Up(z) = Uj(z +e).

-1 LRMAY
We have, for |y| > L/, L; = 3R;M;

_ 1 y )
5:(1) = - )
2 ly|*—2 Z<|y|2

) v

X; = X; + M;Z/B e.

<My,

Then, for simplicity, we can assume that, 7; has a local maximum near e* = (—1/2,0,---,0).
Also, we have:

(M ) —vi(xi+M;2/3,y)\ < M7+ 1y,

m(y) = er Gi(v,0) = [ GalumQundn,

A

where, X, =X, — {5, || < Tfl}, and

A
Qu(n) = (Vi(xz- M) = Vil +M;2/3,y9;,2)) (0ily")*E,
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we have by the same computations that:
/2, Galy, 1) Qa(in)dy < CM;*°Gy(y,0) < er*Ga(y,0).
A

By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second
section), and by our hypothesis on v;, we have:

0 < hy(y) <2e<wy(y),

also, we have the same estimate on the boundary, || = % O
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