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THE SCOTT-VOGELIUS METHOD FOR THE STOKES

PROBLEM ON ANISOTROPIC MESHES

KIERA KEAN, MICHAEL NEILAN, AND MICHAEL SCHNEIER

Abstract. This paper analyzes the Scott-Vogelius divergence-free element pair on anisotropic
meshes. We explore the behavior of the inf-sup stability constant with respect to the aspect ratio
on meshes generated with a standard barycenter mesh refinement strategy, as well as a newly
introduced incenter refinement strategy. Numerical experiments are presented which support the

theoretical results.
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1. Introduction

Let Ω ⊂ R2 be a regular open polygon with boundary Γ. We consider the Stokes
equation with the no-slip boundary condition:

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

where u is the velocity, p is the pressure, f is a given body force, and ν is the
viscosity.

In this manuscript we study the stability of the divergence-free Scott-Vogelius
(SV) finite element pair on anisotropic meshes for the Stokes problem; the results
trivially extend to other divergence free equations, e.g., the incompressible Navier-
Stokes equations. Divergence-free methods and other pressure-robust schemes are
an extremely active field of research (cf. [25, 32]) ranging from a variety of finite
element pairs (e.g., [35, 9, 37, 17, 1, 15, 22, 19, 21]) to modifying the formulation
of the equations (e.g., [28, 14, 29, 30, 27, 36, 26]). Advantages of divergence-free
methods include exact enforcement of conservation laws, pressure robustness with
the velocity error being independent of the pressure error and viscosity term [25, 3],
and improved stability and accuracy of timestepping schemes [11, 18].

The Stokes equation has been studied on anisotropic meshes for a number of
different element pairs. In [8] it was shown that for the Crouzeix-Raviart element,
the inf-sup constant is independent of the aspect ratio on triangular and tetrahedral
meshes. A similar result was shown for the Bernardi-Raugel finite element pair in
two dimensions for classes of triangular and quadrilateral meshes in [7]. Recently,
in [10] it was shown for a specific class of anisotropic triangulation that the lowest
order Taylor-Hood element was uniformly inf-sup stable. A nonconforming pressure
robust method was studied in [6]. Stability and convergence on anisotropic meshes
for the Stokes equation has also been studied extensively for the hp-finite element
method [4, 33, 34].

Up to this point there have been no theoretical results for H1 conforming diver-
gence free finite elements on anisotropic meshes. The low-order SV element pair is

Received by the editors November 7, 2021 and, in revised form, December 30, 2021.

2000 Mathematics Subject Classification. 65N12, 65N30.

157



158 K. KEAN, M. NEILAN, AND M. SCHNEIER

somewhat unique in that it is not inf-sup stable on general meshes, but requires spe-
cial meshes e.g., the barycenter refinement (or Clough-Tocher refinement) which is
obtained by connecting the vertices of each triangle on a given mesh to its barycen-
ter. As pointed out in [24, p.12] this gives rise to meshes with possibly very small
and large angles. The impact of these angles on the inf-sup constant was stated as
an open problem in [24].

In this work we show barycenter refinement on anisotropic meshes will necessarily
lead to large angles and propose an alternative mesh refinement strategy based on
the incenter of each triangle. This incenter refinement strategy produces a mesh
that avoids large angles and allows a smaller increase in aspect ratio on refinement.
We prove there is a linear relationship between the inf-sup constant and the inverse
of the aspect ratio for both the barycenter and incenter refined mesh; numerical
experiments show that these results are sharp. Surprisingly, numerical tests indicate
that there is not a significant difference, in terms of accuracy, between the incenter
and barycenter refinement.

The rest of this manuscript is organized as follows: In Section 2 we introduce
notation and give some preliminary results that will be used for the inf-sup stability
estimates. We also prove that the incenter refined mesh has superior aspect ratios
and angles compared to the barycenter refined mesh. In Section 3 we prove that
the inf-sup constant scales linearly with the inverse of the aspect ratio for both
barycenter and incenter refinement. In Section 4, we verify numerically the geo-
metric results proven in Section 2 and stability results proven in Section 3. We also
demonstrate that there does not appear to be an appreciable difference in terms
of accuracy for the incenter versus barycenter refinement. Finally, the appendix
contains proofs of some technical lemmas.

2. Preliminaries

Let Th denote a conforming simplicial triangulation of Ω ⊂ R2. We denote the
vertices and edges of T as {zi}3i=1 and {ei}3i=1 respectively, labeled such that zi is
opposite of ei. Set hi = |ei| and without loss of generality, we assume h1 ≤ h2 ≤ h3.
We denote by ρT the diameter of the incircle of T and set hT = h3. Let αi be the
angle of T at vertex zi, note that α1 ≤ α2 ≤ α3.

Let z0 ∈ T be an interior point of T , and set T ct = {K1,K2,K3} to be the local
(Clough-Tocher) triangulation of T , obtained by connecting the vertices of T to z0.
The three triangles {Ki}3i=1 are labeled such that ∂Ki ∩ ∂T = ei. Let aT be the
altitude of T with respect to edge e3, and let ki be the altitude of Ki with respect
to ei (cf. Figure 1).

2.1. Geometric results and dependence of split point. We examine the de-
pendencies and properties of the local triangulation of T on the choice of split point
z0. In particular, we consider geometric properties of the triangulations obtained
by connecting vertices of T to the barycenter and the incenter of T . First, we
require a few definitions.

Definition 2.1. The barycenter of T is given by

zbary =
1

3
(z1 + z2 + z3).

The incenter of T is given by

zinc =
1

|∂T |
(h1z1 + h2z2 + h3z3).
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Figure 1. The parent triangle (left), Clough–Tocher split of the
parent triangle taking the split point z0 to be the incenter (middle)
and barycenter (right).

Definition 2.2.

(1) The aspect ratio of T is given by

ϱT :=
hT

ρT
=

|∂T |hT

4|T |
.

(2) The aspect ratio of T ct, denoted by ϱT ct , is defined as the maximum of the
aspect ratio of the three triangles in the refinement, i.e.,

ϱT ct := max
Ki∈T ct

ϱKi .

Definition 2.3 ([2]). A triangle T is said to satisfy a large angle condition, written
as LAC(δ), if there exists δ > 0 such that αi < π − δ for i = 1, 2, 3.

Lemma 2.1. Let the split point be taken to be the barycenter, i.e., z0 = zbary.
Then as the aspect ratio of T goes to infinity, the largest angle in K3 goes to π,
i.e., the large angle condition will be violated in T ct regardless of the angles of T .

Proof. Recall the labeling assumption h1 ≤ h2 ≤ h3. A simple calculation shows

that the side lengths of K3 are h3,

√
2h2

2+2h2
3−h2

1

3 ,

√
2h2

1+2h2
3−h2

2

3 , and we easily find

that each side length is bounded below by hT

3 .
Let γ1, γ2, γ3 be the angles of K3 at z1, z2, and zbary, respectively. By properties

of the barycenter, k3 = 1
3aT , where we recall that k3 and aT are, respectively, the

altitudes of Ki and T with respect to e3. Thus,

sin γ1 =
3k3√

2h2
2 + 2h2

3 − h2
1

≤ 3aT
hT

,

sin γ2 =
3k3√

2h2
1 + 2h2

3 − h2
2

≤ 3aT
hT

.

The bound 2hT ≤ |∂T | ≤ 3hT gives us

hT

aT
≤ |∂T |hT

4|T |
≤ 3hT

2aT
,

and so the aspect ratio of T is equivalent to hT

aT
. Thus, as the aspect ratio of T goes

to infinity, γ1 and γ2 go to zero, implying that γ3 goes to π. �
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Lemma 2.2. Let the split point of T be taken to be the incenter, i.e., z0 = zinc.
Then, if T satisfies LAC(δ), all triangles in T ct satisfy LAC( δ2 ).

Proof. The incenter is defined as the intersection of the angle bisectors. Thus, Ki

has angles αi+1

2 , αi+2

2 , π − 1
2 (αi+1 + αi+2).

As T satisfies LAC(δ), αi < π−δ = α1+α2+α3−δ, and therefore δ ≤ αi+1+αi+2.
We then conclude that π − 1

2 (αi+1 + αi+2) ≤ π − δ
2 implying that Ki satisfies

LAC( δ2 ). �

Lemma 2.3. Let ϱT ct
inc

be the aspect ratio of T ct when refined with respect to the
incenter. The following bounds hold:

2ϱT ≤ ϱT ct
inc

≤ 2
(
1 +

aT
hT

)
ϱT .

Proof. First note that if a triangle is refined with the incenter, then the longest
edge of each subtriangle is the edge shared with the original triangle. Indeed, the

angles of the triangle Ki in the refinement are αi+1

2 , αi+2

2 , π−(αi+1+αi+2)
2 = π+αi

2 .

As π+αi

2 , the angle at the incenter, is an obtuse angle, it is opposite the longest

edge of Ki, the edge shared with T. Thus, the aspect ratio of Ki is
hi

ρKi
= |∂Ki|hi

4|Ki| .

By definition of incenter, the altitude of Ki with respect to ei is the inradius of

T. Therefore |Ki| = kihi

2 = ρThi

4 = |T |hi

|∂T | , and so

ϱKi =
|∂Ki|hi

4|Ki|
=

|∂T ||∂Ki|
4|T |

=
|∂Ki|
hT

ϱT .

For an arbitrary triangle Ki in the refinement, we have |∂Ki| ≤ |∂T | ≤ 2hT +2aT ,
giving us

ϱT ct
inc

≤ 2
(
1 +

aT
hT

)
ϱT .

As K3 shares the longest edge with T, we have 2hT ≤ |∂K3|, giving us

2ϱT ≤ ϱK3 ≤ ϱT ct
inc
.

�

Lemma 2.4. Let ϱT ct
bary

be the aspect ratio of T ct when refined with the barycenter.

The following bounds hold:

3

1 + aT

hT

ϱT ≤ ϱT ct
bary

≤ 3ϱT .

Proof. By properties of the barycenter, |Ki| = |T |
3 . Thus, the aspect ratio of Ki is

ϱKi =
|∂Ki|hKi

4|Ki|
=

3|∂Ki|hKi

4|T |
=

3|∂Ki|hKi

|∂T |hT
ϱT .

For all triangles, we have |∂Ki| ≤ |∂T | and hKi ≤ hT , and so,

ϱT ct
bary

≤ 3ϱT .

ForK3 we use the bounds 2hT ≤ |∂K3| and |∂T | ≤ 2hT+2aT to get the following
lower bound:

3

1 + aT

hT

ϱT ≤ ϱT ct
bary

.

�
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Remark 2.1. Lemmas 2.1–2.4 indicate superior properties of the incenter refine-
ment compared to barycenter refinement. In particular, the incenter refinement
inherits the large angle condition of its parent triangle. Furthermore, Lemmas 2.3–
2.4 show that for T with large aspect ratio, the barycenter refinement induces a
triangulation with aspect ratio approximately three times that of its parent triangle;
in contrast, the incenter refinement yields triangles with aspect ratios approximately
twice that of its parent triangle.

On the other hand, we comment that (i) the finite element spaces given below
inherit the approximation properties of the parent triangulation, in particular, the
piecewise polynomial spaces may still possess optimal-order approximation proper-
ties even if T ct does not satisfy the large angle condition; (ii) the inf-sup stability
constants derived below are given in terms of ϱT (not ϱT ct). Nonetheless, the anal-
ysis will show that, while asymptotically similar with respect to aspect ratio, the
incenter refinement leads to better constants in the stability and convergence anal-
ysis than the barycenter refinement.

Remark 2.2. For the rest of the paper, the constant C will denote a generic positive
constant independent of the mesh size and aspect ratio that may take different values
at each occurrence.

3. Stability Estimates

In this section, we derive stability estimates of the lowest-order Scott-Vogelius
Stokes pair in two dimensions. This pair is defined on the globally refined Clough-
Tocher triangulation given by

Tct
h = {K ∈ T ct : ∃T ∈ Th}.

For a triangulation Sh and k ∈ N+, we define the spaces

Pk(Sh) = {q ∈ L2(D) : q|K ∈ Pk(K) ∀K ∈ Sh}, P̊k(Sh) = Pk(Sh) ∩ L2
0(D),

Pc
k(Sh) = Pk(T

ct) ∩H1(D), P̊c
k(Sh) = Pc

k(Sh) ∩H1
0 (D),

where D = int
∪

K∈Sh
K̄. Analogous vector-valued spaces are denoted in boldface,

e.g., Pc
k(Sh) = [Pc

k(Sh)]
2. The lowest-order Scott-Vogelius pair is then P̊

c

2(T
ct
h ) −

P̊1(T
ct
h ).

The proof of inf-sup stability of the two-dimensional Scott-Vogelius pair on
Clough-Tocher triangulations is based on a macro element technique. Inf-sup sta-
bility is first shown on a single macro element consisting of three triangles, and
then these local results are “glued together” using the stability of the Pc

2−P0 pair.

We now summarize the proof of inf-sup stability of the P̊
c

2(T
ct
h ) − P̊1(T

ct
h ) pair

given in [23, Proposition 6.1]. The stability proof relies on two preliminary results.
The first states the well-known stability of the Pc

2 − P0 pair [12, 13]. The second
is a bijective property of the divergence operator acting on local polynomial spaces
[23, 9].

Lemma 3.1 (Stability of Pc
2 − P0 pair on Th). There exists β0 > 0, independent

of the mesh parameter h, but may depend on the shape-regularity of Th, such that

β0∥q∥L2(Ω) ≤ sup
0̸=v∈P̊

c

2(Th)

∫
Ω
(div v)q

∥∇v∥L2(Ω)
∀q ∈ P̊0(Th).

Lemma 3.2 (Stability on macro element). Let T ∈ Th. Then there exists βT ct > 0,
depending on the shape-regularity of T and the location of the split point z0 in T ct but
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independent of hT , such that for any q ∈ P̊1(T
ct), there exists a unique v ∈ P̊

c

2(T
ct)

such that div v = q and ∥∇v∥L2(T ) ≤ β−1
T ct∥q∥L2(T ).

Remark 3.1. Lemma 3.2 implies there exists βT ct > 0 such that ∥∇v∥L2(T ) ≤
β−1
T ct∥div v∥L2(T ) for all v ∈ P̊

c

2(T
ct). For the continuation of the paper, we assume

that βT ct is the largest constant such that this inequality is satisfied.

Remark 3.2. The uniqueness assertion in Lemma 3.2 is implicitly found in [25,

p. 513-514]. Indeed, if v ∈ P̊
c

2(T
ct) is divergence–free, then v = curl z = ( ∂z

∂x2
,− ∂z

∂x1
)

for some z ∈ H2
0 (T ). Because v is a piecewise quadratic polynomial, we conclude

z ∈ H2
0 (T ) ∩ Pc

3(T
ct). But from the degrees of freedom of the C1 Clough-Tocher

finite element space [16, p. 341], we have H2
0 (T ) ∩ Pc

3(T
ct) = {0}, and therefore

v ≡ 0.

Theorem 3.1 (Stability of SV pair). There holds

β∥q∥L2(Ω) ≤ sup
0̸=w∈P̊

c

2(T
ct
h )

∫
Ω
(divw)q

∥∇w∥L2(Ω)
∀q ∈ P̊1(T

ct
h ),(1)

with

β =
(
(1 + β−1

0 )β−1
∗ + β−1

0

)−1

=
β0β∗

β∗ + β0 + 1
,

where β0 > 0 is given in Lemma 3.1, β∗ = minT∈Th
βT ct , and βT ct is given in

Lemma 3.2.

Proof. Again the proof of this result is found in [23, Proposition 6.1]. We provide
the proof here for completeness.

For given q ∈ P̊1(T
ct
h ), let q̄ ∈ P̊0(Th) be its L2-projection onto P̊0(Th):

q̄|T =
1

|T |

∫
T

q ∀T ∈ Th.

Then (q − q̄)|T ∈ P̊1(T
ct) for all T ∈ Th.

By Lemma 3.2, for each T ∈ Th, there exists vT ∈ P̊
c

2(T
ct) satisfying div vT =

(q − q̄)|T and ∥∇v∥L2(T ) ≤ β−1
T ct∥q − q̄∥L2(T ). We then set v ∈ P̊

c

2(T
ct
h ) such

that v|T = vT for all T ∈ Th. Note that ∥∇v∥L2(Ω) ≤ β−1
∗ ∥q − q̄∥L2(Ω) with

β∗ = minT∈Th
βT ct , and therefore

∥q − q̄∥2L2(Ω) =

∫
Ω

q(q − q̄) =

∫
Ω

(div v)q

= ∥∇v∥L2(Ω)

∫
Ω
(div v)q

∥∇v∥L2(Ω)
≤ β−1

∗ ∥q − q̄∥L2(Ω) sup
0̸=w∈P̊

c

2(T
ct
h )

∫
Ω
(divw)q

∥∇w∥L2(Ω)
.

Thus,

∥q − q̄∥L2(Ω) ≤ β−1
∗ sup

0̸=w∈P̊
c

2(T
ct
h )

∫
Ω
(divw)q

∥∇w∥L2(Ω)
.(2)
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We also have, by Lemma 3.1 and the triangle and Cauchy-Schwarz inequalities,

(3)

β0∥q̄∥L2(Ω){≤ sup
0̸=w∈P̊

c

2(T
ct
h )

∫
Ω
(divw)q̄

∥∇w∥L2(Ω)
}

{≤ sup
0̸=w∈P̊

c

2(T
ct
h )

∫
Ω
(divw)(q̄ − q)

∥∇w∥L2(Ω)
+ sup

0̸=w∈P̊
c

2(T
ct
h )

∫
Ω
(divw)q

∥∇w∥L2(Ω)
}

≤ ∥q − q̄∥L2(Ω) + sup
0̸=w∈P̊

c

2(T
ct
h )

∫
Ω
(divw)q

∥∇w∥L2(Ω)
.

Combining (2)–(3) yields

∥q∥L2(Ω) ≤ ∥q − q̄∥L2(Ω) + ∥q̄∥L2(Ω)

≤ (1 + β−1
0 )∥q − q̄∥L2(Ω) + β−1

0 sup
0̸=w∈P̊

c

2(T
ct
h )

∫
Ω
(divw)q

∥∇w∥L2(Ω)

≤
(
(1 + β−1

0 )β−1
∗ + β−1

0

)
sup

0̸=w∈P̊
c

2(T
ct
h )

∫
Ω
(divw)q

∥∇w∥L2(Ω)
.

�

Remark 3.3. The mapping div : P̊
c

k(T
ct) → P̊k−1(T

ct) is surjective for all k ≥ 1

[23]. Therefore, the proof of Theorem 3.1 easily extends to the P̊
c

k(T
ct
h )− P̊k−1(T

ct
h )

pair for k ≥ 2.

Remark 3.4. Theorem 3.1 shows that the inf-sup constant β depends on inf-sup

constants of two related problems: (1) the inf-sup constant of the P̊
c

2(Th)− P̊0(Th)
pair β0 and (2) the local inf-sup constant βT ct given in Lemma 3.2. These two
stability constants are estimated in subsequent sections.

3.1. Estimates of the inf-sup stability constant β0 for the P̊
c

2(Th)− P̊0(Th)
pair. We summarize the results in [7] which show that the inf-sup stability constant

β0 for the P̊
c

2(Th) − P0(Th) is uniformly stable (with respect to aspect ratio and
mesh size) on a large class of two-dimensional anisotropic meshes.

We assume that Th is a refinement of a shape-regular, or isotropic, macrotrian-
gulation TH of triangular or quadrilateral elements with

Ω̄ =
∪

Q∈TH

Q̄.

The restriction of the microtriangulation Th to a macroelement Q ∈ TH is assumed
to be a conforming triangulation of Q. These triangulations of a macroelement Q
(or patch) are classified into three groupings (cf. [7, p.92-93]):

(1) Patches of isotropic elements: The triangulation Th restricted to Q
consists of isotropic elements.

(2) Boundary layer patches: All vertices of the triangulation Th restricted
to Q are contained in two edges of Q.

(3) Corner patches: Two edges with a common vertex are geometrically
refined. It is assumed that Q can be partitioned into a finite number of
patchesK of isotropic elements or of boundary layer type such that adjacent
patches have the same size. One hanging node per side is allowed, but with
the restriction that there is an edge e of some T ∈ Th that joins the hanging
node with a node on the opposite side of K.
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Theorem 3.2 (Theorem 1 in [7]). Suppose that isotropic patches, boundary layer
patches, or corner patches are used. Then the inf-sup constant β0 associated with

the P̊
c

2(Th)− P̊0(Th) pair is uniformly bounded from below with respect to the aspect
ratio of Th.

3.2. Estimates of inf-sup stability constant βT ct . To estimate the local sta-
bility constant βT ct , we first map T to a “scaled reference triangle” (under the
assumption that T satisfies a large angle condition). The following lemma is a
minor modification of [2, Theorem 2.2]. For completeness, we provide the proof of
the result in the appendix.

Lemma 3.3. Let T satisfy LAC(δ) and have edge lengths h1, h2, and h3 (with

the convention h1 ≤ h2 ≤ h3). Then there exists a triangle T̃ with vertices z̃3 :=
(0, 0), z̃2 := (h1, 0), z̃1 := (0, h2) that can be mapped to T by an affine bijection

F̃T (x̃) := Ax̃ + b where ∥A∥, ∥A−1∥ ≤ C(δ), where C(δ) depends only on δ, in
particular, the constant is independent of the aspect ratio and size of T .

Lemma 3.3 implies that it is sufficient to estimate βT ct in the case T = T̃ . Indeed,

for given w ∈ P̊
c

2(T
ct), let w̃ : T̃ → R2 be given via a scaled Piola transform:

w(x) = DF̃T ŵ(x̃) x = F̃T (x̃).

We then have w̃ ∈ P̊
c

2(T̃
ct
T ), where T̃ ct

T is the Clough-Tocher partition of T̃ induced

by F̃T , i.e.,
T̃ ct
T = {K̃i = F̃−1

T (Ki) : Ki ∈ T ct}.
By the chain rule, there holds

∇w(x) = DF̃T ∇̃w̃(x̃)DF̃−1
T , divw(x) = d̃iv w̃(x̃).

Making a change of variables, and applying Lemma 3.2 on T̃ ct
T , we compute

∥∇̃w̃∥2
L2(T̃ )

≤ | det(DF̃T )||DF̃T |2|DF̃−1
T |2∥∇̃w̃∥2

L2(T̃ )

≤ β−2

T̃ ct
T

| det(DF̃T )||DF̃T |2|DF̃−1
T |2∥d̃iv w̃∥2

L2(T̃ )

≤ β−2

T̃ ct
T

|DF̃T |2|DF̃−1
T |2∥divw∥2L2(T ).

Thus, we conclude from Lemma 3.3 that

∥∇w∥L2(T ) ≤ β−1

T̃ ct
T

|DFT ||DF−1
T |∥divw∥L2(T ) ≤ Cβ−1

T̃ ct
T

∥divw∥L2(T ).

The goal of this section then is to estimate βT̃ ct
T
, i.e., to explicitly estimate the

stability result stated in Lemma 3.2 in the case T = T̃ . Of particular interest is the
case where the split point z0 is not affine invariant (e.g., the incenter), and therefore
standard scaling arguments are not immediately applicable. To this end, we derive

such an estimate by adopting a constructive stability proof of the P̊2(T̃
ct
T )−P̊1(T̃

ct
T )

pair given in [23]. The argument is quite involved and requires some additional
notation and technical lemmas.

First, the mapping F̃T in Lemma 3.3 satisfies F̃T (z̃i) = zi. Adopting the notation

presented in Section 2, we denote the edges of T̃ as {ẽi}3i=1, labeled such that ẽi
is opposite z̃i. The lengths of the edges of T̃ are h̃1 := h1 = |ẽ1|, h̃2 := h2 = |ẽ2|,
and h̃3 := |ẽ3| = (h2

1+h2
2)

1/2. The labeling assumptions stated in Section 2 implies

h̃1 ≤ h̃2 ≤ h̃3.
We set k⃗ = (k̃2, k̃1)

ᵀ = F̃T (z0) ∈ R2 to be the image of the split point of T onto

T̃ . The notational convention is chosen so that the altitude of K̃i with respect to
ẽi is k̃i for i = 1, 2. We also set k̃3 to be the altitude of K̃3 with respect to ẽ3.
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The main result of this section is summarized in the following theorem.

Theorem 3.3. Let µ̃ ∈ P̊c
1(T̃

ct
T ) be the hat function associated with the split point

(k̃2, k̃1)
ᵀ and set ϱ̃ = h̃2

h̃1
. Then there holds, for all w̃ ∈ P̊

c

2(T̃
ct
T ),

|w̃|H1(T̃ ) ≤ Cϱ̃1/2(1 + |µ̃|H1(T̃ ))∥d̃iv w̃∥L2(T̃ ).

In particular, there holds βT̃T
ct
≥ C

(√
ϱ̃(1 + |µ̃|H1(T̃ ))

)−1

.

To prove Theorem 3.3 we require two scaling results whose proofs are given in
the appendix.

Lemma 3.4. Set ϱ̃ = h̃2

h̃1
. Then for ṽ ∈ P1(T̃ ), there holds

∥∇ṽ∥2
L2(T̃ )

+ ∥ṽ∥2
L∞(T̃ )

≤ Cϱ̃|T̃ |−1
3∑

i=1

h̃i∥ṽ · ñi∥2L2(ẽi)
.

Lemma 3.5. For any q̃ ∈ P1(K̃i), there holds

k̃i∥q̃∥2L2(ẽi)
≤ C∥q̃∥2

L2(K̃i)
.

Proof of Theorem 3.3.
The main idea of the proof is to write w̃ = µ̃w̃1 + µ̃2w̃0, where w̃j ∈ Pj(T̃ ) are

specified by Brezzi-Douglas-Marini degrees of freedom (DOFs). This decomposition
of w̃ is unique.

Step 1: Construction of w̃1:

Set q̃ := d̃iv w̃ ∈ P̊1(T̃
ct), and define w̃1 ∈ P1(T̃ ) uniquely by the DOFs∫

ẽi

(w̃1 · ñi)κ̃ = −k̃i

∫
ẽi

q̃κ̃ ∀κ̃ ∈ P1(ẽi), i = 1, 2, 3.

Thus, w̃1 · ñi|ẽi = −k̃iq̃|ẽi , and therefore, since ∇̃µ̃|K̃i
= −k̃−1

i ñi (i = 1, 2, 3),

(4) w̃1 · ∇̃µ̃|∂T̃ = q̃|∂T̃ .
Step 2: Construction of w0:

Set

(5) q̃0 =
−1

µ̃

(
d̃iv (µ̃w̃1)− q̃

)
.

By (4), (d̃iv (µ̃w̃1) − q̃)|∂T̃ = (∇̃µ̃ · w̃1 − q̃)|∂T̃ = 0, and therefore we conclude

q̃0 ∈ P0(T̃
ct). We also have∫

T̃

µ̃q̃0 = −
∫
T̃

(d̃iv (µ̃w̃1)− q̃) = 0.

Let w̃0 ∈ P0(T̃ ) be uniquely determined by

(6) 2

∫
ẽi

(w̃0 · ñi) = −k̃i

∫
ẽi

q̃0 i = 1, 2,

i.e., 2w̃0 · ∇̃µ̃|ẽi = q̃0|ẽi (i = 1, 2), which implies 2w̃0 · ∇̃µ̃|K̃i
= q̃0|K̃i

(i = 1, 2)
because all of the functions in the expression are piecewise constant. We then
calculate

div (µ̃2w̃0)|K̃i
= 2µ̃(w̃0 · ∇̃µ̃)|K̃i

= µ̃q̃0|K̃i
i = 1, 2,

and so,∫
K̃3

µ̃(2∇̃µ̃ · w̃0 − q̃0) =

∫
K̃3

(d̃iv (µ̃2w̃0)− µ̃q̃0) =

∫
T̃

(d̃iv (µ̃2w̃0)− µ̃q̃0) = 0.
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Thus, 2w̃0 · ∇̃µ̃|K̃3
= q̃0|K̃3

, and we conclude

d̃iv (µ̃2w̃0) = µ̃q̃0 = −(d̃iv (µ̃w̃1)− q̃
)
in T̃ ,

that is,

d̃iv (µ̃w̃1) + d̃iv (µ̃2w̃0) = q̃.

Finally, we set w̃ = µ̃w̃1 + µ̃2w̃0 ∈ P̊
c

2(T̃
ct), so that d̃ivw = q.

Step 3: Estimate of |w̃|H1(T̃ ):

We estimate norms of w̃1 and w̃0 separately to derive an estimate of |w̃|H1(T̃ ).

First, recall that w̃1 · ñi|ẽi = k̃iq̃|ẽi , and therefore by Lemmas 3.4 and 3.5,

∥w̃1∥2L∞(T̃ )
+ ∥∇̃w̃1∥2L2(T̃ )

≤ Cϱ̃|T̃ |−1
3∑

i=1

h̃ik̃
2
i ∥q̃∥2L2(ẽi)

(7)

≤ Cϱ̃|T̃ |−1
3∑

i=1

h̃ik̃i∥q̃∥2L2(Ki)
≤ Cϱ̃∥q̃∥2

L2(T̃ )
.

To estimate w̃0, we use a more explicit calculation. To this end, let {λ̃j}3j=1 ⊂
P1(T̃ ) be the barycenter coordinates of T̃ , labeled such that λ̃j(z̃i) = δi,j . We then
write

(8) q̃|K̃i
=

3∑
j=1

ai,j λ̃j ai,j ∈ R.

Note that ai,j = q̃|K̃i
(z̃j) for i ̸= j.

A calculation then shows (cf. (4))

w̃1 =

(
k̃2q̃|K̃2

+ λ̃2c2
k̃1q̃|K̃1

+ λ̃1c1

)
,

where the constants cj ∈ R are given by

cj =
−1

h̃j

3∑
i=1

ai,j h̃ik̃i =
−2

h̃j

3∑
i=1

|K̃i|ai,j .(9)

Another calculation shows that (cf. (5))

q̃0|K1 = −(d̃iv w̃1 +
c1

h̃2

),

q̃0|K2
= −(d̃iv w̃1 +

c2

h̃1

),

and therefore (cf. (6))

w̃0 = −1

2

(
k̃1(d̃iv w̃1 +

c1
h̃2
)

k̃2(d̃iv w̃1 +
c2
h̃1
)

)
.(10)

Because d̃iv w̃1 is constant, we have

|T̃ ||d̃iv w̃1|2 =

∫
T̃

|div w̃1|2 = (d̃iv w̃1)

∫
∂T̃

w̃1 · ñ = −(d̃iv w̃1)
3∑

i=1

∫
ẽi

k̃iq̃.

Therefore by the Cauchy-Schwarz inequality and Lemma 3.5, we have

|d̃iv w̃1| ≤ |T̃ |−1
3∑

i=1

h̃
1/2
i k̃i∥q̃∥L2(ẽi)
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≤ |T̃ |−1
3∑

i=1

h̃
1/2
i k̃

1/2
i ∥q̃∥L2(K̃i)

≤ C|T̃ |−1
3∑

i=1

|K̃i|1/2∥q̃∥L2(K̃i)
≤ C|T̃ |−1/2∥q̃∥L2(T̃ ).

Noting that k̃2 ≤ h̃1 and k̃1 ≤ h̃2 by definition of T̃ , we find

k̃i|d̃iv w̃1| ≤ ϱ̃1/2∥q̃∥L2(T̃ ).(11)

We now show k̃1|c1|
h̃2

≤ C∥q̃∥L2(T̃ ), where the constant c1 is given by (9). We first

note that, by (8), for i ̸= j,

|K̃i||ai,j | = |K̃i||q̃|Ki(aj)| ≤ |Ki|∥q̃∥L∞(Ki) ≤ C|K̃i|1/2∥q̃∥L2(K̃i)
,

where a standard scaling argument (inverse estimate) was used in the last inequality.

On the other hand, the value of q|K1
at the split point k⃗ = (k̃2, k̃1)

ᵀ is

q̃|K1(k⃗) = a1,1λ̃1(k⃗) + q̃|K̃1
(z̃2)λ̃2(k⃗) + q̃|K̃1

(z̃3)λ̃3(k⃗).

Using λ̃1(k⃗) =
k̃1

h̃2
and 0 ≤ λ̃j ≤ 1, we conclude |a1,1| ≤ C h̃2

k̃1
∥q̃∥L∞(K̃1)

. Therefore,

|K̃1||a1,1| ≤ C|K1|
h̃2

k̃1
∥q̃∥L∞(K̃1)

≤ C|K̃1|1/2
h̃2

k̃1
∥q̃∥L2(K̃1)

.

Thus, using k̃2 ≤ h̃1 and k̃1 ≤ h̃2, we have

k̃1|c1|
h̃2

=
2k̃1

h̃1h̃2

∣∣∣|K̃1|a1,1 + |K̃2|a2,1 + |K̃3|a3,1
∣∣∣

≤ Ck̃1

h̃1h̃2

(
|K̃1|1/2

h̃2

k̃1
+ |K̃2|1/2 + |K̃3|1/2

)
∥q̃∥L2 (̃̃T ) ≤ Cϱ̃1/2∥q̃∥L2(T̃ ).

The same arguments show

k̃2|c2|
h̃1

≤ Cϱ̃1/2∥q̃∥L2(T̃ ).

Thus, we conclude from (10) and (11), that

∥w̃0∥L∞(T̃ ) ≤ Cϱ̃1/2∥q̃∥L2(T̃ ).(12)

Finally, we combine (7) and (12) to obtain

|w̃|H1(T̃ ) ≤ C
(
∥µ̃∥L∞(T̃ )|w̃1|H1(T̃ ) + |µ̃|H1(T̃ )∥w̃1∥L∞(T̃ ) + |µ̃|H1(T̃ )∥w̃0∥L∞(T̃ )

)
≤ Cϱ̃1/2(1 + |µ̃|H1(T̃ ))∥q̃∥L2(T̃ ).

Corollary 3.1. There holds

|µ̃|2
H1(T̃ )

=
1

2

3∑
i=1

h̃i

k̃i
,

and therefore, under the assumptions stated in Theorem 3.3,

|w̃|H1(T̃ ) ≤ Cϱ̃1/2

(
3∑

i=1

h̃i

k̃i

)1/2

∥d̃iv w̃∥L2(T̃ ) ∀w̃ ∈ P̊
c

2(T̃
ct
T ).
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Proof. The function µ̃ satisfies ∇̃µ̃|K̃i
= − 1

k̃i
ñi. Therefore,

|µ̃|2
H1(T̃ )

=
3∑

i=1

|K̃i|k̃−2
i =

1

2

3∑
i=1

h̃i

k̃i
.

�

We now apply Corollary 3.1 to two situations, each determined by the location
of the split point of T ct: barycenter refinement and incenter refinement.

3.2.1. Estimates of inf-sup stability constant βT ct on barycenter refined
meshes. The barycenter of a triangle is preserved via affine diffeomorphisms and
therefore, if the split point is taken to be the barycenter (z0 = zbary), the local

triangulation on the reference triangle T̃ ct
T is independent of T . In this setting

(k̃2, k̃1)
ᵀ = 1

3 (h̃1, h̃2)
ᵀ is the barycenter of T̃ , and k̃3 = h̃1h̃2

h̃3
. Thus, we have

|µ̃|2
H1(T̃ )

=
1

2

3∑
i=1

h̃i

k̃i
=

1

2

( h̃1

h̃2

+
h̃2

h̃1

+
h̃2
3

h̃1h̃2

)
≤ 3

2
ϱ̃.

Via Theorem 3.3 and mapping back to T , we have a refinement of Lemma 3.2 on
barycenter refined meshes.

Lemma 3.6. Suppose that the split point of T ct is the barycenter of T , and that T
satisfies the large angle condition. Then

∥∇v∥L2(T ) ≤ CϱT ∥div v∥L2(T ) ∀v ∈ P̊
c

2(T
ct).

3.2.2. Estimates of inf-sup stability constant βT ct on incenter refined
meshes. The incenter of T is zinc = 1

|∂T | (h1z1 + h2z2 + h3z3). Using the affine

transformation given in Lemma 3.3, we have (k̃2, k̃1)
ᵀ = A−1(zinc − b). Using the

formula for A in the proof of Lemma 3.3, we calculate

(k̃2, k̃1)
ᵀ = A−1

(
1

|∂T |
(h1z1 + h2z2 + h3z3)−

(h1 + h2 + h3)z3
|∂T |

)

= A−1
(h1(z1 − z3) + h2(z2 − z3)

|∂T |

)
=

h1

|∂T |
z̃1 +

h2

|∂T |
z̃2 =

h1h2

|∂T |
(1, 1)ᵀ.

Thus, k̃1 = k̃2 = h1h2

|∂T | , and

k̃3 =
h1h2 − h2k̃2 − h1k̃1

h̃3

=
h3

h̃3

h1h2

|∂T |
.

We then compute, via Corollary 3.1,

|µ̃|2
H1(T̃ )

=
1

2

3∑
i=1

h̃i

k̃i
=

|∂T |
2h1h2

(
h̃1 + h̃2 +

h̃2
3

h3

)
≤ |∂T |

4|T |
(h3 + h3 + 2h3) = 4ϱT .

Lemma 3.7. Suppose that the split point of T ct is the incenter of T and that T
satisfies the large angle condition. Then

∥∇v∥L2(T ) ≤ CϱT ∥div v∥L2(T ) ∀v ∈ P̊
c

2(T
ct).
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Table 1. Inf-Sup Constant Aspect Ratio and Rate Dependence
for Barycenter Refined Mesh.

refinement level βbary ϱbary rate

1 .26301 12.32 -
2 .18898 36.11 .30749
3 .06402 108.03 .98777
4 .02137 324.01 .99862
5 .00713 972.00 .99985
6 .00238 2916.00 .99998

3.3. Summary of Stability Results. We summarize the stability results in the
following theorem. Combining Theorem 3.1, Theorem 3.2, and Lemmas 3.6–3.7
yields the following result.

Theorem 3.4. Suppose Th satisfies a large angle condition. Suppose further that
isotropic patches, boundary layer patches or corner patches are used (cf. Section
3.1). Let Tct

h denote the Clough-Tocher refinement with respect to either the barycen-
ter or incenter of each T ∈ Th. Then the inf-sup condition (1) is satisfied, where
β ≥ CminT∈Th

ϱ−1
T .

4. Numerical Experiments

In this section we numerically investigate the theoretical results from the pre-
vious sections and explore the performance of the traditional barycenter refined
meshes versus incenter refinement. All calculations are performed using the finite
element software FEniCS [31]. The associated code can be found on GitHub at
https://github.com/mschneier91/anisotropic-SV.

4.1. Barycenter vs Incenter Aspect Ratio, Inf-Sup Constant, and Scal-
ing. For the first numerical experiment we examine the aspect ratio, inf-sup con-
stant, and scaling between these quantities for the different refinement methods.
We begin with an initial 2×2 mesh on Ω = (0, 1)2 and perform a repeated barycen-
ter or incenter refinement. The aspect ratio on the barycenter refined mesh, ϱbary,
and incenter refined mesh, ϱinc, are defined as the maximum aspect ratio over all
mesh cells. In practice we do not recommend this mesh refinement strategy as the
error of a solution would plateau due to mesh edges not being refined (see [20]
for a hierarchical approach that is convergent). However, this refinement strategy
allows for easy numerical inspection of the theoretical results proven in Section 2
and Section 3.

We see in Table 1 and Table 2 that ϱinc is smaller than ϱbary at all refinement
levels. Additionally, ϱinc increases by a factor of 2 at each refinement level whereas
ϱbary increases by a factor of 3. These numerical results align with the bounds
proven in Lemma 2.3 and Lemma 2.4.

It is also shown in Table 1 and Table 2 that the inf-sup constant for both refine-
ment strategies scales linearly with ϱ−1. This results in a larger inf-sup constant
for for incenter refinement compared to barycenter refinement due to the smaller
aspect ratio resulting from using incenter refinement. This result conforms with
the theoretical scaling proven in Theorem 3.4.

4.2. Convergence of Barycenter vs Incenter Refinement. For the second
numerical experiment we consider the test problem for the steady state Stokes
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Table 2. Inf-Sup Constant Aspect Ratio and Rate Dependence
for Incenter Refined Mesh.

refinement level βinc ϱinc rate

1 .27880 10.05 -
2 .27590 20.30 .01493
3 .13861 40.71 .98959
4 .06939 81.47 .99739
5 .03471 162.96 .99934
6 .01735 325.94 .99984

Figure 2. Shishkin type mesh with N = 8, ϵ = .01, and τ = 3ϵ| log ϵ|.

equation used in [5]. We take the domain Ω = (0, 1)2 and the exact solution

u =

(
∂ξ

∂x2
,− ∂ξ

∂x1

)
, p = exp

(
−x1

ϵ

)
,

where the stream function is defined as

ξ = x2
1(1− x1)

2x2
2(1− x2)

2 exp
(
−x1

ϵ

)
.

This exact solution is characterized by the fact that the velocity and pressure have
an exponential boundary layer of width O(ϵ) near x1 = 0. For our computations
the parent grid will be the same Shishkin-type mesh used in [5]. Letting N ≥ 2
and τ ∈ (0, 1) we generate a grid of points

xi
1 =

{
i2τN , 0 ≤ i ≤ N

2 , i ∈ N,
τ +

(
i− N

2

)
2 (1−τ)

N , N
2 < i ≤ N, i ∈ N,

xj
2 =

j

N
, 0 ≤ j ≤ N, j ∈ N,

and then connect the grid points with edges to obtain a rectangular mesh. Each
rectangle is then subdivided into two triangles yielding a triangulation of Ω with
n = 2N2 elements and an aspect ratio of

ρ =

√
1 + 4τ2

1 + 2τ −
√
1 + 4τ2

.
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Figure 3. Comparison of L2 velocity error (left) and H1 error
(right) for incenter versus barycenter refinement.

Figure 4. Comparison of L2 pressure error for incenter versus
barycenter refinement.

An example of this mesh can be seen in Fig. 2.
For this numerical experiment we compare a single barycenter and incenter re-

finement with ϵ = .01, τ = 3ϵ| log ϵ|, and for varying values of N . This results
in aspect ratios of ϱinc ≈ 18 and ϱbary ≈ 24. We see in Fig. 3 the difference in
velocity errors is negligible between the two refinement strategies. However, we see
in Fig. 4 there is a small, but noticeable improvement in the pressure error when
the incenter refinement is used.
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Appendix A. Proof of Lemma 3.3

Proof. First, we may assume that δ < π
3 .

We will use the same notation for edges and vertices as in Section 2, in particular
preserving the ordering of side lengths.

Define t1 to be the unit vector along e1, and t2 to be the unit vector along e2.
That is, t1 = z2−z3

h1
, t2 = z1−z3

h2
. Then, let A have columns t1, t2. Let b = z3. Then,

the affine map Ax̃+ b maps T̃ onto T.
It is clear that as each entry in A is bounded above by 1 as the columns are unit

vectors. Thus ∥A∥ ≤ 2 and ∥adj(A)∥ ≤ 2, giving us ∥A−1∥ ≤ 2
|det(A)| .

It is well known that |det(A)| is the area of the parallelogram formed by the
vectors t1 and t2. We then have the formula

|det(A)| = |t1||t2| sinα3 = sinα3

As α3 ∈ [π3 , π − δ], sinα3 ≥ sin δ, and ∥A−1∥ ≤ 2
sin δ = C(δ). �
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Appendix B. Proof of Lemma 3.4

We denote by F̃ : T̂ → T̃ the affine mapping given by

F̃ (x̂) =

(
h1 0
0 h2

)
.

For ṽ ∈ P1(T̃ ), let v̂ ∈ P1(T̂ ) be given via the Piola transform

ṽ(x̃) =
1

det(DF̃ )
DF̃ v̂(x̂) =

(
h−1
2 v̂1(x̂)

h−1
1 v̂2(x̂)

)
, x̃ = F̃ (x̂).(13)

Proof. Let v̂ ∈ P1(T̂ ) be defined by (13). The Brezzi-Douglas-Marini DOFs and
equivalence of norms yields

∥v̂∥2 ≤ C
3∑

i=1

∥v̂ · n̂i∥2L2(êi)

for any norm ∥ · ∥ on P1(T̂ ). Using the identity v̂ · n̂i(x̂) = (hi/|êi|)(v · ni)(x), we
have, by a change of variables,

∥v̂∥2 ≤ C

3∑
i=1

hi∥v · ni∥2L2(ei)
.

Furthermore, by the chain rule

∇v(x) =
1

det(DF̃ )
DF̃ ∇̂v̂(x̂)(DF̃ )−1 =

1

h1h2

(
∂v̂1

∂x̂1

h1

h2

∂v̂1

∂x̂2
h2

h1

∂v̂2
∂x̂1

∂v̂2
∂x̂2

.

)
Therefore,

∥∇v∥2
L2(T̃ )

≤ 2|T̃ |(h1h2)
−2 max{h1

h2
,
h2

h1
}∥∇̂v̂∥2

L2(T̂ )

= (h1h2)
−1ϱ∥∇̂v̂∥2

L2(T̂ )

≤ C|T̃ |−1ϱ

3∑
i=1

ki∥v · ni∥2L2(ei)
.

We also have

∥v∥2
L∞(T̃ )

= max{h−2
2 , h−2

1 }∥v̂∥2
L∞(T̂ )

≤ C|T̃ |−1ϱ
3∑

i=1

hi∥v · n∥2L2(ei)
.

�
B.1. Proof of Lemma 3.5.

Proof. We have

ki∥q∥2L2(ei)
≤ hiki∥q∥2L∞(ei)

≤ hiki∥q∥2L∞(Ki)
.

Therefore by standard scaling,

ki∥q∥2L2(ei)
≤ Chiki|Ki|−1∥q∥2L2(Ki)

≤ C∥q∥2L2(Ki)
.
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