
Numer. Math. Theor. Meth. Appl. Vol. 15, No. 1, pp. 42-67

doi: 10.4208/nmtma.OA-2021-0035 February 2022

A Local Deep Learning Method for Solving High

Order Partial Differential Equations

Jiang Yang1,2,3 and Quanhui Zhu2,*

1 International Center of Mathematics, Southern University of Science and

Technology, Shenzhen 518055, China
2 Department of Mathematics, Southern University of Science and Technology,

Shenzhen 518055, China
3 Guangdong Provincial Key Laboratory of Computational Science and

Material Design, Southern University of Science and Technology,

Shenzhen 518055, China

Received 8 March 2021; Accepted (in revised version) 12 August 2021

Abstract. At present, deep learning based methods are being employed to resolve
the computational challenges of high-dimensional partial differential equations

(PDEs). But the computation of the high order derivatives of neural networks is
costly, and high order derivatives lack robustness for training purposes. We propose

a novel approach to solving PDEs with high order derivatives by simultaneously ap-

proximating the function value and derivatives. We introduce intermediate variables
to rewrite the PDEs into a system of low order differential equations as what is done

in the local discontinuous Galerkin method. The intermediate variables and the so-

lutions to the PDEs are simultaneously approximated by a multi-output deep neural
network. By taking the residual of the system as a loss function, we can optimize

the network parameters to approximate the solution. The whole process relies on
low order derivatives. Numerous numerical examples are carried out to demon-

strate that our local deep learning is efficient, robust, flexible, and is particularly

well-suited for high-dimensional PDEs with high order derivatives.

AMS subject classifications: 35Q68

Key words: Deep learning, deep neural network, high order PDEs, reduction of order, deep

Galerkin method.

1. Introduction

Partial differential equations (PDEs) play a significant role in the fields of physics,

chemistry, biology, engineering, finance, and others. Classical numerical methods focus

∗Corresponding author. Email addresses: yangj7@sustech.edu.cn (J. Yang), 11849393@mail.sustech.

edu.cn (Q. Zhu)

http://www.global-sci.org/nmtma 42 ©2022 Global-Science Press

A Local Deep Learning Method for Solving High Order PDE 43

on designing efficient, accurate, and stable numerical schemes. Within the context of

high-dimensional problems, however, the curse of dimensionality renders classical nu-

merical methods impractical. As a result, many mathematicians have introduced neural

networks into PDEs precisely because multilayer feedforward networks are proven to

be universal approximators for the PDEs [15, 16]. More specifically, once the network

structure is determined, any order derivatives of the neural network can be obtained

analytically. Coupled with the automatic differentiation technique, neural networks

can be applied to solve PDEs [2]. Depending upon different purposes, neural networks

can be used to approximate the solution function, represent the solution solver, and

even invert the equations.

In this paper, we consider the deep learning method as a means to solve the follow-

ing k-th order initial boundary value problem (IBVP):











ut = L(u), x ∈ Ω, t ∈ [0, T],

u(x, 0) = u0(x), x ∈ Ω,

Bu = g, x ∈ ∂Ω, t ∈ [0, T],

(1.1)

where Ω ⊂ R
d, d ∈ N+, L(u) = F (x, t, u,Du, · · · ,Dku), F and g are linear or nonlinear

functions, B is the boundary condition operator, and the p-th order derivative operator

Dp consists of

∂α1

x1
∂α2

x2
· · · ∂αd

xd
u with

∑

αi = p, αi ∈ N.

The neural network function ϕ(x, t; θ) : Rd+1 ×ΘM 7→ R
m is defined as follows:

ϕ(x, t; θ) = Nout ◦ NL ◦ · · · ◦ N1 ◦ Nin(x, t),

Nin(x, t) = σin(αx+ βt+ b), α ∈ R
n×d, β, b ∈ R

n,

Nout(y) = σout(γy + c), γ ∈ R
m×n, c ∈ R

m,

(1.2)

where d is the dimension of x, m is the dimension of the output, n is the width of the

hidden layers, L is the number of the hidden layers (i.e., the network’s depth) and Ni :
R
n 7→ R

n is the structure of the hidden layers. σin usually is the same nonpolynomial

activation function as the hidden layers and σout is set as an equivalent function in

most cases, i.e., σout(x) = x. For specific examples, a proper output transformation

σout should be determined. Our goal is to find a suitable neural network ϕ(x, t; θ) to

approximate a solution u(x, t) to the problem (1.1).

[7] gives an overview of the progress that has been made in linking computational

mathematics and machine learning. In most of existing literatures, the loss function is

determined by either the PDEs or an equivalent formulation. For instance, the parabolic

PDE is reformulated as a backward stochastic differential equation in [10, 11, 31],

where the loss function is given by the solution of the backward stochastic differen-

tial equation, and the training process is shown to be a deep reinforcement learning

process. In [28,29], the solution is approximated by a neural network. The proposal of

a mesh-free algorithm makes high-dimensional calculations feasible. [21,30] provides

44 J. Yang and Q. Zhu

multi-scale deep neural network methods which separate different frequencies of the

loss function and approximate them by the corresponding neural networks. [37] con-

siders variational problems, and the loss function is defined as a weak formulation. To

deal with the essential boundary conditions, [20] resorts to Nitsche’s variational formu-

lation. Further, [32] introduces an adversarial network as a test function in variational

problems; this is particularly suitable for high-dimensional PDEs defined in irregular

domains.

We consider using deep learning methods to solve PDEs with high order deriva-

tives. The cost of computing high order derivatives for neural networks is prohibitive.

Addressing the issue of deep learning methods, [29] proposes a Monte Carlo method

to approximate second order derivatives. In [32, 37], the variational form reduces

the order of derivatives through the integration by parts. [11] proposes a derivative

free method for parabolic PDEs by solving the equivalent BSDE problem. But, for the

higher order derivatives of neural networks, there are still numerous computational

challenges. High order derivatives limits the choices of network structure, influences

the robustness in training, and are expansive to be computed.

The local discontinuous Galerkin (LDG) method introduces new variables and re-

writes the problem (1.1) as a system of first order differential equations [5, 34–36].

Then, the method is obtained by discretizing the system with the discontinuous Galerkin

method. The reduction of order technique in LDG inspires us to use a similar technique

to compute high order derivatives in deep learning. To this end, we first rewrite the

PDEs to a system of low order differential equations. A neural network with multiple

outputs is then used to approximate the solution and intermediate variables. Taking

the L2 residual of the system as the loss function, we can optimize the neural network

to approximate the solution of (1.1). Unlike the classical deep learning methods, our

approach avoids calculating the high order derivatives. As consequence, it is more

efficient and stable.

Our paper is organized as follows. In Section 2, we briefly introduce the deep learn-

ing method for solving PDEs and illustrate the difficulties in computing the high order

derivatives of the neural networks. After rewriting the problem as a system of low

order equations, the local deep Galerkin method and the local deep Ritz method are

proposed in Section 3. The advantages of this method are provided in Section 4, and

the corresponding numerical experiments are presented in Section 5. Several conclud-

ing remarks are given in the final section.

2. Preliminaries

In this section, we present a deep learning based method for solving PDEs and show

the main difficulties in computing the high order derivatives of neural networks.

2.1. Deep learning based method for solving PDEs

A deep neural network defined as (1.2) is used to approximate the solution of (1.1).

A Local Deep Learning Method for Solving High Order PDE 45

Substituting the neural network into (1.1), we have











ϕt = L(ϕ), x ∈ Ω, t ∈ [0, T],

ϕ(x, 0) = u0(x), x ∈ Ω,

Bϕ = g, x ∈ ∂Ω, t ∈ [0, T].

(2.1)

Instead of solving the equation step by step under a given initial value, the neural

network parameters should be optimized to satisfy the dynamic system, the initial value

condition and the boundary condition. The loss function J(ϕ) is defined by the L2 norm

mostly [6,13,18,19,22,28,29], i.e.,

J(ϕ) = we‖ϕt − L(ϕ)‖2ΩT
+wi‖ϕ(·, 0) − u0(·)‖2Ω + wb‖Bϕ− g‖2∂ΩT

, (2.2)

where ΩT = Ω× [0, T], ∂ΩT = ∂Ω× [0, T] and w controls the contribution of each term.

Denote

J(ϕ) := weJe(ϕ) + wiJi(ϕ) + wbJb(ϕ),

which represents the equation loss, the initial condition loss, and the boundary condi-

tion loss, respectively. The learning algorithm is described in Algorithm 2.1.

The selection of the active function, initialization method, random sampling distri-

bution, and optimization method will affect the approximation of the network. Incor-

rect settings will result in either the failure of the neural network to converge or a very

slow rate of convergence.

2.2. High order derivatives of the deep neural network in PDEs

High order derivatives of the neural network rarely appear in classic deep learning

problems. But, to solve high order PDEs, we have to calculate the value of high order

derivatives. Consider a fully connected neural network ϕ(x, θ) : Rd ×ΘM 7→ R similar

to Fig. 1, in which there are L hidden layers and n neurons per layer.

x1

xd

...
ϕ

Input

Layer

Hidden

Layers

Output

Layer

Figure 1: The structure of the fully connected neural network.

46 J. Yang and Q. Zhu

Algorithm 2.1

1: Build up a neural network ϕ(x, t; θ), which determines active functions, the hidden

layer structure, and the network’s depth and width. The inputs are space x and time

t and the output is the function value at (x, t), which approximates the solution of

(1.1). θ is the trainable parameters in the neural network.

2: Obtain random samples

D =
{

(xek, t
e
k)
}Ne

k=1
∪
{

(xik, 0)
}Ne

k=1
∪
{

(xbk, t
b
k)
}Nb

k=1

from within the domain ΩT , ∂ΩT and {0} × Ω, respectively. Ne, Ni, Nb are the

number of sampling nodes in different domains. Random sampling makes high-

dimensional calculations feasible. The mesh-free property is one of the most critical

differences between deep learning methods and classical numerical methods.

3: Solve the optimization problem on the given sampling set D

min
θ

J(ϕ)|D.

The discrete form of the loss function is given as

J(ϕ)|D = weJe(ϕ)|D1
+wiJi(ϕ)|D1

+ wbJb(ϕ)|D3
,

Je(ϕ)|D1
=

1

Ne

Ne
∑

k=1

(

ϕt

(

xek, t
e
k

)

− L(ϕ)
(

xek, t
e
k

)

)2
,

Ji(ϕ)|D2
=

1

Ni

Ne
∑

k=1

(

ϕ
(

xik, 0
)

− u0
(

xik
)

)2
,

Jb(ϕ)|D3
=

1

Nb

Nb
∑

k=1

(

Bϕ
(

xbk, t
b
k

)

− g
(

xbk, t
b
k

)

)2
.

(2.3)

Finding the optimal parameters for a fixed width neural network is difficult since

the optimization problem is nonconvex. The Adam optimizer is a popular choice

for deep learning [17].

4: Repeat steps 2 and 3 until the result converges.

The layer structure is

Ni(x) = σ
(

WiNi−1(x) + bi
)

, Wi ∈ R
n×n, bi ∈ R, i = 2, . . . , L. (2.4)

Based on the chain rule, the computational cost of k-th order derivative of ϕ is about

O(Lkn2k), and Dk
xϕ costs about O(Lkdkn2k). Although the automatic differentiation

technique provides some convenience in practical problems, the exponential growth of

the order k is unacceptable for solving a specific high order PDE.

A Local Deep Learning Method for Solving High Order PDE 47

Putting aside the problem of computational efficiency, there are still inherent chal-

lenges to using deep neural networks to solve PDEs with high order derivatives. The

gradient vanishing and exploding problems of neural networks have been discussed for

many years [3, 9, 12, 14, 27]. And each probably makes an appearance when PDEs are

being solved. For simplicity, we consider when n = d = 1 and Nout(x) = Nin(x) = x,

i.e.,

ϕ(x) =

L
∏

i=1

σ(Ni). (2.5)

Then, we have the following first order derivative:

∂ϕ

∂x
=

∂ϕ

∂NL

·
L
∏

i=2

∂Ni

∂Ni−1
· ∂N1

∂x
=

L
∏

i=1

Wiσ
′(Ni). (2.6)

Given the active function σ(x) = tanh(x), we have σ′(x) = 1−tanh2(x) < 1, except the

point x = 0. With a normal initialization |W | < 1, ϕx(x; θ) ∼ WLσ′(x)L will become

small and this leads to the gradient vanishing problem. Similarly, if the active function

satisfies |Wσ′(x)| > 1, it will result in the gradient exploding problem.

There are many mature deep learning techniques for resolving these problems in

classification, regression, and so on. But, for deep learning methods in PDEs, things

are different. Consider a k-th order ordinary differential equation

F
(

x, u, u′, u′′, · · · , u(k)
)

= 0. (2.7)

We use the above neural network to approximate the solution u(x). Substituting (2.5)

into (2.7) and denoting σ
(k)
i = σ(k)(Ni), k ∈ N, we have

F

(

x,

L
∏

i=1

σi,

L
∏

i=1

Wiσ
′

i, · · · ,
L
∏

i=1

W k
i σ

(k)
i

)

= 0. (2.8)

The issue is different from that of the classical deep learning problems. Our concern

cannot just be limited to whether |Wσ′| is exploding or vanishing. The high order

derivatives of the active function and the high order powers of parameters bring new

difficulties. Taking y := σ(x) = tanh(x) as an example, we have

y′ = 1− y2, y′ ∈ (0, 1],

y′′ = −2y
(

1− y2
)

, y′′ ∈
[

−4
√
3/9, 4

√
3/9
]

,

y(3) =
(

6y2 − 2
)(

1− y2
)

, y(3) ∈ [−2, 2/3] ,

y(4) = 8y
(

2− 3y2
)(

1− y2
)

, y(4) ∈ (−4.086, 4.086).

(2.9)

The derivative value can be greater than 1 and the different order derivatives are con-

trolled by the different scales. Fig. 2 gives an example of gradient exploding problems

48 J. Yang and Q. Zhu

Figure 2: Different order derivatives of the neural network Dkϕ compared to the target function Dku in
one dimension.

of high order derivatives in using a L = 3, n = 32 neural network ϕ to approximate the

function u(x) = sin(πx). When order k = 4, the gap between two derivatives is about

O(10), even though ϕ(x) approximates u(x) well.

We use the following terms to represent the different order derivatives of a neural

network with L hidden layers:

ϕ(k)(x; θ) ∼
(

σ(k)(x)θk
)L

. (2.10)

The gradient of the parameters is given as

∇θϕ
(k)(x; θ) ∼

(

xσ(k+1)(x)θk + kσ(k)(x)θk−1
)L

. (2.11)

The restriction on σ′(x)θ cannot restrict higher order derivatives. High order deriva-

tives become more sensitive and unstable. It seems that different order derivatives are

learned on different scales. When different order derivatives are in same equation,

optimizing the loss is difficult (see also Section 5.3). The neural networks lack the

efficiency and robustness of computing high order derivatives.

3. Methodology

In this section, we propose employing local deep learning methods (LDLM) to over-

come the derivative calculation problem of neural networks by using a multi-output

neural network and a loss function of the equivalent system.

A Local Deep Learning Method for Solving High Order PDE 49

3.1. The system of PDEs

Consider a k-th order IBVP










ut = F
(

u,Du,D2u, · · · ,Dku
)

, x ∈ Ω, t ∈ [0, T],

u(x, 0) = u0(x), x ∈ Ω,

Bu = g, x ∈ ∂Ω, t ∈ [0, T].

(3.1)

Similar to the first part of the local discontinuous Galerkin method, we introduce the

intermediate variables {vi}ki=1, where vi ∈ R
di , i = 1, . . . , k. Then the PDE can be

rewritten as the following system:






























ut = F (u, v1, v2, · · · , vk), x ∈ Ω, t ∈ [0, T],

v1 = Du, x ∈ Ω, t ∈ [0, T],

vi+1 = Dvi, i = 1, . . . , k − 1, x ∈ Ω, t ∈ [0, T],

u(x, 0) = u0(x), x ∈ Ω,

Bu = g, x ∈ ∂Ω, t ∈ [0, T].

(3.2)

Only the first order derivatives are included in the system. Similarly, we can build

a system of the second order PDEs.






























ut = F
(

u,Du, · · · , w[k
2
],Dw[k

2
]

)

, x ∈ Ω, t ∈ [0, T],

w1 = D2u, x ∈ Ω, t ∈ [0, T],

wi+1 = D2wi, i = 1, . . . , [k2], x ∈ Ω, t ∈ [0, T],

u(x, 0) = u0(x), x ∈ Ω,

Bu = g, x ∈ ∂Ω, t ∈ [0, T].

(3.3)

Some specific examples are given in Table 1.

Table 1: The system form of serval classical equations.

Equation Origin Form First Order System Second Order System

Heat ut = ∆u

{

ut = ∇ · v,
v = ∇u.

{

ut = v,

v = ∆u.

Allen-Cahn ut = ǫ∆u+ f(u)

{

ut = ǫ∇ · v + f(u),

v = ∇u.

{

ut = ǫv + f(u),

v = ∆u.

Cahn-Hilliard ut = −∆
(

ǫ∆u+ f(u)
)



















ut = −∇ · v,
v = ∇φ,

φ = ǫ∇ · w + f(u),

w = ∇u.

{

ut = −∆v,

v = ǫ∆u+ f(u).

KdV ut + 6uux + uxxx = 0











ut + 6uv + wx = 0,

v − ux = 0,

w − vx = 0.

{

ut + 6uux + vx = 0,

v − uxx = 0.

50 J. Yang and Q. Zhu

It is intuitive that the introduction of intermediate variables can effectively reduce

the order of the derivatives.

3.2. Multi-output neural network

For approximating the intermediate variables and solution, a multi-output neural

network ϕ(x, t; θ) : Rd+1 × ΘM 7→ R
m is needed. The 1-D coupled neural network is

described in Fig. 3.

x

t

u

v1

v2

Input

Layer

Hidden

Layers

Output

Layer

Figure 3: The multi-output neural network for approximating all of the intermediate variables.

In contrast to previous methods, all necessary intermediate variables are included

in the output. For greater accuracy, the output layer can be a series of hidden layers.

The final active function of each output is usually uniquely determined by the problem.

When the number of intermediate variables increases, we only need to change the

width of the output layer, and this is much cheaper than computing derivatives.

For high-dimensional problems, a decoupled neural network can better distinguish

derivatives and the solution, as is shown in Fig. 4. After a certain number of hidden

layer operations, the input is transformed into a series of intermediate states. The

states are then separated by some independent hidden layers to calculate the different

variables. For example, (p1, · · · , pd) ≈ ∇u and q ≈ ∆u. The decoupled network is not

always better than the fully connected one. But it provides more flexible dependency

on u of the derivatives. The depth of the two types of hidden layers depends on how

closely you need the different order derivative to be connected.

3.3. Local deep Galerkin method

With the system and network structure defined, we can propose local deep learning

methods to solve the PDEs with high order derivatives.

Taking the residual of the system (3.1), the modified loss function is given as fol-

A Local Deep Learning Method for Solving High Order PDE 51

x1

x2
...

xd

q̃0

p̃1

p̃2
...

p̃d

q̃1

u

p2

p1

...

pd

q

Input

Layer

Hidden

Layers
Intermediate

States

Decoupled

Hidden

Layers

Output

Layer

Figure 4: A decoupled neural network structure for solving high-dimensional PDEs with multiple outputs.

lows:

Je(ϕ) =
∥

∥(ϕ1)t − F (ϕ1, ϕ2, · · · , ϕk,Dϕk)
∥

∥

2

ΩT

+
k−1
∑

i=1

∥

∥ϕi+1 −Dϕ
∥

∥

2

ΩT

,

Ji(ϕ) =
∥

∥ϕ1(·, 0) − u0(·)
∥

∥

2

Ω
,

(3.4)

and the boundary condition is also expressed by the intermediate variables. Taking

heat equation as an example, we define ϕ = (ϕ1, · · · , ϕd+1) and different boundary

conditions are given as following:

• Dirichlet boundary condition: u = g −→ Jb(ϕ) = ‖ϕ1 − g‖2∂Ω.

• Neumann boundary condition: ∂u
∂n = g −→ Jb(ϕ) =

1
d

∑d
i=1 ‖ϕi+1 − g‖2∂Ωi

, where

∂Ωi means the i-th variable xi lies on the boundary.

• Periodic boundary condition: Let

Ω = [a1, b1]× · · · × [ad, bd],

then the loss function is

Jb(ϕ) =
d
∑

i=1

∥

∥ϕ(xl
i)− ϕ(xr

i)
∥

∥

2

∂Ωi

, (3.5)

where xli means the i-th variable of x is on the left boundary, i.e., (xl
i)i = ai and

similarly (xri)i = bi.

The local deep Galerkin method, which follows deep Galerkin method [29], is sum-

marized in Algorithm 3.1. This method treats the solution and its derivatives or other

necessary intermediate variables as unknown functions while simultaneously learning

their values. These restrictions cause a certain increase in calculations, but this is still

far less expansive than calculating the derivatives.

52 J. Yang and Q. Zhu

Algorithm 3.1 Local deep Galerkin method (LDGM)

1: Build up the neural network ~ϕ(x, t; θ). Determine the hidden layer structure N , the

layer width n, the dimension of output m and the active functions σ according to

the given PDEs.

2: Initialize the parameters θ = θ0, sampling times s1, the number of samples

Ne, Ni, Nb in ΩT ,Ω, ∂ΩT , optimization steps s2 and the learning rate γ.

3: for i = 0 : s1 do

4: Obtain random sampling points {(xe, te)}Ne
, {(xi, 0)}Ni

, {(xb, tb)}Nb
.

5: Set θi,0 = θi.
6: for j = 0 : s2 do

7: Calculate the loss function J(ϕ(x, t; θi,j)) at sampling points.

8: Optimize the parameters θ

θi,j+1 = θi,j − γ∇θJ(θ
i,j).

9: end for

10: Set θi+1 = θi,s2+1.

11: end for

3.4. Local deep Ritz method

We can also combine the technique discussed above with the deep Ritz method [31].

Consider the following bi-Laplacian equation:



















∆2u = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

∂u

∂n
= 0, x ∈ ∂Ω,

(3.6)

the weak formulation of which is

J(u) =

∫

Ω

(

1

2

(

∆u(x)
)2 − f(x)u(x)

)

dx, (3.7)

where u ∈ H and H is the set of trial functions. Using a neural network ϕ, the loss

function in the deep Ritz method is defined as

J(ϕ) =

∫

Ω

(

1

2

(

∆xϕ(x; θ)
)2 − f(x)ϕ(x; θ)

)

dx

+ λ

∫

∂Ω

(

ϕ(x; θ)2 +

(

∂ϕ(x; θ)

∂n

)2
)

dx. (3.8)

We use a multi-output neural network ϕ(x; θ) : Rd × ΘM 7→ R
d+1, and reformulate

A Local Deep Learning Method for Solving High Order PDE 53

the loss function as follows:

Ĵ(ϕ) =

∫

Ω

(

1

2

(

∇x · q(x; θ)
)2 − f(x)p(x; θ) + ‖∇xp(x; θ)− q(x; θ)‖2

)

dx

+ λ

∫

∂Ω

(

p(x; θ)2 + (q(x; θ) · n)2
)

dx, (3.9)

where p = ϕ1,q = (ϕ2, · · · , ϕd+1). A local deep Ritz method can then be used to solve

the variational problem.

Notice that we can solve a fourth order problem with a d + 1-dimensional output

neural network. For high-dimensional problems which are the kind of variational prob-

lems, the local deep learning method can also be applied.

4. Advantages of LDLM

In this section, we illustrate the advantages of using the local deep learning method

to solve differential equations with high order derivatives. The intuitive performance

of some numerical tests will be shown in Section 5.

4.1. Reduction of calculations

The computational complexity of computing a k-th order derivative is O(Lkn2k),
which is delineated in Section 2.2. In the LDLM, a k-th order derivative becomes k − 1
restrictions and k first order derivatives. As the restrictions are much cheaper than

computing derivatives, the total cost is about O(Lkn2). The linear growth with respect

to the order k is especially suitable for solving high order PDEs.

4.2. Improving robustness for solving complex differential equations

The robustness of local deep learning methods is made manifest in the solving of

complex nonlinear differential equations, which contain different order derivatives and

multiple scales, like the Cahn-Hilliard equation (5.2). In Section 2.2, we see that the

scale of a k-th order derivative is about

u(k)(x; θ) ∼
(

σ(k)(x)θk
)L

. (4.1)

Considering the p-th order derivative and the q-th order derivative in one equation, the

formulation contains

θpL
(

(

σ(p)(x)
)L

+
(

σ(q)(x)
)L

θ(q−p)L
)

. (4.2)

Assuming σ(p)(x) ∼ σ(q)(x), the term θ(q−p)L is sensitive if p 6= q and L ≫ 1. The

initialization of the parameters θ will seriously impact the performance of a neural

network. This will cause the information of one of the derivatives to be neglected

during the training process when |(q − p)L| ≫ 1.

54 J. Yang and Q. Zhu

Additionally, high order derivative terms are often accompanied by small coeffi-

cients, like the viscosity µ in the Navier-Stokes equation and the interface width ǫ in

the Cahn-Hilliard equation. In traditional numerical methods, high order numerical

schemes or multi-scale analysis methods can overcome the equation’s parameter sensi-

tivity. But small coefficients, coupled with the different order derivatives of the neural

network, can cause great difficulties in optimization. In other words, the neural net-

work may not converge due to the sensitivity of the small coefficients.

The modified loss function of the system only includes

σL(x) +
(

σ′(x)
)L

θL. (4.3)

It is easier to assume σ(x) ∼ σ′(x), and the parameter scale can be balanced by σ(x) ∼
σ′(x)θ. In training, different order derivatives only affect adjacent ones, which leads to

a more robust result.

4.3. Weaker restrictions on activation functions

Following the above, local deep learning methods place less of restriction on active

functions. Different active functions have different uses in neural networks. For exam-

ple, the ReLU active function allows us to circumvent the gradient vanishing problem

and the hyperbolic tangent active function can provide smoothness. Choosing a suit-

able active function for a given task is an open hyperparameter learning problem.

For PDEs containing the k-th order derivative, the neural network ϕ should, at least,

belong to Ck+1(Ω) from (4.1), where C(Ω) is the collection of continuous functions on

Ω and Ck(Ω) := {f |f (k) ∈ C(Ω)}. Combining this with (4.2), the active function should

satisfy

i. σ(x) ∈ Ck+1(Ω);

ii. σ(p)(x) ∼ σ(q)(x), ∀x ∈ Ω, 1 ≤ p, q ≤ k + 1.

Condition (i) can be satisfied with smooth nonpolynomial active functions, like the

hyperbolic tangent and sigmoid. But a common problem is that these active functions

inevitably lead to gradient vanishing and exploding problems. Other popular active

functions, like ReLU and ReCU, do not meet the condition. Condition (ii) is much more

stringent. Among the common elementary functions, only the exponential function

satisfies this condition, but it is not usually used as an active function.

For local deep learning methods, these conditions are weakened as

iii. σ(x) ∈ C2(Ω);

iv. σ(x) ∼ σ′(x), ∀x ∈ Ω.

If we approximate the weak solution of the equation, condition (iii) can be further

weakened as σ ∈ C1(Ω) and the weak derivative of σ′ exists. Then, some active func-

tions with nonexistent second order derivatives can be used to train the neural network.

Condition (iv) means that σ′ should be bounded in Ω.

A Local Deep Learning Method for Solving High Order PDE 55

The weaker restriction on the active functions provides more choices in local deep

learning methods.

4.4. More flexible choices of network structures

Deep neural networks usually have a large number of hidden layers. As mentioned

above, the high order derivatives of deep neural networks not only increase the size

of the calculation, but also destabilize the training process. So local deep learning

methods, which have successfully avoided the calculation of high order derivatives,

can be better combined with deep neural networks.

In addition, we can also use more complex neural network models. For example,

one advantage of the residual layer

N (x) = σ
(

W2σ(W1x+ b1) + b2
)

+ x, (4.4)

is that it avoids the gradient vanishing problem. This is because the linear term x keeps

an additive constant gradient in the first order derivatives, i.e.,

∂N
∂z

=
(

F ′(x) + 1
)∂x

∂z
, (4.5)

where F (x) = σ(W2σ(W1x+ b1) + b2). But for high order derivatives, it is not usually

effective. For example,

∂3N
∂z3

= F ′′′(x)

(

∂x

∂z

)3

+ 3F ′′(x)
∂x

∂z

∂2x

∂z2
+ F ′(x)

∂3x

∂z3
+

∂3x

∂z3
(4.6)

it can always avoid the gradient vanishing problem, but it cannot grasp the contribution

of various components to the high order derivatives well, which, in turn, will lead to an

inaccurate calculation of the derivatives. For other complex network structures, like the

long short term memory layer, the calculation of high order derivatives relies on a series

of complex composite functions which greatly increases complexity of the computation.

For local deep learning methods, which are similar to classical deep learning problems,

many existing tools, methods and network structures can be directly migrated to solve

high order differential equations.

5. Numerical examples

5.1. Setup

In this section, we use the local deep Galerkin method (LDGM) to compute a se-

ries of examples including high-dimensional linear and nonlinear differential equations

with high order derivatives. The accuracy of the solution ϕ(x; θ) is measured by the

relative L2 error ‖ϕ− u∗‖2/‖u∗‖2 where u∗ is the exact solution and

‖u‖22 =

∫

Ω
u2dx.

56 J. Yang and Q. Zhu

If the exact solution is not analytical, we will compare the solution to the reference

solution obtained by the finite difference method. The base solution for comparison is

obtained by the deep Galerkin method (DGM) [29].

The numerical implementation of the algorithm is based on TensorFlow, which is

a widely-used open-source software library in machine learning [1]. The automatic

differentiation is included in function tf.gradient(y, x), which returns

m
∑

i=1

(

yi
x1

, · · · , yi
xd

)

,

rather than the Jacobi matrix. In all numerical experiments, a fully connected feedfor-

ward network is chosen as the network structure. Unless otherwise noted, the neural

network is configured to be a coupled network as Fig. 1 with 3 hidden layers and

50 neurons per hidden layer. Parameters are initialized by the Xavier Initializer (also

known as the Glorot Uniform Initializer), which is used to avoid the gradient van-

ishing and exploding problems [8]. Most active functions are selected as tanh(x) for

smoothness and final active functions are determined by practical problems. In op-

timization, we set the learning rate r = 0.001, sampling times s1 = 1000, optimiza-

tion steps s2 = 5 as a default and use the Adam optimizer. Sampling settings are

Ne = 200, Ni = 50, Nb = 50, which contain a total of 300 nodes per suboptimization

problem, and the uniform distribution is used for sampling. The weights of loss func-

tions are chosen equal we = wi = wb = 1, unless there is a singularity on the boundary

or initial condition.

Notations of the experiments and algorithm parameters are summarized in Table 2

for quick reference.

Table 2: The list of parameters.

Notation Stands for ...

ϕ(x, t; θ) Neural network of input (x, t) with trainable parameters θ

d Dimension of Ω ⊂ Rd

L Number of hidden layers

m Dimension of output

n Hidden layer width

σ Active functions in neural network

Je, Ji, Jb The loss of the equation, the initial value and the boundary condition

we, wi, wb The weights of the losses

Ne, Ni, Nb Number of sampling nodes on the domain ΩT ,Ω× {0} and ∂ΩT

r Learning rate of network parameter θ

s1 Sampling times on the whole training process

s2 Optimization steps of per sampling stage

A Local Deep Learning Method for Solving High Order PDE 57

5.2. Fourth order PDE

In the first case, we show that while there is no obvious difference between the

LDGM and the DGM in terms of accuracy, the LDGM can greatly speed up the calcula-

tion.

We consider a simple model for a vibrating elastic beam first [26]

ut = −uxxxx, x ∈ [0, 2π], t ∈ [0, 1]. (5.1)

With the Dirichlet boundary conditions u(x, t) = 0, uxx(x, t) = 0, x ∈ ∂Ω and the initial

condition u0(x) = sinx, the exact solution is given as u(x, t) = e−t sinx. It is costly to

calculate the fourth order derivative in deep neural networks while we get high order

derivatives directly from the multi-output neural network.

From Fig. 5, we find that under the same iteration step, the LDGM is trained much

faster than the DGM, while the error is slightly different. In the third picture, we can

conclude that the LDGM approaches the solution of the PDEs containing high order

derivatives faster than the DGM. It saves a lot of time in training, and the advantage

will be magnified as the network’s depth increases.

Another interesting aspect of this study is that the oscillation amplitude of the

LDGM is smaller than that of the DGM. Although not sufficient, we realize that the

local deep Galerkin method is more stable for PDEs with high order derivatives.

Figure 5: The training processes of DGM and LDGM with the learning rate r = 10
−4 and s1 × s2 = 50000

training steps. The red line is the deep Galerkin method and the blue line is the local deep Galerkin method.
The left figure shows the time spent between two methods under the same iteration step. The middle figure
shows the logarithmic L2 error with respect to the iteration step. The right figure shows how fast the L2

error drops.

5.3. Cahn-Hilliard equation

The Cahn-Hilliard (CH) equation is a popular mathematical physical equation used

to describe the process of phase separation. When we use the deep learning method to

solve the Cahn-Hilliard equation, it fails when ǫ is small. This is why we propose the

local method to strengthen the robustness in training.

The 1-D CH equation can be given as

ut + ǫuxxxx + f(u)xx = 0, x ∈ [0, 2π], t ∈ [0, 1], (5.2)

58 J. Yang and Q. Zhu

where f(u) = u− u3. Given the initial condition u0(x) = cos x and the zero Neumann

boundary condition, we define the following loss function:

Je(ϕ) = ‖(ϕ1)t − (ϕ4)x‖2ΩT
+ ‖ϕ3 + ǫ(ϕ2)x + f(ϕ1)‖2ΩT

+ ‖ϕ2 − (ϕ1)x‖2ΩT
+ ‖ϕ4 − (ϕ3)x‖2ΩT

,

Ji(ϕ) = ‖ϕ1 − cos(x)‖2Ω,
Jb(ϕ) = ‖ϕ2‖2∂ΩT

+ ‖ϕ4‖2∂ΩT
,

J(ϕ) = Je(ϕ) +wiJi(ϕ) + wbJb(ϕ).

(5.3)

Here, the multi-output neural network is

ϕ(x, t; θ) =









ϕ1

ϕ2

ϕ3

ϕ4









≈









u
ux
φ
φx









, (5.4)

where φ = −ǫuxx − f(u). For the DGM, classical L2 loss is used. The reference solu-

tion is given by a pseudo-spectral method with 129 spectral nodes, and the numerical

scheme is
ûn+1
k − ûnk

δt
+ ǫ(ik)4ûn+1

k + (ik)2f̂n
k = 0, (5.5)

where fn = un − (un)3, δt = 0.01 and the FFT solver is used here. We show numerical

results in Fig. 6 with sampling stages s1 = 5000. In addition, we know that the penalty

coefficients wi and wb will influence the training process [4, 25]. Thus we test the

performance of the LDGM under different penalty coefficients and the results are given

in Table 3.

When ǫ ∼ O(1) or there is a source term g(x, t, ǫ), the DGM can be guided to

approximate the true solution quickly. But when ǫ becomes small, the DGM fails while

the LDGM is still able to capture the interface. For the DGM, it costs about s1 = 40000
sampling stages to get a reasonably accurate solution when ǫ = 0.02 and it costs about

s1 = 100000 sampling stages when ǫ = 0.01 in experiments.

Table 3: The relative L2 error of DGM and LDGM with different penalty coefficients.

ǫ = 0.1

wi(wb) 0.1 1 10 100

DGM 3.43% 1.20% 9.61% 3.41%

LDGM 2.04 % 0.80% 2.03% 7.05%

ǫ = 0.01

wi(wb) 0.1 1 10 100

DGM 70.84% 60.57% 54.57% 51.92%

LDGM 6.05% 2.65% 13.55% 32.56%

A Local Deep Learning Method for Solving High Order PDE 59

ǫ = 0.1

ǫ = 0.03

ǫ = 0.01
Figure 6: The solutions to the Cahn-Hilliard equation are obtained by the pseudo-spectral method, the
DGM and the LDGM from left to right with different ǫ = 0.1, 0.03, 0.01. When ǫ is small, the DGM fails to
approximate the solution under given sampling stages s1 = 5000.

The following reasons together result in this failure:

a. The Xavier initializer gives Var(θ) = 1/n and E(θ) = 0. So the fourth order

term ǫuxxxx modeled by ǫ(θ4σ4)L leads to a gradient vanishing problem at the

beginning.

b. The number of sampling nodes is insufficient to capture the interface. In each

suboptimization problem, only about ǫNe/2π nodes are around the interface. It

follows that the parameters are updated slowly.

c. It is a non-convex optimization, and the learning rate needs to be small, which

causes the parameters to stay in an incorrect interval for a long time.

From Table 3, we realize that in spite of changing penalty coefficients is able to

improve the training effect, there still exists essential difficulties in the DGM for solving

the Cahn-Hilliard equation. [33] proposes an adaptive strategy which has improved

the accuracy of PINN in solving the Allen-Cahn and Cahn-Hilliard equations while the

60 J. Yang and Q. Zhu

LDGM provides another feasible way to solve the Cahn-Hilliard equation. Since the

order of derivatives has been reduced in the LDGM, this algorithm is less affected by

the gradient vanishing problem caused by initialization, as well as the influence of ǫ.
In general, the robustness of the LDGM is better than that of the DGM for solving the

Cahn-Hilliard equation.

5.4. Modified KdV equation

In this test, we show that when the neural network becomes deeper, the parameter

scale difference between different order derivatives becomes more obvious. Consider

the following modified Korteweg-de Vries equation:











ut − 6u2ux + uxxx = 0, x ∈ [−2, 2], t ∈ [0, 1],

u(2, t) = tanh(2t+ 1), u(−2, t) = tanh(2t− 3), t ∈ [0, 1],

u(x, 0) = tanh(x− 1), x ∈ [−2, 2].

(5.6)

The kink solution of problem (5.6) is u(x, t) = tanh(x + 2t − 1). Set up the neural

network

ϕ(x, t; θ) =





ϕ1

ϕ2

ϕ3



 ≈





u
ux
uxx



 , (5.7)

and the loss function is given as follows:

Je(ϕ) =
∥

∥(ϕ1)t − 6ϕ2
1ϕ2 + (ϕ3)x

∥

∥

2

ΩT

+

2
∑

i=1

∥

∥(ϕi)x − ϕi+1

∥

∥

2

ΩT

,

Ji(ϕ) =
∥

∥ϕ1 − tanh(x− 1)
∥

∥

2

Ω
,

Jb(ϕ) =
∥

∥ϕ1(−2, t)− tanh(2t− 3)
∥

∥

2

[0,1]
+
∥

∥ϕ1(2, t) − tanh(2t+ 1)
∥

∥

2

[0,1]
.

(5.8)

Under the default settings in Fig. 7, the only proven superiority of the LDGM is

that it costs less time when solving the problem. We then compare the performance of

different network settings in solving the modified KdV equation. The relative L2 errors

after 25000 steps training are shown in Table 4.

Table 4: Relative L2 errors under various network coefficients.

n = 10,various L 3 6 9 12 24 48

DGM 0.132% 0.099% 0.155% 0.171% 0.579% 84.22%

LDGM 0.196% 0.164% 0.165% 0.142% 0.098% 0.243%

L = 3,various n 10 20 40 80 160 320

DGM 0.132% 0.059% 0.060% 0.209% 0.027% 1.694%

LDGM 0.196% 0.304% 0.174% 0.210% 0.191% 0.342%

A Local Deep Learning Method for Solving High Order PDE 61

Figure 7: Deep learning solutions of the modified KdV equation obtained by the DGM and the LDGM.
Under the default settings, the LDGM is faster than the DGM.

Table 4 shows that the LDGM is less affected by network settings, while the DGM is

more sensitive. When L = 48, n = 10, the DGM fails to solve the KdV equation under

the default settings. One reason of the failure is that the active function tanh(x) can

cause gradient vanishing problem. But under the continuity assumption of the DGM,

the active function of the neural network does not have many choices. In the LDGM, it

only requires σ(x) ∈ C
2. Here the exponential linear units

σ(x) =

{

x, x > 0,

α(ex − 1), otherwise
(5.9)

can be used to further reduce errors and avoid gradient vanishing problem. When

L = 64, we repeat the experiment 100 times and record whether the relative L2 error

is less than 1% after 10000 iteration steps. The success rates of the DGM and the LDGM

are 30% and 89%, respectively. This means that when the network is deep, the DGM is

almost ineffective, while the LDGM provides more flexible choices in terms of network

structures and active functions.

5.5. High-dimensional heat equation

Innumerable previous studies have shown that deep learning methods have distinct

advantages in solving high-dimensional problems. In this example, we show that the

LDGM inherits these advantages. Consider the general heat equation

ut −∆u = f(x, t), x ∈ Ω = [0, 1]d, t ∈ [0, 1],

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, 1],
(5.10)

62 J. Yang and Q. Zhu

where

f(x, t) = 2d(t+ 1) +

d
∑

i=1

xi(1− xi), g(x, t) =

d
∑

i=1

xi(1 − xi)(t+ 1).

Given the initial condition

u0(x) =
d
∑

i=1

xi(1− xi),

problem (5.10) has a classical solution

u∗(x, t) =

d
∑

i=1

xi(1− xi)(t+ 1).

Define the multi-output neural network as follows:

ϕ(x, t; θ) =











ϕ1

ϕ2
...

ϕd+1











≈











u
ux1

...

uxd











. (5.11)

The loss function has the form of

Je(ϕ) =

∥

∥

∥

∥

(ϕ1)t −
d
∑

i=1

(ϕi+1)xi
− f

∥

∥

∥

∥

2

ΩT

+
d
∑

i=1

‖(ϕ1)xi
− ϕi+1‖2ΩT

,

Ji(ϕ) = ‖ϕ1 − u0‖2Ω, Jb(ϕ) = ‖ϕ1 − g‖2∂ΩT
.

(5.12)

Notice that we only need to output the first order derivatives of all dimensions for

computing the second order derivatives, which greatly saves calculation and storage

space. The same strategy applies to higher order derivatives.

Setting d = 5, L = 3, n = 50, r = 0.001 and using 50000 iteration steps (s1 = 10000
and s2 = 5), the solutions are given in Fig. 8.

Both the LDGM and the DGM need to learn more details in optimization. The error

is caused by the limited approximation ability of such a neural network and training

set. The default settings is not sufficient to cover the entire region Ωd. For a more pre-

cise solution, adding hidden layers, expanding the network’s width and increasing the

number of sampling nodes are all viable options. Fig. 9 uses the error curve to provide

a more intuitive comparison. High-dimensional second order derivatives calculated by

the automatic differentiation in the loss are harder to be optimized. Sometimes, an

adaptive piecewise learning rate like r ∼ 10−[log(k)] is chosen, where k is the iteration

step. It always works but it can be costly. In the LDGM, the error drops quickly, which

means that the LDGM retains its advantages in solving high-dimensional problems.

A Local Deep Learning Method for Solving High Order PDE 63

Figure 8: The training process of the high-dimensional heat equation obtained by DGM and LDGM with
respect to dimensions d = 5. The picture shows the exact solution, the solution of DGM and the solution
of LDGM from left to right. From top to bottom, it shows the solutions when the iteration steps k =

1000, 2000, 10000, 20000, 50000. For display purposes, the images show the slices of x2, x3, · · · , xd = 0.
The abscissa is x1 and the ordinate is t.

Figure 9: The iteration curves of the DGM and the LDGM for the 5-D heat equation. From left to right:
loss vs. iteration steps, relative L2 error vs. iteration steps, and relative L2 error vs. calculation time,
respectively.

64 J. Yang and Q. Zhu

Table 5: The relative L2 error of DGM and LDGM in different dimensions.

d 2 10 20 50 100

DGM 0.070% 0.082% 0.121% 0.178% 0.282%

LDGM 0.081% 0.072% 0.093% 0.130% 0.134%

In addition, giving the exact solution

u(x, t) = e−t
d
∑

i=1

sinx

and using 25000 iteration steps, we compare the performance of LDGM in different

dimensions. As the dimension changing, we show the relative L2 error of DGM and

LDGM in Table 5. It implies that compared to the DGM, LDGM is less affected by the

dimensional growth.

6. Concluding remarks and declaration

In this paper, we list the difficulties associated with computing high order deriva-

tives of neural networks for solving PDEs. Calculating high order derivatives is costly

and can cause a parameter scaling problem. In addition, complex calculations limit our

choices of network structures and active functions. We propose a local deep learning

method to overcome these problems. We consider the derivatives of the solution as

intermediate variables and rewrite the original problem as a system of low order PDEs.

The loss function takes the residual of the equivalent system. With a multi-output

neural network, the local deep learning method is established. We demonstrate the

performance of the local deep Galerkin method on a variety of PDEs, including high-

dimensional problems, phase field problems and high order PDEs. In all numerical

tests, the local deep Galerkin method is shown to be both stable and highly efficient.

Declaration: We enclose this paper by a declaration to show the originality of our

work. Our project started more than one and half a years ago. About finishing the

work by the end of 2020, we found the work [24] on arxiv post in June 2020. The

exactly same technique is adopt to solve high-order PDEs by deep learning. They called

it as deep mixed residual method, in contrast called as local deep learning method

in our paper. Next we try to show the independence and originality of our work by

shortly presenting how we propose the so-called local deep leaning method and the

difference between our work with [24]. First, our motivation of this study was to use

deep learning methods to solve phase field equations. While we successfully solved the

Allen-Cahn equation, we failed to solve the Cahn-Hilliard equation, even though they

are both gradient flow problems associating with same free energy. We later discovered

that our failure to solve the CH equation was due to the high order derivative and small

ǫ causing a parameter scaling problem. Thus the LDLM was proposed. Secondly, [24]

A Local Deep Learning Method for Solving High Order PDE 65

focuses more on how the technique results in more accurate solutions as well as more

accurate derivatives and the authors intend to enforcing exact boundary and initial

conditions [23]. But we focus more on how this technique reduces the computations,

improves the robustness for high order differential equations, and overcomes the gra-

dient vanishing or exploding problem in high order PDEs.

Acknowledgements

This work is partially supported by the National Natural Science Foundation of

China/Hong Kong RRC Joint Research Scheme (NSFC/RGC 11961160718), and the

fund of the Guangdong Provincial Key Laboratory of Computational Science and Mate-

rial Design (No. 2019B030301001). The work of J. Yang is supported by the National

Science Foundation of China (NSFC-11871264) and the Guangdong Basic and Applied

Basic Research Foundation (2018A0303130123).

References

[1] M. ABADI, ET AL., Tensorflow: A system for large-scale machine learning, In: 12th USENIX

symposium on operating systems design and implementation (OSDI 16), (2016), 265–
283.

[2] A. G. BAYDIN, B. A. PEARLMUTTER, A. A. RADUL, AND J. M. SISKIND, Automatic differen-

tiation in machine learning: A survey, J. Mach. Learn. Res. 18 (2017), 5595–5637.
[3] Y. BENGIO, P. SIMARD, AND P. FRASCONI, Learning long-term dependencies with gradient

descent is difficult, IEEE Trans. Neural Netw. Learn. Syst. 5 (1994), 157–166.

[4] J. CHEN, R. DU, AND K. WU, A comparison study of deep Galerkin method and deep Ritz

method for elliptic problems with different boundary conditions, Commun. Math. Res. 36

(2020), 354–376.
[5] B. COCKBURN AND C.-W. SHU, The local discontinuous Galerkin method for time-dependent

convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), 2440–2463.

[6] T. DOCKHORN, A discussion on solving partial differential equations using neural networks,
arXiv:1904.07200, 2019.

[7] W. E, Machine learning and computational mathematics, Commun. Comput. Phys. 28

(2020), 1639–1670.
[8] X. GLOROT AND Y. BENGIO, Understanding the difficulty of training deep feedforward neural

networks, In: Proceedings of the thirteenth international conference on artificial intelli-
gence and statistics, (2010), 249–256.

[9] R. GROSSE, Lecture 15: Exploding and vanishing gradients, University of Toronto Com-

puter Science, 2017.
[10] J. HAN, J. ARNULF, AND E. WEINAN, Solving high-dimensional partial differential equa-

tions using deep learning, Proceedings of the National Academy of Sciences, (2018),

201718942.
[11] J. HAN, M. NICA, AND A. R. STINCHCOMBE, A derivative-free method for solving elliptic

partial differential equations with deep neural networks, J. Comput. Phys. 419 (2020),
109672.

[12] B. HANIN, Which neural net architectures give rise to exploding and vanishing gradients?,

In: Advances in Neural Information Processing Systems, (2018), 582–591.

66 J. Yang and Q. Zhu

[13] M. HAYATI AND B. KARAMI, Feedforward neural network for solving partial differential
equations, J. Appl. Sci. 7 (2007), 2812–2817.

[14] S. HOCHREITER, The vanishing gradient problem during learning recurrent neural nets and

problem solutions, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 6 (1998), 107–116.

[15] K. HORNIK, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4
(1991), 251–257.

[16] K. HORNIK, M. STINCHCOMBE, AND H. WHITE, Multilayer feedforward networks are uni-

versal approximators, Neural Netw. 2 (1989), 359–366.
[17] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, arXiv:1412.6980,

2014.

[18] I. E. LAGARIS, A. LIKAS, AND D. I. FOTIADIS, Artificial neural networks for solving ordinary
and partial differential equations, IEEE Trans. Neural Netw. Learn. Syst. 9 (1998), 987–

1000.
[19] I. E. LAGARIS, A. C. LIKAS, AND D. G. PAPAGEORGIOU, Neural-network methods for bound-

ary value problems with irregular boundaries, IEEE Trans. Neural Netw. Learn. Syst. 11

(2000), 1041–1049.
[20] Y. LIAO AND P. MING, Deep Nitsche method: Deep Ritz method with essential boundary

conditions, Commun. Comput. Phys. 29 (2021), 1365–1384.

[21] Z. LIU, W. CAI, AND Z.-Q. JOHN XU, Multi-scale deep neural network (mscalednn) for solv-

ing Poisson-Boltzmann equation in complex domains, Commun. Comput. Phys. 28 (2020),

1970–2001.
[22] L. LU, X. MENG, Z. MAO, AND G. KARNIADAKIS, Deepxde: A deep learning library for

solving differential equations, SIAM Review 63 (2021), 208–228.

[23] L. LYU, K. WU, R. DU, AND J. CHEN, Enforcing exact boundary and initial conditions in the
deep mixed residual method, arXiv:2008.01491, 2020.

[24] L. LYU, Z. ZHANG, M. CHEN, AND J. CHEN, Mim: A deep mixed residual method for solving

high-order partial differential equations, arXiv:2006.04146, 2020.
[25] J. MÜLLER AND M. ZEINHOFER, Error estimates for the variational training of neural net-

works with boundary penalty, arXiv:2103.01007, 2021.
[26] F. I. NIORDSON, On the optimal design of a vibrating beam, Quart. Appl. Math. 23 (1965),

47–53.

[27] R. PASCANU, T. MIKOLOV, AND Y. BENGIO, On the difficulty of training recurrent neural

networks, In: International conference on machine learning, 2013, 1310–1318.

[28] M. RAISSI, P. PERDIKARIS, AND G. KARNIADAKIS, Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations, J. Comput. Phys. 378 (2019), 686–707.

[29] J. SIRIGNANO AND K. SPILIOPOULOS, Dgm: A deep learning algorithm for solving partial
differential equations, J. Comput. Phys. 375 (2017), 1339–1364.

[30] B. WANG, W. ZHANG, AND W. CAI, Multi-scale deep neural network (mscalednn) methods

for oscillatory Stokes flows in complex domains, arXiv:2009.12729, 2020.
[31] E. WEINAN, J. HAN, AND A. JENTZEN, Deep learning-based numerical methods for high-

dimensional parabolic partial differential equations and backward stochastic differential

equations, Commun. Math. Stat. 5 (2017), 349–380.
[32] E. WEINAN AND T. YU, The deep Ritz method: A deep learning-based numerical algorithm

for solving variational problems, Commun. Math. Stat. 6 (2017), 1–12.
[33] C. L. WIGHT AND J. ZHAO, Solving Allen-Cahn and Cahn-Hilliard equations using the adap-

tive physics informed neural networks, Commun. Comput. Phys. 29 (2021), 930–954.

A Local Deep Learning Method for Solving High Order PDE 67

[34] Y. XU AND C.-W. SHU, Local discontinuous Galerkin methods for high-order time-dependent
partial differential equations, Commun. Comput. Phys. 7 (2010), 1.

[35] J. YAN AND C.-W. SHU, A local discontinuous Galerkin method for KDV type equations,

SIAM J. Numer. Anal. 40 (2002), 769–791.
[36] J. YAN AND C.-W. SHU, Local discontinuous Galerkin methods for partial differential equa-

tions with higher order derivatives, J. Sci. Comput. 17 (2002), 27–47.
[37] Y. ZANG, G. BAO, X. YE, AND H. ZHOU, Weak adversarial networks for high-dimensional

partial differential equations, J. Comput. Phys. 411 (2020), 109409.

