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Abstract. Although interest in numerical approximations of the water wave equation
grows in recent years, the lack of rigorous analysis of its time discretization inhibits the
design of more efficient algorithms. In practice of water wave simulations, the trade-
off between efficiency and stability has been a challenging problem. Thus to shed light
on the stability condition for simulations of water waves, we focus on a model simpli-
fied from the water wave equation of infinite depth. This model preserves two main
properties of the water wave equation: non-locality and hyperbolicity. For the constant
coefficient case, we conduct systematic stability studies of the fully discrete approxi-
mation of such systems with the Fourier spectral approximation in space and general
Runge-Kutta methods in time. As a result, an optimal time discretization strategy is

provided in the form of a modified CFL condition, i.e. ∆t =O(
√

∆x). Meanwhile,
the energy stable property is established for certain explicit Runge-Kutta methods.
This CFL condition solves the problem of efficiency and stability: it allows numerical
schemes to stay stable while resolves oscillations at the lowest requirement, which only
produces acceptable computational load. In the variable coefficient case, the conver-
gence of the semi-discrete approximation of it is presented, which naturally connects
to the water wave equation. Analogue of these results for the water wave equation
of finite depth is also discussed. To validate these theoretic observation, extensive nu-
merical tests have been performed to verify the stability conditions. Simulations of the
simplified hyperbolic model in the high frequency regime and the water wave equa-
tion are also provided.

∗Corresponding author. Email addresses: leili2010@sjtu.edu.cn (L. Li), jliu@phy.duke.edu (J.-G. Liu),
zibu.liu@duke.edu (Z. Liu), sailors2008@sina.cn (Y. Yang), zhennan@bicmr.pku.edu.cn (Z. Zhou)

http://www.global-sci.com/cicp 222 c©2022 Global-Science Press



L. Li et al. / Commun. Comput. Phys., 32 (2022), pp. 222-258 223

AMS subject classifications: 65-XX

Key words: Runge-Kutta methods, non-locality, hyperbolicity.

1 Introduction

Simulation of water wave equations has been a challenging problem due to the bad well-
posedness of the equation. To understand this difficulty, we will first review previous
remarkable theoretic work on water wave equations. In both Wu’s work [28] and Beale
and Hou’s work [5], the authors used Riemann mappings to find the right variables and
rewrote the water wave equation. Both versions of the equation in [28] and [5] have the
common leading order structure: a non-local hyperbolic equation, say (1.6). By analyzing
this simplified model, we derive an optimal discretization strategy in the form of a CFL
condition. This condition is rigorously proved for system (1.6) and numerically verified
for water wave equations. Following this road map, we will first derive the simplified
model.

The unsteady system of incompressible free surface flow in two-dimension has at-
tracted much theoretic and numerical attention [6, 10, 11, 28]. Governed by the irrota-
tional Euler equation, this free surface flow problem is also referred to as the water wave
problem which dates back to the early 20th century [23, 25]. By observing the equation
in both Eulerian coordinate and Lagrangian coordinate, insightful analytical results were
derived since then. One can refer to [11] for a review of recent related results. In [5],
Beale, Hou, and Lowengrub formulated the water wave equation in Lagrangian coordi-
nates and considered the linearization of it which is a nonlocal system. Later in [28], by
reducing the system to a nonlocal hyperbolic equation in Eulerian coordinate, Wu de-
rived impressive results on the well-posedness of the water wave equation. These two
works directed us to focus on a simplified system that inherits the common dominating
structure shared by both works: a nonlocal hyperbolic model, which played a critical role
in the proof of well-posedness in [28].

The water wave equation is formulated as follows (see [5]) in Lagrangian coordi-
nates. Consider a 2π-periodic two-dimensional fluid with infinite depth whose surface
is described by z : R×[0,∞)→C:

z(α,t)= x(α,t)+iy(α,t). (1.1)

Here α∈R is a material coordinate that parametrizes the undisturbed surface. Periodicity
of the fluid wave implies that s(α,t) := z(α,t)−α is a 2π-periodic function in α. Because
the fluid is inviscid and irrotational, the velocity can be written as ∇Φ where Φ(x,y,t) is
the velocity potential. Let

φ : R×[0,∞)→R, (α,t) 7→φ(α,t) :=Φ(x(α,t),y(α,t),t)
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be the evaluation of the velocity potential at the surface so that φ(α,t) is a periodic func-
tion in α with period 2π. In [5], starting from the irrotational Euler equation, Beale, Hou,
and Lowengrub derived the equation for the interface of fluid with infinite depth which
is parametrized by z(α,t) in Lagrangian coordinate, i.e., z(α,t) and φ(α,t) satisfy the fol-
lowing system of equations:































z̄t=
1

4πi

∫ π

−π
γ(α′)cot

( z(α)−z(α′)
2

)

dα′+
γ(α)

2zα(α)
=: w(α,t),

φt=
1

2
|w|2−gy,

φα=
γ

2
+Re

[

zα

4πi

∫ π

−π
γ(α′)cot

( z(α)−z(α′)
2

)

dα′
]

,

(1.2)

where z̄ means the complex conjugate of z, γ(α,t) quantifies the derivative of the dipole
strength and g is the gravity. This derivation could also be found in [3, 6] (Equations
(1)-(3) in [6]). Authors of [5] proved that the linearization of (1.2) leads to (1.3) (Equation
(2.8) in [5]), namely for (α,t)∈R×(0,∞):











∂tη=σ(α,t)Λζ+g1,

∂tζ =−c(α,t)η,

∂tδ= g2.

(1.3)

Here σ and c are positive, which depend on the solution of the water wave equation, but
independent of η and ζ. η is the normal component of the perturbation of the position of
the interface. δ is a combination of the tangential and normal components of the pertur-
bation of the position. ζ describes the perturbation of the potential. g1 and g2 are some
extra terms in the linearization which contain linear terms in η,δ. The operator

Λ=(−∆)1/2=H∂α (1.4)

is the 1/2-fractional Laplacian with Fourier symbol |k|, where H is the Hilbert transform
whose Fourier symbol is −isgn(k). On R, the Hilbert transform H is given by

H( f )(x)=
1

π
p.v.

∫ ∞

−∞

f (y)

x−y
dy.

As we shall see, system (1.3) is L2 stable and dispersive.
Another system with the same structure of (1.3) is derived in [28] in the Eulerian

coordinates. Wu achieved remarkable results in [28] in proving the well-posedness of the
water wave problem in Sobolev spaces. Wu used a conformal mapping formulation and
reduced the water wave system to a quasi-linear hyperbolic system (see (4.6) and (5.8ǫ)
in [28] and let w=−v) for (β,t)∈R×(0,∞) :

ut=σ(β,t)Λv+b(β,t)∂β u+g1,

vt =−c(β,t)u+b(β,t)∂βv+g2,
(1.5)
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where σ> 0, c> 0 and β is the Eulerian coordinate instead of a material coordinate. Let
X be the x-coordinate of the interface, then u = Xtt and v =−Xt in (1.5). Due to the
extra time derivative, this equation can also be viewed as a linearization of the water
wave equations in [5]. The usage of conformal mappings in this work was successful. It
transformed all the nonlocal terms on a time-dependent domain into the half Laplacian,
i.e. Λ=(−∆)1/2 = H∂β on R which is time-invariant. Wu referred to this system as the
’hyperbolic system’ in [28]. We will also preserve this description in the present paper.

The slight difference between system (1.5) and (1.3) is that transport terms appear
in the former but disappear in the latter. This is because: in (1.5), variable β is not the
material coordinate but a variable associated with the conformal mapping. Except for
this difference, both equation (1.5) and (1.3) share the same dominating structure, i.e. the
system

ut=σ(x,t)Λv+λ1(x,t)u+λ2(x,t)v+ f1,

vt =−c(x,t)u+ f2
(1.6)

for (x,t)∈R×(0,∞). This system is intrinsic to the water wave equation since it is detected
in both Eulerian and Lagrangian coordinates. Motivated by the preceding discussion, we
will focus on this nonlocal hyperbolic system in the rest of the paper.

As in [6], we impose periodic boundary condition and study the system on the torus,
i.e.

ut=σ(θ,t)Λv+λ1(θ,t)u+λ2(θ,t)v+ f1(θ,t),

vt=−c(θ,t)u+ f2(θ,t)
(1.7)

with θ∈T=R/2πZ and t∈(0,∞). The Hilbert transform H still has the symbol −isgn(k)
but the formula now is given by

H f (θ)=p.v.
∫

T

f (τ)cot

(

θ−τ

2

)

dτ

2π
.

We will focus on equation (1.7) in the following sections.
Consider the special case of (1.7) where σ,c are constant and λ1 =λ2= f1= f2 =0. We

derived much insight into the numerical simulation of the water wave from this case.
In this constant coefficient case, the system is reduced to the following second -order (in
time) nonlocal hyperbolic equation

utt=−µΛu, (1.8)

where µ=σc. For heuristic purposes, we carry out some preliminary analysis and present
the basic properties of (1.8) in Section 2.1. A more careful analysis for the constant-
coefficient case is conducted in Section 3.

Numerical studies of water waves have been performed in many papers [6, 8, 12, 13,
19, 20, 27]. The numerical methods can roughly be divided into two classes. In the first
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class, conformal mapping was not used. In [6], water wave problems were solved by the
discretization of an integral formulation (see Section 5 for more information). However,
the convergence was merely proved with time being kept continuous. The discussion
of the fully discretized system seems challenging. In the second class [8, 12, 13, 27], con-
formal mappings are used for numerical simulations but no rigorous numerical analysis
for conformal mapping formulation has been performed. Meanwhile, although the an-
alytical properties of the nonlocal hyperbolic system (1.6) are relatively well understood
in [5,28], the numerical studies of such equations have not been thoroughly investigated.

Thus to shed light on the distinct properties of such hyperbolic systems and water
wave simulations, we intend to focus on numerical analysis of the simplified model (1.6).
Because (1.6) has nonlocal terms and the nonlocal terms have a simple Fourier symbol
(say −isgn(k)), we select the pseudo-spectral approximation in the spatial discretization,
which is often favored by wave equations (see [4, 26]).

The primary goal of this paper is to analyze Runge-Kutta methods when applied to
such nonlocal wave equations. In particular, we emphasize two insightful properties and
implications that our analysis of Runge-Kutta methods provides:

First, we explore the optimal time step sizes in terms of a CFL type condition, when
certain explicit Runge-Kutta methods are used. As we shall show in Section 2.1, the hy-
perbolic system (1.6) is also dispersive and may exhibit multi-scale behavior. Therefore,
the time step constraint is more severe in the high-frequency regime. Consequently, find-
ing optimal time steps with respect to the wave numbers is naturally desired [4,15,16,21].

In detail, we have systematically analyzed stability conditions of general Runge-Kutta
methods for the hyperbolic system (1.3) with constant coefficients, including the high-
frequency regime. In constant coefficient case, we have shown that, naive time discretiza-
tion of system (1.7) results in the familiar hyperbolic CFL constraint ∆t=O(∆x). If we
use Runge-Kutta methods whose absolute stable region contains a part of the imaginary
axis, this CFL constraint can be relaxed to ∆t =O(

√
∆x) which is huge progress. See

Theorem 3.1 for detail.

In high-frequency regime, this relaxation on CFL condition provides an optimal time
discretization strategy which reduces computational load when simulating (1.7). In this
regime, we consider the equation of u′(x,t) = u(ǫx,ǫt),v′(x,t) = v(ǫx,ǫt) which is the
rescaling of (u,v). Still in the constant coefficient case, the equation of (u′,v′) is rewritten
as

{

ut=σΛv, (x,t)∈T1×[0,∞),

ǫvt =−cu, (x,t)∈T1×[0,∞).

Due to the factor ǫ before vt, careful treatment of CFL conditions is necessary. In theorem
3.2, we conclude that Runge-Kutta schemes whose stability regions cover part of the
imaginary axis are stable as long as both time step and spatial grid size resolve the wave
oscillation, i.e.

∆x=O(ǫ), ∆t=O(
√

ǫ∆x)=O(ǫ).
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This result is sharp in the view that one cannot capture the accurate wave function with-
out resolving its oscillations.

Second, as a corollary of the stability analysis, we investigated the energy stable
property of Runge-Kutta methods. The key point is that the nonlocal hyperbolic sys-
tem (1.8) with constant coefficients is energy preserving, here the energy is given by
E=

∫

T

(

|vt|2+ 1
2 µvΛv

)

dx. When applying pseudo-spectral approximation in spatial dis-
cretization, this Hamiltonian is still conserved by Parseval’s equality. We will prove that,
when applying Runge-Kutta methods in time discretization, the Hamiltonian is non-
increasing as long as the applied Runge-Kutta method has an absolute stable region that
covers part of the imaginary axis. Available numerical discretization include explicit-k
Runge-Kutta methods for k≥3. See Corollary 3.1 for detail.

In the variable coefficient case, we discuss the extension of stability analysis from
the constant-coefficient case and to the full water wave simulations. The proposed CFL
conditions (say ∆t=O(

√
∆x)) are verified in numerical experiments.

Notice that all preceding discussion is established for water waves of infinite depth,
we will also consider an analog in finite depth case.

The rest of the paper is organized as follows: in Section 2.2, we introduce basic nota-
tions and the setup for the numerical analysis. In Section 3, we discuss thoroughly the
discretization of the nonlocal system with Runge-Kutta (both explicit and implicit) meth-
ods in time and the Fourier spectral method in space. We then study the discretization
of the system with variable coefficients in Section 4. We prove the convergence for the
semi-discrete schemes using the Fourier spectral method or the filtered Fourier spectral
method and then discuss the time discretization using Runge-Kutta methods. We then
connect the nonlocal hyperbolic system to water wave equations in Section 5. Analog
in water waves of finite depth is also discussed. Lastly, in Section 6, we perform nu-
merical experiments. The stability conditions for the nonlocal hyperbolic system with
variable coefficients and water wave equations are confirmed numerically. Numerical
experiments suggest possible caustics for the system in the high-frequency regime.

2 Preliminaries and basic notations

In this section, we discuss the special case (1.8) and then introduce necessary notations
for numerical analysis later.

2.1 Basic properties of the nonlocal hyperbolic equation

In this section, we present a concise review of basic properties of (1.8), a special case of
the hyperbolic system (1.3). Multiplying by ut on both sides of (1.8), and integrating over
x, we derive

d

dt

∫

R

(

|ut|2+
1

2
µuΛu

)

dx=0.
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This means that the energy

E=
∫

R

(

|ut|2+
1

2
µuΛu

)

dx (2.1)

is conserved in time. Because v also satisfies equation (1.8), we know that

E′=
∫

R

(

|vt|2+
1

2
µvΛv

)

dx

is also conserved. To derive the dispersion relation, suppose that the plane wave u(x,t)=
Aei(2πkx−wt) is the solution to the equation (1.8). On the Fourier side, (1.8) reads as

ûtt=−µ|ξ|û. (2.2)

Notice that the Fourier transform of plane wave u(x,t)= Aei(2πkx−wt) is û(ξ,t)= Aδ(k−
ξ)e−iwt, substituting it into the equation yields the dispersive relation:

−ω2=−µ|ξ| ⇒ ω=±
√

µ|ξ|. (2.3)

Because ω is real and ω 6=const×ξ, the system is dispersive.
Next, we derive the Green function of (1.8). The explicit expression of the Green

function also suggest the dispersion relationship. In fact, the solution u(x,t) to the initial
value problem











utt+µΛu=0, (x,t)∈R×R
+,

u(x,0)= f (x),

ut(x,0)= g(x)

(2.4)

can be written as

u(x,t)= f (x)∗F(x,t)+g(x)∗G(x,t). (2.5)

Here ∗ represents convolution in space, i.e. f (x)∗F(x,t)=
∫

R
f (x−y)F(y,t)dy. Function

G(x,t) is the Green’s function and F(x,t) is the time derivative of it. In fact, G(x,t) and
F(x,t) satisfy following Cauchy problems respectively:











utt+µΛu=0, (x,t)∈R×R
+,

u(x,0)=0,

ut(x,0)=δ(x),











utt+µΛu=0, (x,t)∈R×R
+,

u(x,0)=δ(x),

ut(x,0)=0.

(2.6)

Remember that the nonlocal operator Λ has Fourier symbol |ξ|, thus G and F are respec-
tively given by

G(x,t)=F−1





sin
(

√

µ|ξ|t
)

√

µ|ξ|



, F(x,t)=F−1

(

cos

(

√

µ|ξ|t
))

. (2.7)
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Here, F−1 is the inverse Fourier transform, i.e. (F−1 f )(x)=
∫

R
e2πix·k f (k)dk. For the sake

of completeness, we provide the details and more discussions of the Green’s function in
Section A.

Consider the special case where f (x)= cos(kx),g(x)=0. Then the solution of (2.4) is
u(x,t)= cos(kx)cos(

√

µ|k|t). Thus, the angle velocity in space and time has the square-
root relation in k: k and

√

|µ|k. This can be explained by the dispersion relation (2.3). In
fact, this also suggest a relaxed CFL condition as we shall explain later.

Remark 2.1. Eq. (1.8) is reminiscent of the surface quasi-geostrophic equations (SQG)
studied in [7, 17]. However, the surface SQG equation is dissipative while (1.8) is disper-
sive.

2.2 Notations and setup for numerical analysis

In this work, we consider the one-dimensional nonlocal hyperbolic system (1.7) on T=
R/2πZ. The spatial discretization is selected as the Fourier pseudo-spectral method or
the filtered Fourier pseudo-spectral method.

We discretize the spatial domain with grid size h=2π/N, and we denote grid points
by θj= jh, j∈ [N]={1,··· ,N}, where N∈N is even. We denote the time step size by τ, and
denote tn=nτ. The notation un

j represents the numerical value of u(θ,t) at (θj,t
n), and un

represents the vector un =(un
j ).

Given any N-vector f =( f j), we expand each component as a sum of discrete Fourier
modes via

f j = ∑
k∈[N]∗

f̂keikθj , j∈ [N],

where [N]∗ :={− 1
2 N+1,··· , 1

2 N} and the discrete Fourier transform f̂ =( f̂k) are given by

f̂k =
1

N ∑
j∈[N]

f je
−ikθj , k∈ [N]∗ .

Note that the Hilbert transform H and differentiation operators become certain multi-
pliers when the Fourier transform is applied. When projected onto a uniform grid, those
transforms between two functions reduce to corresponding relations between the discrete
Fourier transforms of two functions confined on the grid.

We define the projected differential operator and the projected Hilbert transform H in
the following. For two N− vector f and g, we write

g=D f to mean ĝk = ik f̂k , k∈ [N]∗ , (2.8)

g=H f to mean ĝk =−isgn(k) f̂k, k∈ [N]∗ . (2.9)

We introduce the notation L=DH as the projected Λ=∂H, so that

g=L f means ĝk = |k| f̂k, k∈ [N]∗ .
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Recall the discrete inner product between two N-vectors is defined as

〈 f ,g〉= ∑
j∈[N]

h f j ḡj,

where ḡ means the complex conjugate. The discrete ℓ2 and ℓ∞ norms are defined by

‖ f‖2 =
√

〈 f , f 〉, ‖ f‖∞ =max
j∈[N]

| f j|.

For discrete case, we still have Parserval’s equality:

Lemma 2.1. The discrete Parserval’s equality holds

〈 f ,g〉= ∑
j∈[N]

h f j ḡj =2π ∑
k∈[N]∗

f̂k ˆ̄gk.

3 Discretization of the constant-coefficient equations

Consider the constant coefficient case of the simplified hyperbolic model, i.e.

{

ut=σΛv,

vt =−cu,
(3.1)

where (θ,t)∈T×(0,∞). On the Fourier side, this equation reads as

∂t

(

û
v̂

)

=

(

0 σ|k|
−c 0

)(

û
v̂

)

:=A

(

û
v̂

)

. (3.2)

In this section, we will thoroughly analyze the stability of Runge-Kutta methods applied
to (3.2). First, we will conduct the Von Neumann analysis [18] on Runge-Kutta methods.
Both explicit and implicit ones will be systematically investigated. As a result, we will
derive stability conditions in terms of CFL conditions. These CFL conditions provide
necessary guidance for the simulation of water wave equations which is conducted in
Section 6. Eq. (3.2) in the high-frequency regime is also considered. In the interest of
avoiding aliasing error [24], an optimal discretization strategy is developed as a conse-
quence of the analysis of Runge-Kutta methods. The strategy is optimal in the sense that
it resolves oscillations at the lowest requirement. In what follows, we denote the Butcher
tableau of a certain n-step Runge-Kutta method by

p G

wT
, (3.3)

where G is the Runge-Kutta matrix, w are the weights and p are the nodes.
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3.1 Stability analysis

Direct calculation shows that A has 2 complex eigenvalues λ1,2=± i
√

cσ|k|. Thus, matrix
A is similar to the diagonal matrix D :=diag{λ1,λ2}:

A=P−1DP, P=P1P2,

where

P2=





1 0

0

√

σ|k|
c



, P1=

(

1 1
i −i

)

.

This similarity relation reduces the coupled system (3.2) into the following decoupled
system:

∂t

(

û1

v̂1

)

=D

(

û1

v̂1

)

,

(

û1

v̂1

)

:=P

(

û
ŵ

)

. (3.4)

Hence, the Von Neumann analysis on the original coupled system 3.2 reduces to that on
each scalar equation in (3.4). Notice that P2 has entry

√

σ|k|/c which contains Fourier
variable k, so L2-stability of (3.4) does not directly imply L2-stability of (3.2). How-
ever, this fact does not affect stability of Runge-Kutta methods on (3.2). As we will ex-
plain later, one can still ensure stability of certain Runge-Kutta methods of (3.2) under a
weighted norm, which actually implies a weaker stability in L2-norm. Therefore, we first
consider stability analysis of (3.4).

Notice that the 2 eigenvalues of matrix D have the same absolute value, so we can
focus on the stability analysis for only the first equation which is exactly the ODE system
y′=λ1y.

In the following lemma, an explicit formula of the growth index is derived when a
certain Runge-Kutta method is employed. This facilitates the Von Neumann analysis.

Lemma 3.1. Denote e as the vector of ones. For the linear equation y′ = λ1y, the RK method
applied to this equation reduces to yn+1= f (τ,ν)yn where

| f (τ,ν)|=ψ(τ,ν) :=

√

|det(I+τ2ν(G−ewT)2)|
|det(I+τ2νG2)| . (3.5)

Here τ is the time step size, G the Runge-Kutta matrix, w the weights in the Runge-Kutta method
(see (3.3)) and ν= cσ|k|.

The proof merely requires standard techniques in numerical analysis textbooks, hence
attached to Appendix B for the sake of completeness.

An important case of this lemma is for explicit Runge-Kutta methods. For explicit
Runge-Kutta methods, matrix G is a lower triangular matrix, thus det(I+τ2νG2) = 1.
Then formula (3.5) reduces to

ψ(τ,ν)=
√

|det(I+τ2ν(G−ewT)2)|. (3.6)
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This implies that ψ2(τ,ν) is a constant coefficient polynomial of τ2ν which depends on
G,w. This fact can also be derived from properties of explicit methods. If one uses ex-
plicit RK-p method to discretize the first component of system (3.4), the growth index in
Lemma 3.1 has the following expression [18]:

f (τ,ν)=
p

∑
m=0

1

m!
(τλ1)

m =
p

∑
m=0

1

m!
(iτ

√
ν)m. (3.7)

Thus ψ2(τ,ν)= | f (τ,ν)|2 is an constant coefficient polynomial of τ2ν.

Moreover, the absolute stable region of RK-p method contains a part of imaginary
axis, i.e. [−iC1(p),iC1(p)] if p≥3 [18]. Thus requiring

−C1(p)6±τ
√

ν6C1(p) (3.8)

is sufficient to ensure the stability of explicit RK-p methods when solving system (3.4).

Denote the growth matrix for a certain Runge Kutta method by B(τ). According
to [18], we recall the following definitions.

Definition 3.1. A scheme is called weakly stable if at least for τ sufficiently small, there
exists α>0 such that |B(τ)|≤1+ατ holds. A scheme is called strongly stable if |B(τ)|≤1
holds at least for τ sufficiently small. Here |B(τ)| is the norm of matrix induced by the
norm |·| defined on Rn.

One can see that even with weak stability, the numerical scheme is convergent as
τ→0 for any fixed time T>0. Thus, we use (3.7) and Lemma 3.1 to prove the following
theorem which provides the stability condition:

Theorem 3.1. There are 2 cases in this theorem:

1. For any Runge-Kutta scheme, if there exists a positive real number C such that τ 6 Ch
holds, then the scheme is stable for system (3.4) or (3.2). More specifically,

(a) if tr(G2)> tr
(

(G−ewT)2
)

, then the scheme is strongly stable;

(b) if tr(G2)6 tr
(

(G−ewT)2
)

, then the scheme is weakly stable.

Here e is the vector of ones and G,w is defined in (3.3).

2. For any Runge-Kutta scheme whose absolute stable region contains a part of the imaginary
axis [−C1i,C1i], there exists a positive constant C2 such that if

τ6C2

√
h, (3.9)

then the scheme is strongly stable.
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Proof. We first prove statement (a) and (b) in 1. Recall that ν= cσ|k| and |k|h6π, thus we
have

τν= cσ|k|τ 6 cσπτ/h

6 cσCπ. (3.10)

Therefore, τν=O(1) and τ2ν=O(τ) as τ→0. Using Lemma 3.1 and the fact det(I+τX)=
1+tr(X)τ+O(τ2), we have

ψ(τ,v)=

√

∣

∣det(I+τ2ν(G−ewT)2)
∣

∣

|det(I+τ2νG2)|

=

√

∣

∣1+tr
(

(G−ewT)2
)

τ2ν+O(τ4ν2)
∣

∣

|1+tr(G2)τ2ν+O(τ4ν2)|

=
√

1+[tr((G−ewT)2)−tr(G2)]τ2ν+O(τ4ν2)

=1+
tr
(

(G−ewT)2
)

−tr
(

G2
)

2
τ2ν+O(τ4ν2). (3.11)

Recall that τ2ν=O(τ), thus

ψ(τ,ν)=1+
tr
(

(G−ewT)2
)

−tr
(

G2
)

2
τ2ν+O(τ2). (3.12)

Then we consider 2 cases respectively:

1. If tr(G2)> tr
(

(G−ewT)2
)

, then ψ(τ,ν)< 1 when τ goes to 0, which means strong
stability. This proves statement (a).

2. If tr(G2)6 tr
(

(G−ewT)2
)

, by the estimate (3.10), we have ψ(τ,ν)61+Lτ+O(τ2)
when τ goes to 0, where

L=
tr
(

(G−ewT)2−G2
)

νCπ

2
. (3.13)

This implies weak stability which proves statement (b).

For the third statement, by estimate (3.10) again, we have τ
√

ν6τ
√

cσπ/h. If it satisfies
τ
√

cσπ/h6C1, namely

τ6
C1√
cσπ

√
h :=C2

√
h, (3.14)

then τ
√

ν stays in the absolutely stable region of the numerical scheme which indicates
strong stability.
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Remark 3.1. In the proof of Theorem 3.1, we proved stability in the weighted norm ‖P2·‖,
which actually does not directly imply stability in the L2- norm. In fact, in this case, we

still have stability in the L2- norm by Theorem 3.1: notice that |k| ≤ √
π/

√
h, so there

exists constants C1 and C2 such that for all k≥1,

‖(u,v)‖≤ C‖P2(u,v)T‖√
h

; (3.15)

for the mode k=0, any numerical scheme is always stable since (3.1) reduces to ∂tu=0,
∂tv =−cu, whose solution is u(t) = u(0), v(t) =−cu(0)t, which is linear. So the mode
k=0 is always stable, no matter which scheme is utilized. Therefore, if the total error of
a numerical scheme is O(hn), n≥1 in norm ‖P2 ·‖, then the total error will be O(hn−1/2)
in the L2-norm.

We have to emphasize that statement (a) and (b) in the preceding theorem are not
sharp. This is because that they merely ensure zero stability of a scheme while some of
them can be even unconditionally absolutely stable. Despite of this theoretic unsharp-
ness, these two statements are still general and practical because they are conclusive for
any Runge-Kutta method. Moreover, they provide necessary guidance for numerical
simulations of water wave equations in Section 6.

To illustrate this theorem, we analyze two examples of Runge-Kutta methods: a
weighted Euler method which is semi-implicit, and the explicit RK-4 method. Both meth-
ods are stable under the sufficient condition τ6Ch as stated in the first part of the the-
orem. Nevertheless, this CFL condition is unnecessary for the former method under

certain weights. For the second method, the condition τ 6C
√

h claimed in the second
statement of Theorem 3.1 is observed.

(a) Semi-implicit RK2: weighted Euler method. The tableau of a weighted Euler method
is:

0 0 0

1 1−δ δ

1−δ δ

,

where

G=

(

0 0
1−δ δ

)

, wT =(1−δ,δ).

Substitute them into ψ(τ,ν) yields

ψ(τ,ν)=

√

1+(1−δ)2τ2ν

1+δ2τ2ν
. (3.16)

Suppose that τ≤Ch for some positive constant C, one can verify that ψ(τ,ν)≤1+C1τ
holds as τ → 0 for some constant C1. Thus by Theorem 3.1, this scheme is stable.
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However, if δ> 1
2 , then ψ(τ,ν)6 1 holds without any requirement on τ,h. This im-

plies unconditionally strong stability. This example illustrates that condition τ6Ch
is sufficient but not necessary.

(b) Explicit RK4. The tableau of explicit RK4 is:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

,

where

G=















0 0 0 0
1

2
0 0 0

0
1

2
0 0

0 0 1 0















, wT =

(

1

6
,
1

3
,
1

3
,
1

6

)

.

Remember that the absolute stable region of explicit RK-4 contains a part of the imagi-

nary axis, thus by Theorem 3.1, we expect to acquire a CFL condition of form τ6C
√

h.
Substitute G,wT into ψ(τ,ν) and denote z=τ2ν, we have

ψ(τ,ν)=
√

det(1+z(G−ebT)2)=

√

z4

576
− z3

72
+1. (3.17)

Thus ψ(τ,ν)61 if and only if z68. Therefore, by Theorem 3.1, RK-4 is strongly stable
if and only if z68. Moreover, if

τ≤ 2
√

2√
πσc

·
√

h

holds, then z ≤ 8. Here c,σ is the constant in the system (3.2). Thus one can take

C2=
2
√

2√
πσc

in Theorem 3.1 to ensure stability.

3.2 Energy stable methods

A corollary of Theorem 3.1 is that the discretization of energy E (see (2.1)) is stable for any
explicit Runge-Kutta method whose absolute stable region contains part of the imaginary
axis. Remember that in proving Theorem 3.1, we focused on vector (û′,ŵ) in (3.4). Also
notice that ‖û′‖2

2+‖ŵ‖2
2 =‖P2(u,v)T‖2 and

‖w‖2
2=

σ

c ∑
k∈[N]∗

|k||v̂k |2=
σ

c
〈Lv,v〉,
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so the stability analysis in Theorem 3.1 is actually established on the L2-norm of (u′,w)
(or P2(u,v)T ), which is a combination of Ḣ1/2-norm of v and L2-norm of u. This L2-norm
is exactly the discretization of energy

E=
∫

T

(

|vt|2+
1

2
µvΛv

)

dx

with a constant factor on the Fourier side by substituting vt =−cu. Thus strong stability
implies that the energy is non-increasing which is exactly the following corollary:

Corollary 3.1. For any RK method whose absolute stable region contains a part of the imaginary
axis [−C1i,C1i], there exists a positive constant C2 such that when

τ6C2

√
h, (3.18)

the discretization of the energy E in (2.1) is non-increasing, i.e.

E1= ∑
k∈[N]∗

σ

c
|k||v̂k |2+|ûk|2 (3.19)

is non-increasing.

In fact, one has

∑
k∈[N]∗

‖P2(u,v)T‖2 = ∑
k∈[N]∗

σ

c
|k||v̂k |2+|ûk|2

=E1.

So by the second statement in Theorem 3.1, we know that the scheme is strongly stable
and E1 is non-increasing. This proves the corollary.

3.3 High frequency regime

To investigate the behavior of high frequency waves in (3.1), we consider the rescaling
(x,t)→ (ǫx,ǫt) which yields the following system:

{

ut=σΛv, (x,t)∈T1×[0,∞),

ǫvt =−cu, (x,t)∈T1×[0,∞),
(3.20)

where T1 =R/Z. Here ǫ= ℓ/K is a small number, ℓ is the considered length scale and
K ≫ 1 is the typical wave number. Eq. (3.20) is equivalent to the following equation of
second order in time:

ǫ∂ttu=−µH∂xu. (3.21)
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Again, this rescaled system is Hamiltonian: the energy
∫

T1

(

ǫ|ut|2+ 1
2 µuΛu

)

dθ is con-
served. To see this, one can multiply by ut on both sides of (3.21) and integrate over
θ to derive

d

dt

∫

T1

(

ǫ|ut|2+
1

2
µuΛu

)

dθ=0.

On the Fourier side, the first order system reads as

∂t

(

û
v̂

)

=

(

0 σ|k|
− c

ǫ
0

)

(

û
v̂

)

:=A1

(

û
v̂

)

. (3.22)

Analysis of RK methods for this system can be conducted in the same way as in Section
3.1 if we replace c by c/ǫ. This concludes the following theorem of stability:

Theorem 3.2. There are 2 cases in this theorem:

1. For any Runge-Kutta scheme, if there exists a positive real number C such that τ 6 ǫCh
holds, the scheme for system (3.22) is stable. More specifically,

(a) if tr(G2)> tr
(

(G−ewT)2
)

, then the scheme is strongly stable;

(b) if tr(G2)6 tr
(

(G−ewT)2
)

, then the scheme is weakly stable.

Here e is the vector of ones and ψ(τ,ν) is defined in (3.3).

2. For any RK methods whose absolute stable region contains a part of the imaginary axis
[−C1i,C1i], there exists a positive constant C2 such that when

τ6C2

√
ǫh, (3.23)

the scheme is strongly stable.

Energy is also non-increasing if the scheme is strongly stable, i.e.,

Corollary 3.2. For any RK method whose absolute stable region contains a part of the imaginary
axis [−C1i,C1i], there exists a positive constant C2 such that when

τ6C2

√
ǫh, (3.24)

the discretization of the energy E in (2.1) is non-increasing, i.e.

E1= ∑
k∈[N]∗

σ

cǫ
|k||v̂k |2+|ûk|2

is non-increasing.
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An implication of Theorem 3.2 is that formula (3.23) theoretically provides guidance
on selecting step size when simulating the behavior system (3.22). A notorious difficulty
in numerical simulation of high-frequency waves is the spatial aliasing error [24] and
its consequential strict requirement of stability. To avoid aliasing error, one needs to
ensure h=O(1/K) [24]. Recall that ǫ= ℓ/K where ℓ is the considered length scale, thus
h=O(1/K)=O(ǫ). As in Theorem 3.2, although τ6Cǫh can ensure stability, if this CFL
condition is rigorously obeyed, the numerical simulation would suffer from a heavy load
of computation since the time step size τ satisfies

τ=O(ǫh)=O(ǫ2)=O(1/K2).

This small time step size indicates that O(K2) times of computation will be conducted
which could be unacceptable. However, still in Theorem 3.2, we have proved that τ6Cǫh

can be improved to τ 6 C2

√
ǫh for typical Runge-Kutta schemes whose stable regions

cover a part of the imaginary axis. In this case, the requirement on τ is reduced from
τ=O(1/K2) to

τ=O(
√

ǫh)=O(ǫ)=O(1/K).

Hence, both time steps and spatial grid sized only need to resolve the wave oscillation to
ensure stability, i.e.:

τ=O(1/K), h=O(1/K). (3.25)

This result is sharp in the view that one cannot capture the accurate wave function with-
out resolving its oscillations. Therefore, Theorem 3.2 and Eq. (3.23) direct design of nu-
merical schemes of (3.20) by validating an optimal stability condition. Moreover, we ex-
pect that (3.23) can be employed in simulations of water waves, which is in fact realized
in Section 6.

4 Fully variable-coefficient system

In this section, we consider system (1.6) with variable coefficients. We will prove the
convergence of the semi-discretization and provide some evidence for the validity of the

CFL condition, namely τ 6C
√

h in the variable-coefficient case. However, we have to
admit that rigorous proof of convergence for fully discrete approximation is not given,
this would be considered in our further work. Nevertheless, careful numerical experi-

ments are conducted to verify the convergence and stability of τ6C
√

h for both system
(1.6) and the water wave equation. Thus, our analysis is still meaningful in the sense that
it enables us to shed light on the convergence and stability conditions of the numerical
simulation of the water wave equation.
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We assume that all the coefficients are smooth on T, σ ≥ σ0 > 0 and c(θ,t)≥ c0 > 0.
Consider the energy functional

E=
1

2

(

〈Λv,v〉+〈v,v〉+
〈 c

σ
u,u
〉)

. (4.1)

Taking the derivative and using (1.7), we find

Ė= 〈Λv,vt〉+〈v,vt〉+
1

2

〈

d

dt

( c

σ

)

u,u

〉

+
〈 c

σ
u,ut

〉

= 〈Λv, f2〉+〈v,−cu+ f2〉+
1

2

〈

d

dt

( c

σ

)

u,u

〉

+
〈 c

σ
u,λ1u+λ2v+ f1

〉

.

Compared with the energy in constant-coefficient case (2.1), the additional 〈v,v〉 term
assists on estimating the energy: it is needed to control the linear terms like λ2v. With
L2-norms of v, one can use E to control the H1/2-norm instead of Ḣ1/2-norm of v.

Now we use E and
√

E to control the R.H.S.. First, by the Cauchy-Schwartz inequality,
we have

〈Λv, f2〉= 〈v,Λ f2〉≤‖Λ f2‖2‖v‖2, 〈v, f2〉6‖v‖‖ f2‖,
〈 c

σ
u, f1

〉

6‖u‖
∥

∥

∥

c

σ
f1

∥

∥

∥

hold, thus these terms can be controlled by
√

E. Meanwhile, E can be used to control
〈v,−cu〉, 1

2

〈

d
dt

(

c
σ

)

u,u
〉

and 〈 c
σ u,λ1u+λ2v〉. Thus, one has:

Ė≤C1E+C2

√
E. (4.2)

By Young’s inequality, we have

Ė≤C1E+C2

√
E≤

(

C1+
C2

2

)

E+
C2

2
.

Let C=C1+C2/2. The Grönwall inequality yields

E(t)≤ eCtE(0)+
eCtC2

2C
.

This implies that E is bounded in finite time. This is consistent with the hyperbolicity.

4.1 Convergence of the semi-discretization

In this subsection, we discretize spatial variables first and then show that the semi-
discretization is convergent. As mentioned in Section 2.2, we use the Fourier pseudo-
spectral method for spatial discretization. However, for the variable-coefficient case, we
desire to damp high-frequency modes to gain sufficient smoothness so that some desired
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properties hold (see Lemma 4.4 and Section 4.3 below). Therefore, we introduce the filter
function ρ on the Fourier side [6].

We use N-vectors Uh and Vh to approximate u(τ,t) and v(τ,t) respectively. Let
σ,g1,g2,c be restricted to the grid points. Given a filter function ρ: (−π,π]→R, we denote
the operator with symbol ρh(k)=ρ(hk) by ρ̌h, i.e.,

g= ρ̌h f means ĝk =ρ(hk) f̂k , k∈ [N]∗ .

Then, we have the filtered version of action of operators on N-vectors:

Dρ= ρ̌hD f , Lρ = ρ̌hL f . (4.3)

The hugest advantage of this filter function is its generalization and flexibility. First, it
includes some typical finite difference schemes. For instance, the centered difference on
torus (Dcu)j =

1
2h (uj+1−uj−1) can be regarded as a filtered Fourier differentiation with

filter ρ(ξ)= sin(ξ)
ξ . Second, if a filter is unnecessary, one can simply set ρ=1.

We will assume the following conditions for the filter function:

Condition 4.1. • ρ≥0, even and ρ∈C2(−π,π] (Note that ρ may not be C2 on torus).

• There exists r∈N+ such that

sup
ξ∈(0,π)

|ξ|−r |ρ(ξ)−1|<∞. (4.4)

Because ρ is non-negative, we can then define the natural discrete Sobolev norms
associated with ρ to be

‖ f‖2
H1

h
:=‖ f‖2

2+‖Dρ f‖2
2, ‖ f‖2

H1/2
h

:= ∑
k∈[N]∗

(1+|k|ρ(kh))| f̂k |2. (4.5)

From Lemma 2.1, we have following properties:

Lemma 4.1. Suppose f ,g are two N-vectors. Then integration by parts formulas hold:

〈 f ,Dρg〉=−〈Dρ f ,g〉, 〈 f ,Hg〉=−〈H f ,g〉, 〈 f ,Lρg〉= 〈Lρ f ,g〉.
These formulas are guaranteed by Parserval’s equality. In fact:

〈 f ,Dρg〉=2π ∑
k∈[N]∗

f̂ ρ(kh)ikĝk =−2π ∑
k∈[N]∗

(

ikρ(kh) f̂k

)

ĝk =−〈Dρ f ,g〉.

Other equalities can be similarly checked and we omit the details.
With the filter function, we discretize the system in space with the filtered pseudo

Fourier spectral method, while keeping time continuous:










dUh

dt
=σLρVh+λ1Uh+λ2Vh+ f1,

dVh

dt
=−cUh+ f2.

(4.6)
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Here σ,c,λ1,λ2, f1, f2 are also discretized in space, but continuous in time, i.e., they are
evaluated at the grid points.

To prove convergence, we first check the consistency of this discretization. By Fourier
analysis and the aliasing formula, we have the following lemma:

Lemma 4.2. Let ϕ∈C∞(T) and N∈N. Then, the restriction f =( f j)=(ϕ(θj)) of ϕ to the grid
points satisfies

(Dρ f )j−ϕ′(θj)=R1(θj,h,r)hr , (Lρ f )j−(Λϕ)(θj)=R2(θj,h,r)hr , j∈ [N], (4.7)

where Ri : T→R (i= 1,2) are functions with |∂α
θ Ri(θ,h,r)| bounded uniformly in θ and h, for

any α∈N.

Proof of this lemma can be found in [26]. As a corollary of Lemma 4.2, we have the
following consistency result which is direct:

Lemma 4.3. Assume that the exact solution to (1.6) is (u,v) ∈ C∞(T×[0,T]) and the filter
satisfies (4.4). Let Ue =(u(θj,t)), Ve =(v(θj,t)), i.e. the restriction of exact solutions on grids.
Then we have











dUe

dt
=σLρVe+λ1Ue+λ2Ve+ f1+R3(θj,t;h)h

r ,

dVe

dt
=−cUe+ f2+R4(θj,t;h)h

r ,

(4.8)

where Ri(·,·;h)hr (i=3,4) are the local truncations errors and Ri(·,·;h) (i=3,4) are two smooth
functions on T×[0,T] with Wα,∞ norms uniformly bounded in h for any α∈N.

Now we show the convergence of the semi-discretized equations (4.6).

Proposition 4.1. Consider (1.6) with σ≥ σ0 > 0 and c≥ c0 > 0. Assume that all the coef-
ficients are smooth. Let the exact solution to (1.6) be (u,v)∈C∞(T×[0,T]). Let r be the
constant in (4.4). Let (Ue,Ve) be the restriction of the exact solution to grid and (Uh,Vh) be
the numerical solution given by the pseudo-spectral method (4.6) with the same initial
values. Then there exists a constant M(T)>0, such that ∀t∈ [0,T]:

‖Uh(t)−Ue(t)‖2 ≤M(T)hr ,

‖Vh(t)−Ve(t)‖H1/2
h

≤M(T)hr .
(4.9)

Proof. Define the error vectors

eu =Uh−Ue, ev=Vh−Ve. (4.10)

Taking the difference of Eqs. (4.6) and (4.8), we find the error functions satisfy the follow-
ing equations











deu

dt
=σLρev+λ1eu+λ2ev+R3hr ,

dev

dt
=−ceu+R4hr .

(4.11)
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Consider the energy functional for this ODE system (analogy to (4.1))

E=
1

2

(

〈Lρev,ev〉+‖ev‖2
2+〈 c

σ
eu,eu〉

)

. (4.12)

Note that 〈Lρev,ev〉+〈ev,ev〉=‖ev‖2
H1/2

h

and 〈 c
σ eu,eu〉 is equivalent to ‖eu‖2

2 (i.e. there exist

C1>0, C2>0 such that C1‖eu‖2
2≤〈 c

σ eu,eu〉≤C2‖eu‖2
2).

Therefore,

dE

dt
=

〈

Lρev,
dev

dt

〉

+

〈

c

σ
eu,

deu

dt

〉

+
1

2

〈

d

dt

( c

σ

)

eu,eu

〉

+

〈

ev,
d

dt
ev

〉

.

According to Eq. (4.11),
〈

Lρev,
dev

dt

〉

+

〈

c

σ
eu,

deu

dt

〉

= 〈R4hr ,Lρev〉+
〈 c

σ
eu,λ1eu+λ2ev+R3hr

〉

= 〈(LρR4)h
r ,ev〉+

〈 c

σ
eu,λ1eu+λ2ev+R3hr

〉

≤M1

√
Ehr+M2E. (4.13)

In the first estimate, we used the fact that LρR4 is uniformly bounded by the smoothness

of the error (by Lemma 4.3). The last term d〈ev,ev〉
dt is straightforward:

d〈ev,ev〉
dt

=2〈ev,−ceu+Rhr〉

≤M2(‖eu‖2
2+‖ev‖2

2+‖ev‖2hr).

We have

dE

dt
≤M(E+

√
Ehr) ⇒ d

dt

√
E≤ M

2
(
√

E+hr).

By Grönwall’s inequality, we finally obtain
√

E≤M(T)hr , ∀ 0≤ t≤T,

which leads to our estimate for the error directly.

4.2 Time discretization

In this section, we aim to study the spatial operators on the right-hand side of (4.6). In
particular, we are interested in the eigenvalues of the operators, which will shed light
on the time discretization of the ODE system (4.6). The strategy is similar as that in
Section 3, i.e. we introduce a similar transformation given by P(t) so that the stiff part
of the operator scaling as 1√

h
becomes anti-symmetric. For the convenience of further

discussion, we introduce the notion of smoothing operators which is an analogy to the
big-O notation introduced in [6]:
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Definition 4.1. Let A={AN} be a family of operators indexed by N. We define its action
on N-vector f as A( f ) := AN( f ). We say that A is m-th order smoothing, if there exists
C>0 independent of N such that for any vector f we have

‖A(Dp f )‖2 ≤C‖ f‖2, ‖Dp
ρ (A( f ))‖2 ≤C‖ f‖2, ∀0≤ p≤m.

If A is m-th order smoothing, we denote it as A−m.

We note that hDρ =A0 since |kh|≤π. Recall a lemma from [6]

Lemma 4.4. For ϕ∈C∞, let [ϕ,H]·= ϕH·−H(ϕ·) be the commutator between ϕ and H (H is
the discrete Hilbert Transform defined in (2.8)). Assume that Condition 4.1 holds for ρ. Let EN

represent the set of N-vectors. If ρ(π)=0, then

[ϕ,H](ρ̌hω)=A−1(ω), ∀ω∈EN ; (4.14)

if ρ(π)=0 and ρ′(π)=0 hold, then

[ϕ,H](ρ̌hω)=A−2(ω), ∀ω∈EN . (4.15)

We denote the operator on the right hand side of (4.6) as A(t) : E
2
N →E

2
N :

A(t)

(

u
v

)

=

(

σLρv
−cu

)

, (4.16)

so that (4.6) can be rewritten as

d

dt

(

Uh

Vh

)

=A(t)

(

Uh

Vh

)

+

(

λ1Uh+λ2Vh

0

)

+

(

f1

f2

)

.

We also define the operators P(t) : E
2
N →EN×Q⊂E

2
N and P−1(t) : EN×Q→E

2
N as

P(t)

(

u
v

)

:=

(

u

Λ1/2
ρ (

√

σ
c v)

)

,

P−1(t)

(

u
v

)

:=

(

u
√

c
σ Λ−1/2

ρ v

)

.

(4.17)

Here, the set Q is the following subspace of EN :

Q=

{

v∈EN : ‖v‖Q := ∑
k∈[N]∗

1

ρ(kh)|k| |v̂k|2<∞

}

.

We have the following theorem:
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Theorem 4.1. Suppose that the filter satisfies Condition 4.1 and ρ(π)=0. Then, we can decom-
pose the operator A(t) (Eq. (4.16)) as

A(t)=
1√
h

P(t)−1A1(t)P(t)+P(t)−1A2(t)P(t), (4.18)

(recall h=2π/N), where the linear operators A1(t) : E
2
N →E

2
N and A2(t) : EN×Q→E

2
N satisfy

(i) The ranges of Ai(t) are contained in EN×Q. A1(t) is anti-symmetric and there exist con-
stants N0>0,C>0 independent of h such that

∥

∥

∥

∥

A1(t)

(

u
v

)∥

∥

∥

∥

2

≤C(‖u‖2+‖v‖2),

∥

∥

∥

∥

A2(t)

(

u
v

)∥

∥

∥

∥

2

≤C‖v‖Q, ∀N≥N0.

(ii) The eigenvalues of P(t)−1A1(t)P(t) are purely imaginary whose norms are bounded by a
constant C> 0 independent of N. The eigenvalues of P(t)−1A2(t)P(t) are bounded by a
constant C>0s independent of N.

Proof. We consider the operator B(t) whose domain is Q, defined by

B(t) :=P(t)A(t)P(t)−1.

Then, it is given by:

B(t)

(

u
v

)

=

(

σΛρ

(

√

c
σ Λ−1/2

ρ v
)

−Λ1/2
ρ (

√
σcu)

)

.

We then define A1(t) as

(

u
v

)

7→A1(t)

(

u
v

)

:=
√

h

( √
σcΛ1/2

ρ v

−Λ1/2
ρ (

√
σcu)

)

,

and A2(t) :=B(t)− 1√
h

A1(t) is given by

A2(t)

(

u
v

)

=

(

σ
[

Λρ,
√

c
σ

]

(Λ−1/2
ρ v)

0

)

.

We can directly verify that the ranges of Ai are in EN×Q. Moreover, A1 is bounded and
anti-symmetric.

Now we focus on A2. Note that
[

Λρ,

√

c

σ

]

(Λ−1/2
ρ v)=Dρ

[

H,

√

c

σ

]

(Λ−1/2
ρ v)+

[

Dρ,

√

c

σ

]

HΛ−1/2
ρ v.

Denote w=Λ−1/2
ρ v and it is clear that

‖w‖2 ≤C‖v‖Q.
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By Lemma 4.4, the first term is

DρA−1(w)=A0(w).

The second term, by the discrete product rule in [6] is also A0(w). This then verifies (i).
For (ii), we see that the action of P(t)−1Ai(t)P(t) (i = 1,2) are well-defined for all

(u,v)∈E
2
N . Hence, they can be understood as matrices. For P(t)−1A1P(t), because A1 is

antisymmetric and bounded, so (ii) holds. We now focus on P(t)−1A2P(t). Suppose that
(u,v) is a complex eigenvector in E

2
N , so that

P(t)−1A2P(t)

(

u
v

)

=λ

(

u
v

)

.

Denote

(

u1

v1

)

=P(t)

(

u
v

)

|λ|(‖u‖2+‖v‖2)=

∥

∥

∥

∥

P(t)−1A2P(t)

(

u
v

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

A2P(t)

(

u
v

)∥

∥

∥

∥

2

≤C‖v1‖Q≤C‖v‖2.

This then shows (ii).

By Theorem 4.1, we prove that the leading order structure of A(t) is an anti-symmetric

operator, whose eigenvalues are purely imaginary, and scales as 1/
√

h. Therefore, if we
use ODE solvers whose stability region contains some part of the imaginary axis, such as
the explicit RK-p methods with p≥3, then we expect the stability condition is still

τ√
h
≤C

for variable coefficient cases.

4.3 Comments on linear systems with transport terms

Recall the following linear systems:

ut=σ(θ,t)Λv+b(θ,t)∂θ u+g1,

vt =−c(θ,t)u+b(θ,t)∂θ v+g2,
(4.19)

where σ,c,b are given coefficient functions, and g1,g2 include lower order terms. The
transport terms affect the discretization in two aspects:

(i) First of all, a filtered version of Lρ and Dρ which satisfies ρ(π)=0, ρ′(π)=0 is needed
to dampen high frequency modes so that the discretized energy is still stable.
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To see this, let us consider the continuous version of the equations, and consider the
same energy functional (4.1). One can estimate Ė similarly as before except for term
〈Λv,b∂θv〉. To estimate this term, we find

∫

T

(Λv)b∂θvdθ=−1

2

∫

T

∂θv[H,b](∂θv)dθ=
1

2

∫

T

v∂θ([H,b]∂θv)dθ,

where [H,b]=Hb−bH is the commutator. Note that b is smooth. Thus the commu-
tator [H,b]∂θv gives a convolution between a smooth function and ∂θv. It follows
that

1

2

∫

T

v∂θ([H,b]∂θv)dθ≤C
∫

T

v2dθ.

Therefore, 〈Λv,b∂θv〉 can also be bounded by the L2-norm of v which ensures that
Ė≤C1E+C2

√
E still holds.

Unfortunately, the same estimate does not work again for the discrete case. A fil-
ter function is necessary for a stable energy. In fact, for the discretized Hilbert
transform, [H,b] is not smooth in general. In [6], the authors found that [H,b]
may not even be A−1. By Lemma 4.4, one needs a filter ρ so that the commuta-
tor [H,b]ρ̌=A−2, which has the smoothing effect to ensure that

Ė≤C1E+C2

√
E

still holds.

(ii) On the other side, conventional numerical treatments on the transport terms require
the CFL condition of the form

τ

h
≤C.

This condition is much more restrictive compared with (3.9), which could be re-
solved using semi-Lagrangian method [16, 21].

5 Regarding water wave simulation

In Section 1, we explained that the nonlocal hyperbolic systems (1.6) and (4.19) are closely
related to water wave equations with infinite depth. In this section, we provide sufficient
insight into how our results of the nonlocal system imply the stability conditions for the
simulation of water wave equations.

Recall the linearization of (1.2), which leads to (1.3). Indeed, this linearization hap-
pens for the numerical schemes as well. In [6], the authors proposed a filtered pseudo-
spectral differentiation method to discretize the spatial variables. On the basis of condi-
tion 1, they also assumed that the filter satisfies (i) ρ(π)=0 and ρ′(π)=0; (ii) there exists
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r≥4 such that |ρ(ξ)−1|≤C|ξ|r for ξ∈(−π,π]. Let j∈ [N] and (zj,φj,γj) be the numerical
solutions at the grid points. Then, the discretization to (1.2) is given by (Eqs. (7)-(9) in [6])











































d

dt
z̄j =

1

4πi

N/2

∑
p=−N/2+1, p−j odd

γpcot
( ρ̌zj− ρ̌zp

2

)

2h+
γj

2(1+Dρ(zj−αj))
=: wj ,

d

dt
φj=

1

2
|wj|2−gyj,

Dρφj=
γj

2
+Re

[

1+Dρ(zj−αj)

4πi

N/2

∑
p=−N/2+1, p−j odd

γpcot
( ρ̌zj− ρ̌zp

2

)

2h

]

.

(5.1)

To control the numerical error, the authors in [6] introduced the following functions:

ηj(t)= Im

[

(zj(t)−z(αj ,t))
zα(αj,t)

|zα(αj,t)|

]

,

δj(t)=Re

[

(zj(t)−z(αj,t))
zα(αj,t)

|zα(αj,t)|

]

+(Hη)j ,

ζ j =(φj(t)−φ(αj,t))−Re(wj(zj(t)−z(αj,t)).

(5.2)

Moreover, they assumed the strong Taylor sign condition (Eq. (88) in [6])

c(α,t) :=−∂n p≥ c0 >0

and that the true solutions are smooth with

σ(α,t) :=
1

|zα|
≥σ0>0.

Based on these assumptions, the authors in [6] found that these variables for errors satisfy
the following semi-linear non-local hyperbolic system (Eqs. (89)-(91)):

∂tηj =σ(αj,t)(Λζ)j+A0(η,δ)+A0(ζ)+R5(h)h
r ,

∂tζ j =−c(αj,t)ηj+
1

2
|wj(t)−w(αj,t)|2,

∂tδj=A0(η,δ,ζ)+R6(h)h
r .

(5.3)

See Definition 4.1 for A0. The leading order behavior of the semi-linear system (5.3) is
exactly (1.3), the nonlocal hyperbolic system. Making use of this hyperbolic structure, the
authors showed that the semi-discrete system (5.1) converges to the original water wave
problem (1.2). However, there was no discussion about time discretization.

Therefore, given the same linearization effect on both continuous equations and nu-
merical schemes, we expect that similar stability conditions hold for both (1.6) and the
water wave equation. Because the errors satisfy the leading order equation of the non-
local hyperbolic system (1.3) or (1.6), previous discussion in (4.2) convinced us that the
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stability conditions for time discretization would be similar to those for (1.6). If one uses
the scheme (5.1) and RK4 for time discretization, a relaxed constraint

τ√
h
≤C,

for stability should be observed. We will examine this numerically in Section 6.

Remark 5.1. According to (1.5), if we discretize the water wave equation based on the
conformal mapping method in [28] instead of the discretization used in the Lagrangian
formulation as in [6], we will have a transport term for the numerical error.

We discuss briefly what happens if the water wave problem is of finite depth H0 >0,
i.e. the fluid is bounded by a rigid plane y =−H0. One of the main interests of water
waves with finite depth is the shallow water wave. Recent research focuses of numerical
simulations and design of numerical schemes of shallow water waves [2, 9, 22]. In this
section, we also comment on the generalization of our results to finite-depth water waves,
not only for shallow water waves.

In this finite-depth case, the potential Φ=Φ(x,y,t) satisfies the boundary condition

∂Φ

∂y
=0 on y=−H0;

the half Laplacian Λ = (−∆)1/2 does not have Fourier symbol |k| any more. Now its
Fourier symbol should be |k|tanh(H0|k|). Therefore, another nonlocal hyperbolic system
similar to equation (1.7) can be derived:

ut=σ(θ,t)Λ1v+g1,

vt=−c(θ,t)u+g2.
(5.4)

Here Λ1 is the non-local operator with Fourier symbol |k|tanh(H0|k|). The derivation of
symbol |k|tanh(H0|k|) can be found in [1].

When c,σ are positive constants and λ1=λ2= g1 = g2 =0 in (5.4), this system reduces
to a non-local linear equation of second order in time:

utt=−µΛ1u. (5.5)

The dispersion relation of (5.5) is then given by ω2=µ|k|tanh(H0|k|).
Notice that tanh(H0|k|) is bounded, thus analogue of Theorem 3.1 and Corollary 3.1

can be proved for discretizations of this new non-local system. If we again adopt Runge-
Kutta methods whose absolute stable region contain some part of the imaginary axis,

then by analogue of Theorem 3.1, the corresponding CFL condition is again τ≤C
√

h; by
analogue of Corollary 3.1, the discretization is energy stable as well.

For the high-frequency regime, one can rescale in time and apply the result for ǫ=1.
The conclusions are again similar.
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In the variable-coefficient case, because Λ1 can be regarded as the composition of the
Hilbert transform and the pseudo-derivative with symbol ktanh(H0|k|), the commutator
estimates in Theorem 4.1 will not change either. This new commutator is smooth at k=0
but it does not help us to damp the high frequency for controlling aliasing errors. Hence,
all the conclusions will be similar to the infinite depth case. We expect that when using
the energy stable Runge-Kutta methods to solve them, the CFL condition is again

τ≤C
√

h.

This will be left for future numerical study.

6 Numerical examples

In this section, we present some simulations to verify our conclusion and carry out careful
numerical experiments. We will introduce our results in the following way: in Section 6.1
and 6.4, we utilize the explicit RK-4 method for the temporal discretization to discretize
both the simplified nonlocal hyperbolic system (1.6) and the water wave equation. We
verify that the stability condition agrees with (3.9) for both systems which are compatible
with our previous analysis. Convergence of the discretization of the nonlocal hyperbolic
system is demonstrated in Section 6.2 and exploration of the nonlocal system in the high-
frequency regime is performed in Section 6.3. Moreover, a turn-over wave example in [6]
is recovered to verify the correctness of our simulation program run in Section 6.4.

For all simulations in this section, periodic boundary conditions are selected. The
(filtered) Fourier spectral method is conducted for spatial discretization.

6.1 Stability conditions of RK methods for the nonlocal hyperbolic system

In this example, we test stability conditions for the nonlocal hyperbolic system (1.6) with
g1=0, g2=0. We consider both the constant-coefficient case with

c=3, σ=1

and the variable-coefficient case with

c(θ,t)=exp(cos(θ+t)), σ(θ,t)=2+sin(θ+t).

We perform simulations for various step sizes using Fourier spectral method in space and
forward Euler (FE) and Runge-Kutta 4 (RK4) for temporal discretization. The numerical
solutions are calculated up to T=10. Results are presented in Fig. 1 where the blue part
represents the unstable region while the yellow part represents the stable region. The
stability in both Section 6.1 and Section 6.4 was determined by the amplitude at a certain
breaking point T0, before the terminal time T. For a certain group of temporal step size
and grid size, If the L∞ norm of the solution at T0 is larger than a threshold (or even
diverges, say ’NaN’), then it is determined as instable. Otherwise, it is stable.
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Figure 1: Stability conditions for nonlocal hyperbolic system (1.6). The first row shows the results for the
constant coefficient (c.c.) case, while the second row shows the results for the variable coefficient case (v.c.).
The two columns are for forward Euler and RK4 respectively. Bottom: Re-plot of second row into h-τ plane.

In the top half of Fig. 1, we plot stability in the
√

h-τ plane. Notice that the borders
for RK4 are more flat and similar to lines. This plot indicates that the stability condition
for RK4 is really (3.9). Meanwhile, the borders for FE are some convex curves similar to a
parabola. Thus the stability condition for FE should be the linear CFL condition τ≤Ch.
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In order to illustrate this point clearly, we zoom in on the figures and re-plot the stable
region in h-τ plane. To check the condition for FE, we re-plot the variable-coefficient case
as shown at the bottom of Fig. 1. The new figure shows that the stability condition for
FE is τ≤Ch. In all cases, the stable region of RK4 is much larger than that of FE, which
indicates that RK4 is more stable than FE.

These results verify our analysis in Sections 3 and 4. Recall that the stability region
for FE only intersects the imaginary axis at z = 0, while RK4 contains some part of the
imaginary axis. Therefore, by Theorem 3.1, the CFL condition for RK4 should be (3.9);
the linear CFL condition sufficiently ensures stability of FE.

6.2 Convergence analysis

In this subsection, we verify the convergence numerically for the nonlocal hyperbolic
system (1.6). For transport terms, we take g1 = 0, g2 = 0. The constant coefficients are
given by

c=3, σ=1.

The initial conditions are given by

u0(θ)= esin(θ)+cos(θ), v0(θ)=cos2(θ).

For the temporal discretization, forward Euler (FE), backward Euler (BE), Crank-
Nicolson (CN) and Runge-Kutta 4 (RK4) are used.

All simulations are computed up to T= 2. The reference solution (or ‘accurate solu-
tion’) is computed using Runge-Kutta 4 with h=2π/27 and τ=10−5. The error plots are
shown in Fig. 2. In Fig. 2(a), spectral accuracy is clearly observed in spatial discretization:
when h≈0.2, the errors have already been dominated by the temporal error. Fig. 2(b) in-
dicates that the temporal errors are of the order as expected. Therefore, our discretization
schemes indeed converge.

6.3 The system in the high-frequency regime

In this section, we investigate the system in the high-frequency regime. In particular, we
aim at verifying whether there is a caustic phenomenon that is similar to [4].

In research of high-frequency waves, a WKB kind initial value is typically considered.
Meanwhile, we rescale the system as in Section 3.3. Therefore, we consider (3.21) with a
selected initial value:















ǫ∂ttu=−µH∂xu, (x,t)∈T1×R
+,

u(x,0)= e−100(x−0.5)2

eilog(20cosh(5x−2.5))/ǫ,

ut(x,0)= e−100(x−0.5)2

eilog(20cosh(5x−2.5))/ǫ.

(6.1)

The initial value consists of a Gaussian function and a high-frequency term. The former
is used to control the support and the latter is a WKB type function.
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Figure 2: Convergence study for forward Euler (blue circles), backward Euler (red stars), Crank-Nicolson (black

crosses) and Runge-Kutta 4 (green squares). (a). Spectral convergence in spatial with τ = 10−5 (b). Time
convergence, with h=2π/27.

In numerical experiments, we select µ = 1 in (6.1) and different rescaling factors:
ǫ = 2−i, i = 4,5,··· ,12. We plot the snapshot of the amplitude at t = 0.0625 for ǫ =
2−4,2−6,2−8,2−10 in Fig. 3. The figure indicates that the amplitude increases when ǫ de-
creases. Remember that the initial value u(x,0) is of an amplitude no greater than 1 for
all different ǫs’, thus this growing trend of the amplitude provides evidence for caustic
phenomenon. To obtain a more careful observation, we check the maximum amplitude
before time t=0.0625 in the whole domain [0,1], and plot the following log-log figure in
Fig. 4. From Fig. 4, we observe that when ǫ is sufficiently small, the curve is almost a line
whose slope is 1, which indicates that the maximum amplitude is approximately propor-
tional to 1/ǫ. This observation also supports the existence of the caustic phenomenon.

6.4 Stability conditions for water wave simulation

In this section, we simulate the water wave equation (Eq. (1.2) with α∈T). As in previous
simulations, the spatial discretization is implemented using the filtered Fourier spectral
method. The filter function we use in this section is the same as in [6, Section 6]:

ρ(ξ)=exp(−10(|ξ|/π)25), ξ∈ (−π,π]. (6.2)

This filter function numerically satisfies the condition ρ(π)=0 and ρ′(π)=0: |ρ(π)| and
|ρ′(π)| are sufficiently small.

To verify that our simulation programs, we first recover the same example in [6, Sec-
tion 6] with turn-over phenomenon. The initial data are given by:

x(α,0)=α,

y(α,0)=0.6cos(α),

γ(α,0)=1+0.6sin(α).

(6.3)



L. Li et al. / Commun. Comput. Phys., 32 (2022), pp. 222-258 253

Figure 3: Snapshot for amplitude |u| versus x at t=0.0625 for different ǫs. (a)∼(d) for ǫ=2−4,2−6,2−8,2−10

respectively.
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Figure 4: Blue circles represent the plot of y= max
t60.0625,x∈[0,1]

log2|u(x,t)| versus z=−log2ǫ−3, where ǫ=2−i,

i = 4,5,··· ,12. Meanwhile, a reference line with a slope of 1 is also drawn to show the quantitative relation
between y (or amplitude) and z (or ǫ).

In the simulation, the spatial grid size is h= 1/512 and the time step size is τ= 1/4000.
we use RK4 for time discretization here. The snapshots of the waves at different times
are shown in Fig. 5. As one can see in the figure below, the same numerical results in [6]
are recovered.
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Figure 5: Turn-over of water waves. As time evolves, the water wave turns over gradually. When the time is
close to 3.75, the wave tends to break.

Now, we numerically investigate the stability condition for the discretization for the
water wave equation. We use the following initial data:

x(α,0)=α,

y(α,0)=0.3cos(α),

γ(α,0)=1+0.3sin(α).

(6.4)

The spatial discretization is performed using the filtered Fourier spectral method with
the same filter in Eq. (6.2). For temporal discretization, we select the FE method and the
RK-4 method. The simulations are performed up to time T=4.

The results are presented in Fig. 6. Same as in Section 6.1, the blue part represents
the unstable region while the yellow part represents the stable region. Also, partially
zoomed-in versions of the figure are presented in the case of FE to clearly check the sta-
bility condition. From this figure, one can tell that the stability condition for RK4 is close

to τ.
√

h, while the stability condition for FE is more similar to τ.h. This observation is
in accordance with our conclusions in Section 5 and previous analysis.
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Figure 6: Stability for water wave equations. The two columns are for forward Euler and RK4 respectively. Top:

Stable regions plotted in
√

h−τ plane. Bottom: Re-plot of the top into h−τ plane.

A Derivation of formulas in section 2.1

On the Fourier side:










ûtt+µ|ξ|û=0, (ξ,t)∈R×R
+,

û(ξ,0)=0,

ût(ξ,0)=1,











ûtt+µ|ξ|û=0, (ξ,t)∈R×R
+,

û(ξ,0)=1,

ût(ξ,0)=0.

(A.1)

The two equations in (A.1) are second order ODE initial value problems, thus the unique
solutions are respectively

Ĝ(ξ,t)=
sin
(

√

µ|ξ|t
)

√

µ|ξ|
, F̂(ξ,t)=cos

(

√

µ|ξ|t
)

.

Performing inverse Fourier transform on Ĝ, F̂ derives the solutions to equations in (2.6),
namely the Green function G(x,t) and its time derivative F(x,t):

G(x,t)=
∫

R

sin
(

√

µ|ξ|t
)

√

µ|ξ|
e2πiξxdξ, F(x,t)=

∫

R

cos

(

√

µ|ξ|t
)

e2πiξxdξ. (A.2)



256 L. Li et al. / Commun. Comput. Phys., 32 (2022), pp. 222-258

With some computation, G(x,t),F(x,t) can be represented by Fresnel integral C(x) and
S(x), which are defined in the following way:

C(x)=
∫ x

0
cos(z2)dz, S(x)=

∫ x

0
sin(z2)dz. (A.3)

The expression of G(x,t) is so complicated that we have to omit it here, but it is similar
to the one of F(x,t), which is

F(x,t)=

√
µt

(

C

(
√

µt2

2π|x|

)

+sin

(

µt2

4|x|

)

S

(
√

µt2

2π|x|

))

|x|3/2
. (A.4)

After deriving G(x,t) and F(x,t), we can now move onto the following general case,
Formula (2.5) can be derived in the following way. On the Fourier side, (2.4) turns

into










ûtt+µ|ξ|û=0, (ξ,t)∈R×R
+,

û(ξ,0)= f̂ (ξ),

ût(x,0)= ĝ(ξ).

(A.5)

f̂ (ξ), ĝ(ξ) are the Fourier Transform of f (x),g(x) respectively. Recall that Ĝ(ξ,t), F̂(ξ,t)
in (2.7) are solutions to the two ODEs in (A.1) respectively. Therefore, by principle of
superposition, the solution of (A.5) can be written as

û(ξ,t)= f̂ (ξ)F̂(ξ,t)+ ĝ(ξ)Ĝ(ξ,t). (A.6)

Remember that Fourier Transform turns convolution into multiplication, namely the
Fourier Transform of f ∗g is f̂ ĝ exactly. Hence, if we perform Inverse Fourier Transform,
we can get that

u(x,t)= f (x)∗F(x,t)+g(x)∗G(x,t),

which is (2.5).

B Proof of Lemma 3.1

The proof of this lemma employs the following lemma in [14] which provides the explicit
formula of f (τ,ν):

Lemma B.1. Denote e as vector of ones. For the linear test equation y′ = λy, the RK method
applied to this equation reduces to yn+1= f (τλ)yn , with f (z) given by

f (z)=1+zwT(I−zG)−1e=
det
(

I−zG+zewT
)

det(I−zG)
. (B.1)

Here G is the Runge-Kutta matrix and w are the weights.
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By Lemma B.1, we have

f (τ,ν)=
det
(

I−τλ1G+τλ1ewT
)

det(I−τλ1G)
. (B.2)

Remember that λ1= i
√

ν, thus a direct computation yields

|det(I−τλ1G+τλ1ewT)|= |det(I−iτ
√

ν(G−ewT))|

=
√

|det(I−iτ
√

ν(G−ewT))||det(I+iτ
√

ν(G−ewT))|

=
√

|det((I−iτ
√

ν(G−ewT))(I+iτ
√

ν(G−ewT)))|

=
√

|det(I+τ2ν(G−ewT)2)|,

and |det(I−τλ1G)|=
√

|det(I+τ2νG2)| holds for the same reason. Therefore,

| f (τ,ν)|= |det(I−τλ1G+τλ1ewT)|
|det(I−τλ1G)| =

√

|det(I+τ2ν(G−ewT)2)|
|det(I+τ2νG2)| .
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