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ADAPTIVE MULTIGRID METHOD FOR EIGENVALUE

PROBLEM

FEI XU, QIUMEI HUANG, SHUANGSHUANG CHEN AND HONGKUN MA∗

Abstract. In this paper, we propose a type of adaptive multigrid method for eigenvalue prob-
lem based on the multilevel correction method and adaptive multigrid method. Different from

the standard adaptive finite element method applied to eigenvalue problem, with our method
we only need to solve a linear boundary value problem on each adaptive space and then correct
the approximate solution by solving a low dimensional eigenvalue problem. Further, the involved

boundary value problems are solved by some adaptive multigrid iteration steps. The proposed
adaptive algorithm can reach the same accuracy as the standard adaptive finite element method
for eigenvalue problem but evidently reduces the computational work. In addition, the corre-
sponding convergence and optimal complexity analysis are derived theoretically and numerically,

respectively.

Key words. Eigenvalue problem, adaptive multigrid method, multilevel correction, convergence,
optimal complexity.

1. Introduction

How to solve large-scale eigenvalue problems is a very significant problem in
modern scientific and engineering calculations. Many physical models and engi-
neering models ultimately boil down to eigenvalue problems, such as the structural
vibration analysis in buildings design, stability analysis in control systems, inher-
ent frequency analysis of aircraft, etc. In recent years, the first-principles electronic
structure calculations have pushed into the spotlight, and its key point is right to
solve a class of nonlinear eigenvalue models. Therefore, it is necessary to make an
indepth study of eigenvalue problem for its important theoretical significance and
wide application value.

Among different numerical methods for eigenvalue problems, the adaptive finite
element method (AFEM) is an efficient approach in generating optimal triangula-
tion. AFEM was proposed by Babuška and his cooperators in [4, 5]. Up to now,
the corresponding theoretical analysis of AFEM is well-developed. The conver-
gence and optimal complexity analysis for boundary value problem can be found in
[10, 16, 22, 23, 34, 33, 35, 37]. For eigenvalue problems, we can also find some similar
results in [15, 17, 18, 19, 27, 30]. To further improve the efficiency of adaptive finite
element method, the multilevel technique was absorbed to generate the adaptive
multigrid method. Actually, it is worthing noting that adaptive mesh refinement
technique was confirmed fully compatible with the multilevel mesh structure. Based
on this idea, Brandt [6, 8] introduced the multilevel adaptive technique (MLAT),
and McCormick [31] developed the fast adaptive composite grid method (FAC). For
more results about the adaptive multigrid method, please refer to [13, 21, 32, 38, 39]
and the references cited therein.

Though the optimal triangulations can be derived by standard AFEM, we have
to solve an eigenvalue problem on each adaptive space, which is time-consuming
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and very tedious with the growth of degree of freedoms. The purpose of this
paper is to propose a new type of adaptive multigrid method for solving eigenvalue
problem based on adaptive finite element method, adaptive multigrid method and
the recent work on the multilevel correction method [12, 24, 26, 28, 29, 40, 41]. In
addition, we also analyze the corresponding convergence and optimal complexity
property. In our presented adaptive multigrid method, the eigenvalue problem can
be transformed into a series of linear boundary value problems on the fine grids and
some eigenvalue problems on the coarsest grid. The dimension of the small-scale
eigenvalue problem will be fixed during the adaptive refinement, thus the solving
time can be ignored if the size of mesh becomes increasingly smaller after some
refinement steps. Further, for the involved linear boundary value problems, we
only need to proceed some multigrid iteration steps on the newly refined elements
and their neighbors. For more details, please refer to [6, 21, 38, 39] and references
cited therein. In this paper, we will adopt the techniques in [10, 15, 22] to prove the
convergence and optimal complexity of the proposed adaptive multigrid method.

The rest of the paper is arranged as follows. Section 2 describes some basic
notations and the standard AFEM for the second order elliptic boundary value
problem. In Section 3, we introduce the adaptive multigrid method for eigenvalue
problems. The corresponding convergence and complexity analysis will be given in
Section 4. In Section 5, some numerical experiments are presented to validate the
efficiency and the theoretical analysis. Section 6 concludes.

2. Preliminaries of standard adaptive finite element method for bound-
ary value problem

This section is devoted to introducing some basic notation and some useful results
of AFEM for second order linear elliptic boundary value problems. We shall use
the standard notation for Sobolev spaces W s,p(Ω) with associated norms ∥ · ∥s,p,Ω
and seminorms | · |s,p,Ω (see, e.g., [1]). For p = 2, we denote Hs(Ω) = W s,2(Ω),
H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace and
∥ · ∥s,Ω = ∥ · ∥s,2,Ω. For simplicity, we set V = H1

0 (Ω) in the rest of this paper.
Here, we consider the following homogeneous boundary value problem:

(1)

{
Lu := −∇ · (A∇u) + ϕu = f in Ω,

u = 0 on ∂Ω,

where A = (ai,j)d×d is a symmetric positive definite matrix with suitable regularity
and ϕ is a nonnegative function.

In order to use the finite element method, we first introduce the weak form for
(1) as follows: Find u ∈ V such that

a(u, v) = (f, v), ∀v ∈ V,(2)

where the bilinear form a(·, ·) is defined by

a(u, v) =

∫
Ω

(A∇u · ∇v + ϕuv)dΩ.(3)

Obviously, the bilinear form a(·, ·) is bounded and coercive over V . Thus, we can

define the energy norm ∥ · ∥a,Ω by ∥w∥a,Ω =
√

a(w,w).
Now, we introduce the standard finite element method for linear boundary value

problem (2). Firstly, we generate a shape regular decomposition of the computing
domain Ω ⊂ Rd (d = 2, 3) into triangles or rectangles for d = 2, tetrahedrons or
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hexahedrons for d = 3 (cf. [9, 14]). Then we consider the finite element discretiza-
tion on the shape regular family of nested conforming meshes {Tk} over Ω with the
mesh diameter hk.

Let Vk ⊂ V be the corresponding family of nested linear finite element spaces
of continuous piecewise polynomials over Tk. Based on Vk, we can define the finite
element scheme for linear boundary value problem (2): Find uk ∈ Vk such that

a(uk, vk) = (f, vk), ∀vk ∈ Vk.(4)

For the purpose of theoretical analysis, we define the Galerkin projection Pk :
H1

0 (Ω) → Vk by

a(u− Pku, vk) = 0, ∀vk ∈ Vk.(5)

Then we can obtain uk = Pku and

∥Pku∥a,Ω ≤ ∥u∥a,Ω, ∀u ∈ V.(6)

Based on the conclusion of adaptive finite element method for boundary value
problem (see, e.g. [10, 33, 34]), we propose the a posteriori error estimator for finite

element problem (4). We define the element residual R̂T (uk) and the jump residual

ĴE(uk) as follows

R̂T (uk) := f − Luk = f − ϕuk +∇ · (A∇uk) in T ∈ Tk,
ĴE(uk) := −∇Au+

k · ν+ −∇Au−
k · ν− := [[∇Auk]]E · νE on E ∈ Ek,

where E is the common side of elements T+ and T− with outward normals ν+ and
ν−, νE = ν−.

Then for any element T ∈ Tk with diameter hT , the local error indicator and
oscillation can be defined by

η̂2k(uk;T ) := h2
T ∥R̂T (uk)∥20,T +

∑
E∈Ek,E⊂∂T

hE∥ĴE(uk)∥20,E ,

ôsc
2
k(uk;T ) := h2

T ∥(I − PT )R̂T (uk)∥20,T +
∑

E∈Ek,E⊂∂T

hE∥(I − PE)ĴE(uk)∥20,E ,

where PT and PE are the L2-projection operators to polynomials of some degree
on T and E, respectively.

Given a submesh ω ⊂ Tk, the global error indicator and oscillation can be defined
by

η̂2k(uk;ω) :=
∑
T∈ω

η̂2k(uk;T ) and ôsc
2
k(uk;ω) :=

∑
T∈ω

ôsc
2
k(uk;T ).

Now we recall the reliability and efficiency of the a posterior error estimator in
the following lemma.

Lemma 2.1. There exist two constants Ĉu and Ĉℓ, depending only on the shape-
regularity of Tk, such that the following reliability and efficiency hold

∥u− uk∥2a,Ω ≤ Ĉuη̂
2
k(uk; Tk)(7)

and

Ĉℓη̂
2
k(uk; Tk) ≤ ∥u− uk∥2a,Ω + ôsc

2
k(uk; Tk).(8)

The standard adaptive finite element method can be written as loop of the form

Solve → Estimate → Mark → Refine.



4 F. XU, Q. HUANG, S. CHEN AND H. MA

More precisely, to get Tk+1 from Tk, we first need to solve the finite element equation
(4) on Tk to get the approximate solution and then calculate the local error indicator
on each mesh element. Next we mark elements to be subdivided according to
the local error indicator, and then refine these elements in such a way that the
triangulation is still shape regular and conforming.

In order to further simplify the description of adaptive algorithm, we first intro-
duce some modules for boundary value problem (1):

• wk = BVP−SOLVE(f, Vk): Solve the linear boundary value problem (1) in
the finite element space Vk and output the discrete solution wk.

• wk = MGBVP−SOLVE(f, w0, Vk): Solve the linear boundary value prob-
lem (1) by multigrid method with initial value w0 in the finite element space
Vk and output the iteration solution wk.

• {η̂k(uk;T )}T∈Tk
= BVP−ESTIMATE(uk, Tk): Compute the local error in-

dicator on each element.
• Mk = BVP−MARK(θ, η̂k(uk;T ), Tk): Construct a subset Mk by Dörfler’s
marking strategy presented in [16], i.e., construct a minimal subset Mk

from Tk by filtrating relevant elements in Tk such that

η̂k(uk;Mk) ≥ θη̂k(uk; Tk).

• (Tk+1, Vk+1) = REFINE(Tk,Mk): Output a conforming refinement Tk+1

according to Mk where at least all element of Mk are refined and construct
the corresponding finite element space Vk+1.

Then we present the standard AFEM for boundary value problem (1) as follows:

Adaptive Algorithm 1

Given a parameter θ ∈ (0, 1) and an initial mesh T1. Set k := 1 and do the
following loops:

(1) uk = BVP−SOLVE(f, Vk);
(2) {η̂k(uk;T )}T∈Tk

= BVP−ESTIMATE(uk, Tk);
(3) Mk = BVP−MARK(θ, η̂k(uk;T ), Tk);
(4) (Tk+1, Vk+1) = REFINE(Tk,Mk);
(5) Set k := k + 1 and go to step 1.

We now recall some well-known results of Adaptive Algorithm 1 for elliptic
boundary value equations (see [10]), which will be used in the following analysis.

Theorem 2.1. ([10]) Let {uk} be a sequence of approximate solutions for (1) which
are produced by Adaptive Algorithm 1. Then, there exist constants γ̂ > 0 and

ξ̂ ∈ (0, 1), depending on the shape regularity of meshes and marking parameter θ,
such that any two consecutive iterates k and k + 1 have the following property

∥u− uk+1∥2a,Ω + γ̂η̂2k+1(uk+1; Tk+1) ≤ ξ̂2
(
∥u− uk∥2a,Ω + γ̂η̂2k(uk; Tk)

)
.(9)

In this paper, we assume that the marking parameter θ satisfies θ ∈ (0, θ∗) with
θ∗ being defined in Assumption 5.8 of [10].

Lemma 2.2. ([10]) Let Tk,∗ be a refinement of Tk. Suppose the projections Pk,∗u
and Pku satisfy the following decrease property

∥u− Pk,∗u∥2a,Ω + ôsc
2
k,∗(Pk,∗u; Tk,∗) ≤ ξ̃20

(
∥u− Pku∥2a,Ω + ôsc

2
k(Pku; Tk)

)
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with ξ̃20 ∈ (0, 1
2 ). Denote θ̃ = θ∗(1− 2ξ̃20)

1
2 , then the set Tk\(Tk,∗ ∩ Tk) satisfies the

following inequality

η̂k(Pku; Tk\(Tk,∗ ∩ Tk)) ≥ θ̃η̂k(Pku; Tk).
3. Adaptive multigrid method for eigenvalue problem

In this section, we will design a type of adaptive multigrid method for the fol-
lowing eigenvalue problem based on the multilevel correction scheme and adaptive
multigrid method.

(10)

{
Lu := −∇ · (A∇u) + ϕu = λu in Ω,

u = 0 on ∂Ω.

The corresponding weak form can be written as: Find (λ, u) ∈ R× V such that

(11) a(u, v) = λ(u, v), ∀v ∈ V.

As we know, the eigenvalue problem (11) has an eigenvalue sequence (see [3, 11]):

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · , lim
i→∞

λi = ∞

and the corresponding eigenfunctions

u1, u2, · · · , ui, · · · ,
where (ui, uj) = δij .

The following property of eigenvalue and eigenfunction approximation is useful
(see [3, 44]).

Lemma 3.1. Let (λ, u) be an eigenpair of (11). For any w ∈ V \ {0}, we have

a(w,w)

b(w,w)
− λ =

a(w − u,w − u)

b(w,w)
− λ

b(w − u,w − u)

b(w,w)
.(12)

The standard finite element method for (11) is to solve the following eigenvalue
problem: Find (λ̄k, ūk) ∈ R× Vk such that

(13) a(ūk, vk) = λ̄k(ūk, vk), ∀vk ∈ Vk.

From [3, 11], the discrete eigenvalue problem (13) has an eigenvalue sequence

0 < λ̄k,1 ≤ λ̄k,2 ≤ · · · ≤ λ̄k,Nk

and the corresponding eigenfunctions

ūk,1, ūk,2, · · · , ūk,Nk
,

where (ūk,i, ūk,j) = δi,j , 1 ≤ i, j ≤ Nk (Nk is the dimension of the finite element
space Vk).

Let M(λi) denote the unit ball in the eigenfunction set corresponding to the
eigenvalue λi which is defined by

M(λi) = {w ∈ V : w is an eigenfunction of (11) corresponding to λi, ∥w∥0 = 1}.
(14)

Denote

δk(λi) = sup
w∈M(λi)

inf
vk∈Vk

∥w − vk∥a,Ω

and

ηa(Vk) = sup
f∈L2(Ω),∥f∥0,Ω=1

inf
vk∈Vk

∥L−1f − vk∥a,Ω.

For the eigenpair approximation by the finite element method, there exists the
following lemma (see [3, 11]).
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Lemma 3.2. There exists the exact eigenpair (λi, ui) of (11) such that each ap-
proximate eigenpair (λ̄k,i, ūk,i) has the following estimates

∥ui − ūk,i∥a,Ω . δk(λi),(15)

|ui − ūk,i∥0,Ω . ηa(Vk)∥ui − ūk,i∥a,Ω,(16)

|λi − λ̄k,i| . ∥ui − ūk,i∥2a,Ω.(17)

3.1. Adaptive multigrid method for eigenvalue problem. In this subsec-
tion, we design a new type of adaptive multigrid method for eigenvalue problem
(11) based on the combination of the multilevel correction method and adaptive
refinement technique.

According to the element residual R̂T (uk) and the jump residual ĴE(uk) of the
boundary value problem (1), we define the element residual and the jump residual
of eigenvalue problem (13) as follows:

RT (λk, uk) := λkuk − ϕuk +∇ · (A∇uk) in T ∈ Tk,
JE(uk) := −A∇u+

k · ν+ −A∇u−
k · ν− := [[A∇uk]]E · νE on E ∈ Ek.

For each element T ∈ Tk, the local error indicator and oscillation of eigenvalue
problem (13) are defined by

η2k(λk, uk;T ) :=h2
T ∥RT (λk, uk)∥20,T +

∑
E∈Ek,E⊂∂T

hE∥JE(uk)∥20,E ,(18)

osc2k(λk, uk;T ) :=h2
T ∥(I − PT )RT (λk, uk)∥20,T
+

∑
E∈Ek,E⊂∂T

hE∥(I − PE)JE(uk)∥20,E .(19)

Then on a subset ω ⊂ Tk, we define the error indicator ηk(λk, uk;ω) and oscillation
osck(λk, uk;ω) by

η2k(λk, uk;ω) :=
∑
T∈ω

η2k(λk, uk;T ), osc2k(λk, uk;ω) :=
∑
T∈ω

osc2k(λk, uk;T ).(20)

Similarly, we also introduce some modules of our adaptive multigrid algorithm
for eigenvalue problem:

• (µ,w) = EG−SOLVE(Vk): Solve eigenvalue problem (11) in the finite ele-
ment space Vk and output the discrete approximation (µ,w).

• {ηk(λk, uk;T )}T∈Tk
= EG−ESTIMATE(λk, uk, Tk): Compute the error in-

dicator on each element.
• Mk = EG−MARK(θ, ηk(λk, uk;T ), Tk): Construct a minimal subset Mk

from Tk by filtrating relevant elements in Tk such that

ηk(λk, uk;Mk) ≥ θηk(λk, uk; Tk).(21)

Then the adaptive multigrid method for eigenvalue problem (13) is defined as
follows.

Adaptive Algorithm 2

Given a parameter θ ∈ (0, 1). Generate a coarse triangulation TH on the
computing domain Ω and construct the corresponding finite element space VH .
Pick up an initial mesh T1 which is produced by refining TH by the regular
way. Then build the initial finite element space V1 on the triangulation T1. Let
k := 1 and do the following loops:
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(1) (λk, uk) =

{
EG−SOLVE(V1), when k = 1;

EG−SOLVE(VH ⊕ span{ŭk}), when k > 1;

(2) {ηk(λk, uk;T )}T∈Tk
= EG−ESTIMATE(λk, uk, Tk);

(3) Mk = EG−MARK(θ, ηk(λk, uk;T ), Tk);
(4) (Tk+1, Vk+1) = REFINE(Tk,Mk);

(5) (a) set u
(0)
k+1 = uk;

(b) For ℓ = 0, · · · , p− 1:

u
(ℓ+1)
k+1 = MGBVP−SOLVE(λkuk, u

(ℓ)
k+1, Vk+1);

(c) Set ŭk+1 = u
(p)
k+1;

(6) Set k := k + 1 and go to step 1 until stop.

The enriched space VH ⊕ span{ŭk} plays an important role in our algorithm,
which can not only keep the accuracy of the H1-norm estimate of the approximate
eigenfunction, but also give a better L2-norm estimate (see e.g. [24, 42]).

In the following analysis, we just need the following crude a priori error estimates
for approximate eigenpair (λk, uk) which are stated as follows.

Lemma 3.3. For the obtained approximate eigenpair (λk, uk) (k = 1, 2, · · · ) after
each adaptive step in Adaptive Algorithm 2, the following estimates hold

∥u− uk∥a,Ω . δH(λ),(22)

∥u− uk∥0,Ω . ηa(VH)∥u− uk∥a,Ω,(23)

|λ− λk| . ∥u− uk∥2a,Ω.(24)

Proof. Based on the finite element error estimate presented in Lemma 3.2, the
approximate eigenpair (λk, uk) has the following estimates

|λ− λk| . ∥u− uk∥2a,Ω,(25)

∥u− uk∥a,Ω . inf
vk∈VH⊕span{ŭk}

∥u− vk∥a,Ω

. inf
vk∈VH

∥u− vk∥a,Ω . δH(λ)(26)

and

∥u− uk∥0,Ω . ηa(VH ⊕ span{ŭk})∥u− uk∥a,Ω ≤ ηa(VH)∥u− uk∥a,Ω.(27)

Then we complete the proof. �
3.2. Reliability and efficiency of the a posteriori error estimator for
eigenvalue problem. In this subsection, we will show the reliability and effi-
ciency of the a posteriori error estimator for eigenvalue problem defined in (20).
In order to derive the theoretical results and also to analyze the convergence and
optimal complexity of Adaptive Algorithm 2, we establish the relationship between
the solutions of eigenvalue problem (11) and source problem (4) firstly.

Let wk ∈ V be the exact solution of the following equation: Find wk ∈ V such
that

a(wk, v) = (λkuk, v) ∀v ∈ V.(28)

Denote

ũk = Pkw
k−1,(29)

then we obtain the following theorem.
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Theorem 3.1. Assume the adaptive multigrid iteration for boundary value problem

u
(ℓ+1)
k = MGBVP−SOLVE(λk−1uk−1, u

(ℓ)
k , Vk)(30)

has the following error reduction rate:

∥ũk − u
(ℓ+1)
k ∥a,Ω ≤ ν∥ũk − u

(ℓ)
k ∥a,Ω.(31)

Then the following estimate holds

∥u− uk∥a,Ω = ∥wk − Pkw
k∥a,Ω

+O(r(VH , ν))(∥u− uk−1∥a,Ω + ∥u− uk∥a,Ω),(32)

∥u− uk∥a,Ω = ∥wk−1 − Pkw
k−1∥a,Ω

+O(r(VH , ν))(∥u− uk−1∥a,Ω + ∥u− uk∥a,Ω)(33)

with r(VH , ν) = ηa(VH) + νp.

Proof. u− uk can be decomposed as follows

u− uk = u− wk + wk − Pkw
k + Pkw

k − Pkw
k−1 + Pkw

k−1 − uk.

For the first part, associating with (11) and (28), we have

∥u− wk∥2a = a(u− wk, u− wk)

=
(
λu− λkuk, u− wk

)
. (|λ− λk|+ ∥u− uk∥0,Ω)∥u− wk∥a,Ω
. ηa(VH)∥u− uk∥a,Ω∥u− wk∥a,Ω.(34)

Hence there holds

∥u− wk∥a,Ω . ηa(VH)∥u− uk∥a,Ω.(35)

With regard to the third part, referring to (6) and the proved result (35), we
have the following estimates

∥Pk(w
k − wk−1)∥a,Ω ≤ ∥u− wk∥a,Ω + ∥u− wk−1∥a,Ω

. ηa(VH)
(
∥u− uk∥a,Ω + ∥u− uk−1∥a,Ω

)
.(36)

For the last term, since ŭk − uk ∈ VH ⊕ span{ŭk}, we have

∥Pkw
k−1 − uk∥2a = a(Pkw

k−1 − uk, Pkw
k−1 − uk)

=a(Pkw
k−1 − uk, Pkw

k−1 − ŭk) + a(Pkw
k−1 − uk, ŭk − uk)

=a(Pkw
k−1 − uk, Pkw

k−1 − ŭk) + (λk−1uk−1 − λkuk, ŭk − uk)

.∥Pkw
k−1 − uk∥a∥Pkw

k−1 − ŭk∥a
+ ηa(VH)(∥u− uk∥a,Ω + ∥u− uk−1∥a,Ω)∥ŭk − uk∥a,Ω

.∥Pkw
k−1 − uk∥a∥Pkw

k−1 − ŭk∥a + ηa(VH)(∥u− uk∥a,Ω + ∥u− uk−1∥a,Ω)

(∥Pkw
k−1 − ŭk∥a,Ω + ∥uk − Pkw

k−1∥a).(37)

From the error reduction rate presented in (31), we can derive

∥Pkw
k−1 − ŭk∥a ≤ νp∥Pkw

k−1 − uk−1∥a
≤ νp(∥Pkw

k−1 − Pku∥a + ∥Pku− u∥a + ∥u− uk−1∥a)
≤ νp(∥u− wk−1∥a + ∥u− uk∥a + ∥u− uk−1∥a)
≤ νp(1 + Cηa(VH))(∥u− uk∥a + ∥u− uk−1∥a).(38)
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Combing (37) and (38) leads to

∥Pkw
k−1 − uk∥2a . (νp + ηa(VH))

(
∥u− uk∥a,Ω + ∥u− uk−1∥a,Ω

)
∥Pkw

k−1 − uk∥a
+νpηa(VH)

(
∥u− uk∥a,Ω + ∥u− uk−1∥a,Ω

)2
(39)

Thus the following estimate holds

(40) ∥Pkw
k−1 − uk∥a,Ω . (νp + ηa(VH))

(
∥u− uk∥a,Ω + ∥u− uk−1∥a,Ω

)
.

Using (35), (36) and (40), we can derive (32).
The second identity (33) can be proved by the same token using decomposition

of u− uk

u− uk = u− wk−1 + wk−1 − Pkw
k−1 + Pkw

k−1 − uk.

So we complete the proof. �

Theorem 3.1 establishes a relationship between the error estimate of eigenvalue
problem and boundary value problem. Since the difference is a higher order term
and the theoretical results of boundary value problem has already been well ana-
lyzed, we can derive the conclusions of adaptive multigrid method for eigenvalue
problem by following the procedure of linear elliptic boundary value problem [10],
and this technique can also be found in [15, 22].

Similarly, the following theorem can also be proved by combining the definitions
of error indicators, Sobolev trace theorem and the inverse inequality of the finite
element method.

Theorem 3.2. We have following properties for the error estimator

ηk(λk, uk; Tk) = η̂k(Pkw
k−1; Tk) +O

(
r(VH , ν)

)
(∥u− uk−1∥a,Ω + ∥u− uk∥a,Ω),(41)

ηk(λk, uk; Tk) = η̂k(Pkw
k; Tk) +O

(
r(VH , ν)

)
(∥u− uk−1∥a,Ω + ∥u− uk∥a,Ω).(42)

Proof. From the definitions of ηk(λk, uk;T ) for eigenvalue problem and η̂k(Pkw
k;T )

for boundary value problem, we have

|ηk(λk, uk;T )− η̂k(Pkw
k−1;T )|

=
∣∣∣(h2

T ∥λkuk − ϕuk +∇ · (A∇uk)∥20,T +
∑

e∈Ek,e⊂∂T

he∥[A∇uk]e · νe∥20,e
) 1

2

−
(
h2
T ∥λk−1uk−1 − ϕũk +∇ · (A∇ũk)∥20,T +

∑
e∈Ek,e⊂∂T

he∥[A∇ũk]e · νe∥20,e
) 1

2
∣∣∣

≤
{(

h2
T ∥λkuk − λk−1uk−1 − ϕ(uk − ũk) +∇ · (A∇(uk − ũk))∥0,T

)2

+ he

∑
e∈Ek,e⊂∂T

(
∥[A∇uk]e · νe − [A∇ũk]e · νe∥0,e

)2
} 1

2

.

(43)

It is obvious that the inverse estimate implies

∥∇ · (A∇vk)∥0,T . h−1
T ∥∇vk∥0,T , ∀T ∈ Th, vk ∈ Vk.(44)

From the inverse estimate and the trace inequality

∥v∥0,∂T . h
−1/2
T ∥v∥0,T + h

1/2
T ∥v∥1,T , ∀v ∈ H1(T ), T ∈ Tk,

we have

he∥[A∇vk]e · νe∥20,e . ∥∇vk∥20,T . ∥vk∥2a,T , ∀vk ∈ Vhk
.(45)
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Combining (43)-(45) with (40) leads to

|ηk(λk, uk;T )− η̃k(Pkwk−1;T )|
. hT ∥λkuk − λk−1uk−1∥0,T + ∥uk − ũk∥a,T .(46)

From Lemma 3.2 and (46), there holds

|ηk(λk, uk; Tk)− η̃k(Pkwk−1; Tk)|

=
∣∣( ∑

T∈Tk

η2k(λk, uk;T )
)1/2 − ( ∑

T∈Tk

η̃2k(Pkwk−1;T )
)1/2∣∣

.
( ∑
T∈Tk

(
ηk(λk, uk;T )− η̃k(Pkwk−1;T )

)2)1/2
.r(VH , ν)(∥u− uk∥a,Ω + ∥u− uk−1∥a,Ω).

This is the desired result (41). The result (42) can be derived similarly and we
complete the proof. �

Theorem 3.3. We have following properties for the oscillation

osck(λk, uk; Tk) =ôsck(Pkw
k−1; Tk)

+O
(
r(VH , ν)

)
(∥u− uk−1∥a,Ω + ∥u− uk∥a,Ω),(47)

osck(λk, uk; Tk) =ôsck(Pkw
k; Tk)

+O
(
r(VH , ν)

)
(∥u− uk−1∥a,Ω + ∥u− uk∥a,Ω).(48)

Proof. Following the similar procedure of Theorem 3.2 and the definition of oscil-
lation, it is easy to derive the desired estimates. �

Based on Theorems 3.1-3.3, we can obtain the following reliability and efficiency
of the a posteriori error estimator for eigenvalue problem by applying Lemma 2.1.

Theorem 3.4. When r(VH , ν) is small enough, there exist constants Cu and Cℓ

independent of mesh index k such that

∥u− uk∥2a,Ω ≤ Cuη
2
k(λk, uk; Tk) +O(r2(VH , ν))∥u− uk−1∥2a,Ω(49)

and

Cℓη
2
k(λk, uk; Tk) ≤∥u− uk∥2a,Ω + osc2k(λk, uk; Tk)

+O(r2(VH , ν))∥u− uk−1∥2a,Ω.(50)

Proof. Since wk−1 is the exact solution of boundary value problem, from Lemma
2.1, there hold

∥wk−1 − Pkw
k−1∥a,Ω ≤ Ĉuη̂k(Pkw

k−1, Tk)

and

Ĉℓη̂
2
k(Pkw

k−1, Tk) ≤ ∥wk−1 − Pkw
k−1∥2a,Ω + ôsc

2
k(Pkw

k−1, Tk).

Then from Theorems 3.1-3.3, we can get the desired results. �
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4. Convergence and complexity analysis of adaptive multigrid algorithm

In this section, we will analyze the convergence and complexity property of
Adaptive Algorithm 2. In the rest of this paper, we assume the mesh size H and
νp are small enough such that

r(VH , ν)∥u− uk−1∥2a,Ω . ∥u− uk∥2a,Ω, for k ≥ 2.(51)

This assumption means the initial mesh size h1 should be small enough that
the error will not change too much after each adaptive step. In addition, in order
to meet (51), we may need to execute more than one time multigrid iteration step
(p ≥ 1). In our numerical experiment, two or three times iteration steps are enough
to derive the optimal accuracy due to the high efficiency of multigrid method.

4.1. Convergence of adaptive multigrid algorithm. In this subsection, we
will show the convergence of Adaptive Algorithm 2 for eigenvalue problem based
on the existing results for elliptic boundary value equation and Theorems 3.1, 3.2.

Theorem 4.1. For the finite element approximate eigenfunction sequence {uk}
produced by Adaptive Algorithm 2, there exist constants γ > 0 and α ∈ (0, 1),
depending on the shape regularity of mesh and the refinement parameter θ, such
that when r(VH , ν) is small enough, there holds

∥u− uk∥2a,Ω + γη2k(λk, uk; Tk)
≤α2

(
∥u− uk−1∥2a,Ω + γη2k−1(λk−1, uk−1; Tk−1)

)
.(52)

Proof. From Lemma 2.1, (32) and assumption (51), we can derive the following
inequalities

∥u− uk−1∥a,Ω ≤ ∥wk−1 − Pk−1w
k−1∥a,Ω

1− Cr
1
2 (VH , ν)

≤ Ĉ
1
2
u η̂k−1(Pk−1w

k−1; Tk−1)

1− Cr
1
2 (VH , ν)

.(53)

By marking strategy (21) and the proof of Theorem 3.2, we can derive

η̂k−1(Pk−1w
k−1;Mk−1)

≥ ηk−1(λk−1, uk−1;Mk−1)− Cηr
1
2 (VH , ν)∥u− uk−1∥a,Ω

≥ θηk−1(λk−1, uk−1; Tk−1)− Cηr
1
2 (VH , ν)∥u− uk−1∥a,Ω

≥ θη̂k−1(Pk−1w
k−1; Tk−1)− (1 + θ)Cηr

1
2 (VH , ν)∥u− uk−1∥a,Ω.(54)

Combing (53) and (54) leads to

η̂k−1(Pk−1w
k−1;Mk−1)

≥
[
θ − Ĉ

1
2
u (1 + θ)Cηr

1
2 (VH , ν)

1− Cr
1
2 (VH , ν)

]
η̂k−1(Pk−1w

k−1; Tk−1).(55)

So when r(VH , ν) is small enough, there exists constant θ̂ satisfying θ̂ ∈ (0, θ∗)
and the following inequality holds

η̂k−1(Pk−1w
k−1;Mk−1) ≥ θ̂η̂k−1(Pk−1w

k−1; Tk−1).(56)

From Theorem 2.1, there exist constants γ̂ > 0 and ξ̂ ∈ (0, 1) such that

∥wk−1 − Pkw
k−1∥2a,Ω + γ̂η̂2k(Pkw

k−1; Tk)

≤ ξ̂2
(
∥wk−1 − Pk−1w

k−1∥2a,Ω + γ̂η̂2k−1(Pk−1w
k−1; Tk−1)

)
.(57)
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Combing (33), (41), (51) and Young inequality leads to

∥u− uk∥2a,Ω + γ̂η2k(λk, uk; Tk)
≤ (1 + δ1)

(
∥wk−1 − Pkw

k−1∥2a,Ω + γ̂η̂2k(Pkw
k−1; Tk)

)
+Cδ−1

1 r2(VH , ν)
(
∥u− uk∥2a,Ω + ∥u− uk−1∥2a,Ω

)
≤ (1 + δ1)

(
∥wk−1 − Pkw

k−1∥2a,Ω + γ̂η̂2k(Pkw
k−1; Tk)

)
+Cδ−1

1 r(VH , ν)
(
∥u− uk∥2a,Ω + γ̂η2k(uk; Tk)

)
,

which implies the following inequality

∥u− uk∥2a,Ω + γ̂η2k(λk, uk; Tk)

≤ 1 + δ1

1− Cδ−1
1 r(VH , ν)

(
∥wk−1 − Pkw

k−1∥2a,Ω + γ̂η̂2k(Pkw
k−1; Tk)

)
≤ (1 + δ1)ξ̂

2

1− Cδ−1
1 r(VH , ν)

(
∥wk−1 − Pk−1w

k−1∥2a,Ω + γ̂η̂2k(Pk−1w
k−1; Tk−1)

)
.(58)

By using the similar argument, we can derive

∥wk−1 − Pk−1w
k−1∥2a,Ω + γ̂η̂2k−1(Pk−1w

k−1; Tk−1)

≤
(
1 + δ1 + Cδ−1

1 r(VH , ν)
)(
∥u− uk−1∥2a,Ω + γ̂η2k−1(λk−1, uk−1; Tk−1)

)
.(59)

Combining (58) and (59) leads to the following inequality

∥u− uk∥2a,Ω + γη2k(λk, uk; Tk) ≤ α2
(
∥u− uk−1∥2a,Ω + γη2k−1(λk−1, uk−1; Tk−1)

)
with

α2 :=
(1 + δ1)

(
1 + δ1 + Cδ−1

1 r(VH , ν)
)
ξ̂2

1− Cδ−1
1 r(VH , ν)

, γ := γ̂.(60)

Then the desired result (52) can be deduced by choosing δ1 small enough such that
α < 1 and the proof is completed. �

4.2. Complexity analysis. In this subsection, we will prove the optimal com-
plexity of Adaptive Algorithm 2. As in the normal analysis of AFEM for elliptic
boundary value problems, in order to state the result of the complexity estimate,
we introduce a function approximation class as follows (cf. [10])

As :=
{
v ∈ H1

0 (Ω) : |v|s < ∞
}
,

where

|v|s = sup
ε>0

ε inf
{T1≤Tε: inf

(λε,uε)
(∥v−uε∥2

a,Ω+osc2ε(λε,uε;Tε))1/2≤ε}
(#Tε −#T1)s

and T1 ≤ Tε means Tε is a conforming refinement of T1. We use #T to denote
the number of elements in the mesh T . Hence the symbol As is the class of func-
tions that can be approximated with a given tolerance ε by continuous piecewise
polynomial functions over a partition Tε with the number of degrees of freedom

#Tε −#T1 . ε−1/s|v|1/ss .
Notice that the convergence result presented in Theorem 4.1 is the same as that

in [10, 15]. By using the same technique, we can prove that Adaptive Algorithm 2
has the following optimal complexity. Please refer to papers [10, 15] for the detailed
proof.
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Theorem 4.2. Let u ∈ (H1
0 (Ω) ∩ As) be the eigenfunction of (11) and {(λk, uk)}

be the finite element approximations corresponding to the sequence of spaces {Vk}
produced by Adaptive Algorithm 2. Then under the assumption (51), the ℓ-th iterate
solution of Adaptive Algorithm 2 satisfies the optimal bounds

∥u− uℓ∥2a,Ω + osc2ℓ(λℓ, uℓ; Tℓ) . (#Tℓ −#T1)−2s,

where the hidden constant depends on the discrepancy between θ and θ∗.

Now we come to briefly estimate the computational work of Adaptive Algorithm
2. Here we have to use additionally, that the sequence of unknowns belongs to a
geometric progression:

Nk < σ0Nk ≤ Nk+1 < σ1Nk, k = 1, 2, · · ·(61)

Theorem 4.3. Assume eigenvalue problem solving in the coarse spaces VH and
V1 need work MH and M1, respectively, and the work of the multigrid solver in
each adaptive space Vk is O(Nk) for k = 2, 3, · · · , ℓ. Then the total computational
work of Adaptive Algorithm 2 can be bounded by O

(
M1 + MH log(Nℓ) + Nℓ) and

furthermore O
(
Nℓ) provided MH and M1 is small enough.

Proof. Let W denote the whole computational work of Adaptive Algorithm 2, Wk

denote the work on the k-th level for k = 1, · · · , ℓ. From the definition of Adaptive
Algorithm 2 and (61), it follows that

W =

ℓ∑
k=1

Wk = O
(
M1 +

ℓ∑
k=2

(Nk +MH)
)

=O
(
M1 +MH(ℓ− 1) +Nℓ

ℓ∑
k=2

( 1

σ0

)(ℓ−k))
=O

(
M1 +MH log(Nℓ) +Nℓ

)
.

Thus, the computational work W can be bounded by O
(
M1+MH log(Nℓ)+Nℓ),

and moreover, by O(Nℓ) if MH and M1 are small enough. �

5. Numerical experiments

In this section, we present two numerical examples for eigenvalue problem by
Adaptive Algorithm 2. In these numerical examples, we set p = 3, and each adap-
tive multigrid iteration step for boundary value problem is executed with one multi-
grid V-cycle as the basic iteration using two times conjugate gradient smoother. The
package ARPACK is called here for the small-scale eigenvalue problems. In this
paper, all numerical examples are running on the machine PowerEdge R720 with
the Linux system. The machine is equipped with Intel Xeon E5-2620 (2.00GHz)
CPU with 72G memory.

Example 1. In the first example, we consider the following eigenvalue problem
(see [20]):

(62)

{
−1

2∆u+ 1
2 |x|

2u = λu in Ω,
u = 0 on ∂Ω,

where Ω = R3 and |x| = (x2
1 + x2

2 + x2
3)

1/2. The first eigenvalue and eigenfunction

of (62) is λ = 1.5 and u = κe−|x|2/2, where κ is a nonzero constant. Since the
eigenfunction decays exponentially, we choose Ω = (−6, 6)3.

In this example, we give the numerical results of Adaptive Algorithm 2 for eigen-
value problem (62) with the parameter θ = 0.4. The initial mesh V1 = VH . In order
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to show the efficiency of Adaptive Algorithm 2 more clearly, we compare results
with those obtained by direct AFEM. Figure 1 shows the initial mesh and the tri-
angulation after 15 adaptive iterations with linear finite element method. Figure 2
gives the corresponding error estimate. It is shown in Figure 2 that the approximate
eigenfunction generated by Adaptive Algorithm 2 has the optimal convergence rate
which coincides with our theoretical result.

Figure 1. The initial mesh and the triangulation after 15 adaptive itera-
tions for Example 1 by Adaptive Algorithm 2 with linear element.
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Figure 2. Errors of Adaptive Algorithm 2 for Example 1.
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Figure 3. CPU time of Adaptive Algorithm 2 for Example 1.

In addition, we presented the CPU time of Adaptive Algorithm 2 and direct
AFEM to show the efficiency of Adaptive Algorithm 2. The presented CPU time
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denotes all the computational time including mesh refinement, assembling matrix
and solving process. The corresponding results are presented in Figure 3, which
shows that Adaptive Algorithm 2 has a better efficiency than direct AFEM.

Example 2. In the second example, we solve the following Laplace eigenvalue
problem:

(63)

{
−∇ · (A∇u) + ϕu = λu, in Ω,

u = 0, on ∂Ω,

where Ω = (−1, 1)3 \ [0, 1)3,

A =

 1 + (x1 − 1
2 )

2 (x1 − 1
2 )(x2 − 1

2 ) (x1 − 1
2 )(x3 − 1

2 )
(x2 − 1

2 )(x1 − 1
2 ) 1 + (x2 − 1

2 )
2 (x2 − 1

2 )(x3 − 1
2 )

(x3 − 1
2 )(x1 − 1

2 ) (x3 − 1
2 )(x2 − 1

2 ) 1 + (x3 − 1
2 )

2

 ,

ϕ = e(x1− 1
2 )(x2− 1

2 )(x3− 1
2 ). Due to the reentrant corner of Ω, the exact eigenfunction

with singularities is expected.

Figure 4. The triangulations after 15 adaptive refinements and the corre-
sponding cross section of Adaptive Algorithm 2 for Example 2.
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Figure 5. Errors of Adaptive Algorithm 2 for Example 2.

Since the exact eigenfunction is not known, an adequately accurate approximate
solution on fine finite element space is chosen as the exact one in numerical exper-
iments. In this example, we give numerical results of Adaptive Algorithm 2 with
the parameter θ = 0.4. The initial mesh V1 = VH . In order to show the efficiency
of Adaptive Algorithm 2, we also compare results with those obtained by direct
AFEM. Figure 4 shows the triangulation after 15 adaptive iterations with linear
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Figure 6. CPU time of Adaptive Algorithm 2 for Example 2.

finite element method and the corresponding section along XY plane. Figure 5
gives error estimate. From Figure 5, we can also find that the approximate solution
by Adaptive Algorithm 2 has the optimal convergence rate.

In addition, we also presented the CPU time of Adaptive Algorithm 2 and direct
AFEM to show the efficiency of Adaptive Algorithm 2. The corresponding results
are presented in Figure 6, which shows that Adaptive Algorithm 2 has a better
efficiency than direct AFEM.

6. Concluding remarks

In this paper, a type of adaptive multigrid method is proposed for eigenvalue
problem based on adaptive multigrid method and recent works on multilevel correc-
tion method. The core idea is to transform the eigenvalue problem into a series of
elliptic boundary value problems in the sequence of adaptive finite element spaces
and some eigenvalue problems in a very low dimensional space. And the involved
elliptic boundary value equations are solved by adaptive multigrid method. What’s
more, the convergence and optimal complexity of the proposed algorithm is verified
theoretically and demonstrated numerically. The idea and algorithm in this paper
can be further extended to other nonlinear eigenvalue problems such as Kohn-Sham
equation.
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