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Abstract. For conformal Hardy-Littlewood-Sobolev(HLS) inequalities [22] and re-
versed conformal HLS inequalities [8] on Sn, a new proof is given for the attainability
of their sharp constants. Classical methods used in [22] and [8] depends on rearrange-
ment inequalities. Here, we use the subcritical approach to construct the extremal
sequence and circumvent the blow-up phenomenon by renormalization method. The
merit of the method is that it does not rely on rearrangement inequalities.
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1 Introduction

The conformal Hardy-Littlewood-Sobolev(HLS) inequality on Rn is∣∣∣∣∫
Rn

∫
Rn

f (x)g(y)
|x− y|n−α

dxdy
∣∣∣∣ ≤ Nn,α‖ f ‖pα‖g‖pα , 0 < α < n, pα =

2n
n + α

, (1.1)

where

Nn,α = π(n−α)/2 Γ(α/2)
Γ((n + α)/2)

(
Γ(n)

Γ(n/2)

)α/n

is the best constant. Lieb [22] proved that the extremal functions of (1.1) are radial sym-
metric by rearrangement inequalities, and obtained the sharp constant by the conformal
symmetries of (1.1). Different discussions can be found in [3, 23]. Recently, the classifica-
tion of the solutions for the Euler-Lagrange equation of (1.1) was given in [4] and [21] by
the method of moving planes and the method of moving spheres, respectively.
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For α > n, Dou and Zhu [8] (also see [2,24]) established a class of reversed conformal
HLS inequalities ∫

Rn

∫
Rn

f (x)g(y)
|x− y|n−α

dxdy ≥ Ñn,α‖ f ‖pα‖g‖pα , (1.2)

where Ñn,α = Nn,α is the best constant. Employing the rearrangement inequalities and the
method of moving spheres, they obtained the sharp constant and classified the solutions
of the corresponding Euler-Lagrange equation.

As stated above, it can be found that rearrangement inequalities, the method of mov-
ing planes and the method of moving spheres are basic and important tools for studying
the HLS inequalities. More applications of these techniques can be found in the study
of HLS type inequalities and reversed HLS type inequalities on the upper half space
(see [6, 9, 18, 25] and the references therein).

Heisenberg group is one of the simplest noncommutative geometries and is the model
space of CR manifolds. It is natural that we want to generalize these traditional methods
on Heisenberg group. But, because of the non-commutativity, rearrangement inequal-
ities, the method of moving planes and the method of moving spheres don’t work ef-
ficiently on Heisenberg group. In this paper, we will try a class of rearrangement free
method and give a new proof for the existence of the extremal functions of (1.1) and (1.2).
Recently, we successfully generalize the method to study the reversed HLS inequalities
on the Heisenberg group (see [15]).

From [22] and [8], we know that the extremal functions of (1.1) and (1.2) have the
form

fε(x) = c1gε(x) = c
(

ε

ε2 + |x− x0|2

)(n+α)/2

,

where c1, c and ε are constants, x0 is some point in Rn. Note that fε and gε will blow
up as ε → 0+, and vanish as ε → +∞. The phenomenon makes it difficult to study
the extremal problems. To overcome the difficulty, we often renormalize the extremal
sequence. For example, Lieb [22] renormalized the extremal sequence { f j(x)} so that it
satisfies f j(x) > β > 0 if |x| = 1. The technique can also be found in [8].

Recently, Dou, Guo and Zhu [6] adopted a subcritical approach to study sharp HLS
type inequalities on the upper half space. By Young inequality, they first established two
classes of HLS type inequalities with subcritical power on a ball. Then, using the confor-
mal transformation between ball and upper half space and the method of moving planes,
they proved that the extremal functions of HLS type inequalities with subcritical power
are constant functions. Passing to the limit from subcritical power to critical power, they
obtained two classes of sharp HLS type inequalities on the upper half space.

In their approach, we note three advantages. First, extremal functions of HLS type in-
equalities with subcritical power satisfy the corresponding Euler-Lagrange equation, by
which we can study the regularity of theses functions. Second, as power approach to criti-
cal, the corresponding extremal functions form a extremal sequence to the extremal prob-
lem of HLS type inequalities with critical power. Third, since these extremal functions of
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HLS type inequalities with subcritical power are constant functions, we can choose every
extremal function to be f ≡ 1 and avoid efficiently the blow-up phenomenon.

Since the method of moving planes and the method of moving spheres don’t work
efficiently on the Heisenberg group, it is not easy to prove the extremal functions of HLS
inequalities with subcritical power on the CR sphere to be constant function. So, we will
combine the subcritical approach and renormalization method and give a new proof of
the existence of the extremal functions of (1.1) and (1.2). Moreover, our method doesn’t
depend on rearrangement inequalities, the method of moving planes and the method of
moving spheres, and can circumvent the blow-up phenomenon.

By stereographic projection S : x ∈ Rn → ξ ∈ Sn\S defined by

ξ j :=
2xj

1 + |x|2 for j = 1, 2, · · · , n, ξn+1 :=
1− |x|2
1 + |x|2 ,

with S = (0, · · · , 0,−1) being the south pole, (1.1) is equivalent to the HLS inequality on
Sn stated as, for 0 < α < n and any f , g ∈ Lpα(Sn),∣∣∣∣∫

Sn

∫
Sn

f (ξ)|ξ − η|α−ng(η)dξdη

∣∣∣∣ ≤ Nn,α‖ f ‖Lpα (Sn)‖g‖Lpα (Sn), (1.3)

and (1.2) is equivalent to the reversed HLS inequality on Sn stated as, for α > n and any
nonnegative function f , g ∈ Lpα(Sn),∫

Sn

∫
Sn

f (ξ)|ξ − η|α−ng(η)dξdη ≥ Ñn,α‖ f ‖Lpα (Sn)‖g‖Lpα (Sn), (1.4)

where dξ and dη denote the surface measure of Sn.
When 0 < α < n, we introduce conventionally the following duality form of HLS

inequality (∫
Sn
|Iα f |qα dξ

)1/qα

≤ C(n, α)

(∫
Sn
| f |pα dξ

)1/pα

, ∀ f ∈ Lpα(Sn), (1.5)

where
Iα f (ξ) =

∫
Sn
|ξ − η|α−n f (η)dη,

|ξ − η| is the chord distance on Sn and qα = 2n
n−α is the conjugate number of pα. Define

the corresponding extremal problem as

Nn,α := sup{‖Iα f ‖Lqα (Sn) : ‖ f ‖Lpα (Sn) = 1}

= sup
{‖Iα f ‖Lqα (Sn)

‖ f ‖Lpα (Sn)
: f ∈ Lpα(Sn)\{0}

}
. (1.6)

Then, by our method, we can prove the attainability of Nn,α.
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Theorem 1.1. For α ∈ (0, n), sharp constant Nn,α is attained.

Since qα < 0 when α > n, we think that the bilinear form (1.4) is easier to study
than its duality form. As convention, the extremal problem of reversed HLS inequality is
defined as

Ñn,α := inf
{∫

Sn

∫
Sn

f (ξ)g(η)
|ξ − η|α−n dξdη : f ≥ 0, g ≥ 0, ‖ f ‖Lpα (Sn) = ‖g‖Lpα (Sn) = 1

}
= inf

{∫
Sn

∫
Sn f (ξ)|ξ − η|α−ng(η)dξdη

‖ f ‖Lpα (Sn)‖g‖Lpα (Sn)
: f ≥ 0, g ≥ 0, f , g ∈ Lpα(Sn) \ {0}

}
. (1.7)

Then, we can prove the attainability of Ñn,α.

Theorem 1.2. For α > n, sharp constant Ñn,α is attained.

Since pα ∈ (0, 1) and nonlinear terms with negative power appears in the Euler-
Lagrange equations of (1.7) (see Section 3), the variational problem (1.7) is analytically
different from the case α ∈ (0, n). Moreover, we need not only a upper bound to control
the blow up of the sequence, but also a lower bound to avoid the blow up of terms with
negative power. So, different techniques are needed for the extremal problem (1.7). More
details can be seen in Section 3.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.1.
In Section 3, we consider the case α > n and prove Theorem 1.2.

2 Case of 0 < α < n

2.1 Subcritical HLS inequalities

Let p ∈ (pα, min{2, n
α}).

Proposition 2.1. There exists positive constant Nn,α,p such that for any f ∈ Lp(Sn), it holds(∫
Sn
|Iα f |qα dξ

)1/qα

≤ Nn,α,p

(∫
Sn
| f |pdξ

)1/p

, (2.1)

where Nn,α,p is sharp and can be attained by some positive function fp ∈ Lp(Sn) satisfying
‖ fp‖Lp(Sn) = 1. Moreover, fp satisfies the following Euler-Lagrange equation

Nqα
n,α,p f p−1

p (ξ) =
∫

Sn
|ξ − η|α−n(Iα fp)

qα−1(η)dη (2.2)

and fp ∈ Cγ(Sn) with

γ =


α, if 0 < α < 1,
1
2

, if α = 1,

1, if α > 1.
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Proof. By Young’s inequality, we know that there exists some positive constant C such
that

‖Iα f ‖Lqα (Sn) ≤ C‖ f ‖Lp(Sn)

holds for any f ∈ Lp(Sn). Through a similar argument as Proposition 2.3 of [27], we
prove that Iα : Lp(Sn)→ Lqα(Sn) is compact. Combining the theory of reflexive space, we
get the existence of nonnegative extremal function fp of (2.1). So, fp satisfies (2.2) and fp
is positive.

It is routine that fp ∈ L∞(Sn) and Iα fp ∈ L∞(Sn) are got by iteration (details can be
found in [7, 11, 13]).

If α > 1, we find that∫
Sn

∣∣∣∣ ∂

∂ξi
|ξ − η|α−n(Iα fp)

qα−1(η)

∣∣∣∣ dη ≤ C
∫

Sn
|ξ − η|α−n−1, i = 1, 2, · · · , n + 1,

converges uniformly for ξ ∈ Sn. So,

Nqα
n,α,p

∂ f p−1
p

∂ξi
=
∫

Sn

∂

∂ξi
|ξ − η|α−n(Iα fp)

qα−1(η)dη,

∂ fp

∂ξi
= (q− 1)( f p−1

p )q−2 ∂ f p−1
p

∂ξi
,

with 1
p +

1
q = 1. Namely, fp ∈ C1(Sn) for α > 1.

If α ∈ (0, 1), we can prove f ∈ Cα(Sn) by a similar argument of Lemma 4.3 of [13]. In
fact, for any ξ1, ξ2 ∈ Sn and denoting

g(ξ) = Nqα
n,α,p f p−1

p (ξ),

we have

|g(ξ1)− g(ξ2)| ≤C
∫

Sn

∣∣∣|ξ1 − η|α−n − |ξ2 − η|α−n
∣∣∣dη

=C
∫
|ξ2−η|≥2|ξ1−ξ2|

∣∣∣|ξ1 − η|α−n − |ξ2 − η|α−n
∣∣∣dη

+ C
∫
|ξ2−η|<2|ξ1−ξ2|

∣∣∣|ξ1 − η|α−n − |ξ2 − η|α−n
∣∣∣dη

=:I + I I. (2.3)

If |ξ2 − η| ≥ 2|ξ1 − ξ2|, then

|ξ1 − η| ≥ |ξ2 − η| − |ξ1 − ξ2| ≥
1
2
|ξ2 − η|,∣∣∣|ξ1 − η|α−n − |ξ2 − η|α−n

∣∣∣ ≤ C|ξ2 − η|α−n−1|ξ1 − ξ2|.
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So,
I ≤ C|ξ1 − ξ2|

∫
|ξ2−η|≥2|ξ1−ξ2|

|ξ2 − η|α−n−1dη ≤ C|ξ1 − ξ2|α. (2.4)

On the other hand,

I I ≤C
∫
|ξ1−η|≤3|ξ1−ξ2|

|ξ1 − η|α−ndη + C
∫
|ξ2−η|<2|ξ1−ξ2|

|ξ2 − η|α−ndη

≤C|ξ1 − ξ2|α. (2.5)

Combining (2.3), (2.4) and (2.5), we have g ∈ Cα(Sn) and then f ∈ Cα(Sn).
If α = 1, then

|g(ξ1)− g(ξ2)|

≤
∫

Sn
|ξ1 − η| 12

∣∣∣|ξ1 − η| 12−n − |ξ2 − η| 12−n
∣∣∣dη

+
∫

Sn

∣∣∣|ξ1 − η| 12 − |ξ2 − η| 12
∣∣∣|ξ2 − η| 12−ndη

≤2
1
2

∫
Sn

∣∣∣|ξ1 − η| 12−n − |ξ2 − η| 12−n
∣∣∣dη + |ξ1 − ξ2|

1
2

∫
Sn
|ξ2 − η| 12−ndη

≤C|ξ1 − ξ2|
1
2 ,

namely, g ∈ C1/2(Sn). So, f ∈ C1/2(Sn).

2.2 Maximizing sequence

In this subsection, we will prove that sequence { fp} is a maximizing sequence of (1.6) as
p→ p+α .

Lemma 2.1. Nn,α,p → Nn,α as p→ p+α .

Proof. Take fp ∈ Lp(Sn) be the maximizer given by Proposition 2.1. Namely, fp satisfies

Nn,α,p = ‖Iα fp‖Lqα (Sn) with ‖ fp‖Lp(Sn) = 1.

Let

f̃p =
fp

‖ fp‖Lpα (Sn)

and then

Nn,α,p =‖ fp‖Lpα ‖Iα f̃p‖Lqα (Sn) ≤ |Sn|
1

pα
− 1

p ‖Iα f̃p‖Lqα (Sn)

≤|Sn|
1

pα
− 1

p Nn,α → Nn,α as p→ p+α .

So,
lim sup

p→p+α

Nn,α,p ≤ Nn,α. (2.6)
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Take smooth function sequence { fk} ⊂ Lpα(Sn) being a maximizing sequence of Nn,α.
Namely,

Nn,α = lim
k→+∞

‖Iα fk‖Lqα (Sn)

‖ fk‖Lpα (Sn)
.

For any p ≥ pα, let f̃k =
fk

‖ fk‖Lp(Sn)
and then

Nn,α,p ≥ ‖Iα f̃k‖Lqα (Sn) =
‖Iα fk‖Lqα (Sn)

‖ fk‖Lp(Sn)
. (2.7)

We firstly send p to p+α in (2.7) and get

lim inf
p→p+α

Nn,α,p ≥
‖Iα fk‖Lqα (Sn)

‖ fk‖Lpα (Sn)
.

Then let k→ +∞ and deduce that

lim inf
p→p+α

Nn,α,p ≥ Nn,α. (2.8)

Combining (2.6) and (2.8), we complete the proof.

Lemma 2.2. Function sequence { fp} given by Proposition 2.1 is a maximizing sequence of Nn,α,
namely,

Nn,α = lim
p→p+α

‖Iα fp‖Lqα (Sn)

‖ fp‖Lpα (Sn)
. (2.9)

Proof. By the definition of Nn,α,

Nn,α ≥
‖Iα fp‖Lqα (Sn)

‖ fp‖Lpα (Sn)
≥
‖Iα fp‖Lqα (Sn)

|Sn|
1

pα
− 1

p
.

Letting p→ p+α and using Lemma 2.1, we get (2.9).

Remark 2.1. By Lemma 2.1 and Lemma 2.2, we have

lim
p→p+α

‖ fp‖Lpα (Sn) = 1.

2.3 Proof of Theorem 1.1

Proof. In the following, we will construct a maximizer for the extremal problem (1.6)
from the maximizing sequence { fp}. Since the rotational invariance of (2.1) and (2.2), we
assume without loss of generality that

fp(N) = max
ξ∈Sn

fp(ξ) with N = (0, · · · , 0, 1)
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being the north pole.

Case 1: For some subsequence pj → p+α , fpj(N) is uniformly bounded. Then, by Proposi-
tion 2.1, we know that sequences { fpj} and {Iα( fpj)} are uniformly bounded and equicon-
tinuous on Sn. So, by Arzelà-Ascoli theorem, there exists a subsequence of { fpj} (still
denoted by { fpj}) and some nonnegative function f ∈ C(Sn) such that

fpj → f uniformly on Sn,

Iα( fpj)→ Iα f uniformly on Sn.

Then, ∫
Sn

f pα(ξ)dξ = lim
pj→pα

∫
Sn

f
pj
pj (ξ)dξ = 1

and by (2.2) and Lemma 2.1,

Nqα
n,α f pα−1(ξ) =

∫
Sn
|ξ − η|α−n(Iα f )qα−1(η)dη.

So, f (ξ) satisfies

Nqα
n,α =

∫
Sn
(Iα f )qα(η)dη,

∫
Sn

f pα(ξ)dξ = 1,

namely, f is a maximizer.

Case 2: fp(N)→ +∞ as p→ p+α . Let up = f p−1
p and vp = Iα fp. Then, up and vp satisfy∫

Sn
uq

pdξ = 1, lim
p→p+α

∫
Sn

vqα
p dξ = Nqα

n,α, (2.10)

and by (2.2), 
Nqα

n,α,pup(ξ) =
∫

Sn
|ξ − η|α−nvqα−1

p (η)dη,

vp(ξ) =
∫

Sn
|ξ − η|α−nuq−1

p (η)dη,
(2.11)

where 1
p + 1

q = 1. Applying stereographic projection and dilations on Rn, we get from
(2.11) that

Nqα
n,α,p

(
2λ

1 + |λx|2

) n−α
2

up(S(λx)) =
∫

Rn

(
2λ

1+|λy|2
) n+α

2 vp(S(λy))qα−1

|x− y|n−α
dy,

(
2λ

1 + |λx|2

) n−α
2

vp(S(λx)) =
∫

Rn

(
2λ

1+|λy|2
) n+α

2 up(S(λy))q−1

|x− y|n−α
dy.

(2.12)

Take λ = λp satisfying
(2λp)

(n−α)/2up(S(0)) = 1
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and denote 
Up(x) =

(
2λp

1 + |λpx|2

) n−α
2

up(S(λpx)),

Vp(x) =
(

2λp

1 + |λpx|2

) n−α
2

vp(S(λpx)).

Then, Up(x) ≤ Up(0) = 1 and Up, Vp satisfy the following renormalized equations
Nqα

n,α,pUp(x) =
∫

Rn
|x− y|α−nVqα−1

p (y)dy,

Vp(x) =
∫

Rn
|x− y|α−n

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)dy.

(2.13)

Next, we will prove that sequences {Up, Vp} satisfy some compactness property. Then, a
maximizer can be got through limitation.

For any x ∈ Rn,

Vp(x) =
∫

Rn
|y|α−n

(
2λp

1 + |λp(x− y)|2

) (n−α)(qα−q)
2

Uq−1
p (x− y)dy

=
∫
|y|≤2
|y|α−n

(
2λp

1 + |λp(x− y)|2

) (n−α)(qα−q)
2

Uq−1
p (x− y)dy

+
∫
|y|>2
|y|α−n

(
2λp

1 + |λp(x− y)|2

) (n−α)(qα−q)
2

Uq−1
p (x− y)dy

:=V1
p (x) + V2

p (x), (2.14)

where

V1
p (x) =

∫
|y|≤2
|y|α−n

(
2λp

1 + |λp(x− y)|2

) (n−α)(qα−q)
2

Uq−1
p (x− y)dy,

V2
p (x) =

∫
|y|>2
|y|α−n

(
2λp

1 + |λp(x− y)|2

) (n−α)(qα−q)
2

Uq−1
p (x− y)dy.

As p→ p+α ,

V2
p (x) ≤

∫
|y|>2
|y|α−n

((
2λp

1 + |λp(x− y)|2

) n
q

up(x− y)

)q−1

dy

≤
(∫
|y|>2
|y|(α−n)qdy

) 1
q
(∫

Rn

(
2λp

1 + |λp(x− y)|2

)n

uq
p(x− y)dy

) q−1
q
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≤
(∫
|y|>2
|y|(α−n)qdy

) 1
q

=|Sn−1|
1
q 2α− n

p ≤ |Sn−1|
1
q

and
V1

p (x) ≤
∫
|y|≤2
|y|α−ndy = |Sn−1|2α.

So, {Vp(x)} are uniformly bounded. If α > 1, noting that

∣∣∣∫
Rn

∂

∂xi
|x− y|α−n

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)dy

∣∣∣
≤
∫

Rn
(n− α)|x− y|α−n−1

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)dy,

converges uniformly on Rn by a similar argument as (2.14), we know that

∂Vp(x)
∂xi

= (α− n)
∫

Rn

xi − yi

|x− y|2+n−α

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)dy, (2.15a)∣∣∣∂Vp(x)

∂xi

∣∣∣ ≤ |Sn−1|
1
q 2α−1− n

p + |Sn−1|2α−1. (2.15b)

So, as p→ p+α , {Vp(x)} are equicontinuous if α > 1.
For any given constant R0 > 0 and any x, y ∈ B(0, R0), as p→ p+α , we have

|Vp(x)−Vp(y)|

=
∣∣∣∫

Rn

(
|x− y− z|α−n − |z|α−n) ( 2λp

1 + |λp(y + z)|2

) n−α
2 (qα−q)

Uq−1
p (y + z)dz

∣∣∣
≤
∫

Rn

∣∣|x− y− z|α−n − |z|α−n∣∣ dz

=
∫

2|x−y|<|z|

∣∣|x− y− z|α−n − |z|α−n∣∣ dz +
∫
|z|≤2|x−y|

∣∣|x− y− z|α−n − |z|α−n∣∣ dz

=:I + I I. (2.16)

If |z| > 2|x− y|, then ∣∣|x− y− z|α−n − |z|α−n∣∣ ≤ C|z|α−n−1|x− y|.

So, I ≤ C|x− y|α if 0 < α < 1. On the other hand, if |z| ≤ 2|x− y|, then

I I ≤ 2
∫
|z|≤3|x−y|

|z|α−ndz ≤ C|x− y|α.
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By now, we deduce that {Vp(x)} are also equicontinuous on B(0, R0) as p → p+α and
0 < α < 1.

If α = 1, as the case 0 < α < 1, we can prove that for any x, x + y, x− y ∈ BR0(0),

|Vp(x + y) + Vp(x− y)− 2Vp(x)| ≤ C|y|.

Namely, Vp(x) ∈ Λ1(BR0(0)), where Λ1(BR0(0)) is the space of Lipschitz continuous
functions introduced in Chapter V, Section 4 of [26]. By the classical theory about Lips-
chitz continuous functions in [26], we know that Vp(x) ∈ Cτ(BR0(0)) for any τ ∈ (0, 1).
So, {Vp(x)} are also equicontinuous on B(0, R0) as p→ p+α and α = 1.

By Arzelà-Ascoli theorem, we know that there exists a subsequence of {Vp(x)} (still
denoted as {Vp(x)}) and V(x) ∈ C(Rn) such that, as p→ p+α ,

Vp(x)→ V(x) uniformly on B(0, R0). (2.17)

Similarly, we can prove that there exists a subsequence of {Up(x)} (still denoted by
{Up(x)}) and U(x) ∈ C(Rn) such that

Up(x)→ U(x) uniformly on B(0, R0). (2.18)

If it holds that
lim

p→p+α
(2λp)

n−α
2 (qα−q) = 1, (2.19)

whose proof is postponed to the end for readability, then as p→ p+α ,(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)→ Uqα−1(y) uniformly on B(0, R)

and

1 =
∫

Rn

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq
p(y)dy

>
∫
|y|≤R

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq
p(y)dy→

∫
|y|≤R

Uqα(y)dy. (2.20)

So, ∫
Rn

Uqα(y)dy ≤ 1.

Moreover, take the limit in (2.13) as p→ p+α and obtain
V(x) =

∫
Rn
|x− y|α−nUqα−1(y)dy = Iα(Uqα−1)(x) in Rn,

Nqα
n,αU(x) =

∫
Rn
|x− y|α−nVqα−1(y)dy in Rn,

(2.21)
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which imply by (2.20) and qα > pα that

Nn,α =

(∫
Rn Iα(Uqα−1)qα(y)dy

)1/qα(∫
Rn U(qα−1)pα dx

)1/qα

≤
(∫

Rn Iα(Uqα−1)qα(y)dy
)1/qα(∫

Rn U(qα−1)pα dx
)1/pα

≤ Nn,α.

Namely, Uqα−1(x) satisfies

Nn,α =

(∫
Rn

Iα(Uqα−1)qα(y)dy
)1/qα

,
∫

Rn
U(qα−1)pα dx = 1.

Then, using stereographic projection, we construct a maximizer f (ξ) on Sn as

f (ξ) = (1 + ξn+1)
− n+α

2 Uqα−1(S−1(ξ)).

Now, we give the proof of (2.19). In fact, noting that

0 ≤ (2λp)
n−α

2 (qα−q) ≤ 1,

we need only to prove
lim inf

p→+
α

(2λp)
n−α

2 (qα−q) = 1.

If
lim inf

p→p+α
(2λp)

n−α
2 (qα−q) = 0,

then there exists a subsequence of {λp} (still denoted as {λp}) such that

lim
p→p+α

(2λp)
n−α

2 (qα−q) = 0.

So (
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)→ 0 uniformly on B(0, R),

and for any x ∈ Rn,

V(x) = lim
p→p+α

∫
Rn
|x− y|α−n

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)dy = 0. (2.22)

By (2.13) and (2.22), we get U(0) = 0, which is contradict to U(0) = 1. Therefore,

lim inf
p→p+α

(2λp)
n−α

2 (qα−q) > 0.
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If
lim inf

pm→+
α

(2λp)
n−α

2 (qα−q) = c ∈ (0, 1),

then there exists a subsequence of {λp} (still denoted as {λp}) such that

lim
pm→+

α

(2λp)
n−α

2 (qα−q) = c,(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq−1
p (y)→ cUqα−1(y) uniformly on B(0, R).

It deduces that

1 =
∫

Rn

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq
p(y)dy

>
∫
|y|≤R

(
2λp

1 + |λpy|2

) n−α
2 (qα−q)

Uq
p(y)dy→ c

∫
|y|≤R

Uqα(y)dy,

which implies

c
∫

Rn
Uqα(y)dy ≤ 1.

Then, take the limitation on (2.13) as p→ p+α and get
V(x) = c

∫
Rn
|x− y|α−nUqα−1(y)dy = cIα(Uqα−1)(x),

Nqα
n,αU(x) =

∫
Rn
|x− y|α−nVqα−1(y)dy.

(2.23)

Combining the facts pα < qα and 0 < c < 1, we have

Nn,α =
c
(∫

Rn Iα(Uqα−1)qα(y)dy
)1/qα(

c
∫

Rn U(qα−1)pα dx
)1/qα

≤
c
(∫

Rn Iα(Uqα−1)qα(y)dy
)1/qα(

c
∫

Rn U(qα−1)pα dx
)1/pα

≤ c
1

qα Nn,α,

which is a contradiction. So,

lim inf
p→p+α

(2λp)
n−α

2 (qα−q) = 1.

Thus, we complete the proof.
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3 Case of α > n

3.1 Subcritical HLS inequalities

Let p ∈ (0, pα).

Lemma 3.1. There exists some positive constant C = C(n, α, p) such that∫
Sn

∫
Sn

f (ξ)|ξ − η|α−ng(η)dξdη ≥ C‖ f ‖Lp(Sn)‖g‖Lp(Sn) (3.1)

holds for any nonnegative f , g ∈ Lp(Sn).

Proof. It is easy to prove that (3.1) holds for any nonnegative f , g ∈ Lp(Sn) ∩ Lpα(Sn) by
(1.4) and Hölder inequality. Then we can complete the proof by a density argument.

Define the extremal problem of (3.1) as

Ñn,α,p = inf
{∫

Sn

∫
Sn

f (ξ)g(η)
|ξ − η|n−α

dξdη : f ≥ 0, g ≥ 0, ‖ f ‖Lp(Sn) = ‖g‖Lp(Sn) = 1
}

= inf
{∫

Sn

∫
Sn f (ξ)|ξ − η|α−ng(η)dξdη

‖ f ‖Lp(Sn)‖g‖Lp(Sn)
: f ≥ 0, g ≥ 0, f , g ∈ Lp(Sn) \ {0}

}
. (3.2)

Obviously, we know that Ñn,α,p ≥ C > 0 by (3.1). Moreover, along the idea of Lemma 3.2
of [5] and Proposition 2.5 of [6], we can prove the attainability of Ñn,α,p.

Proposition 3.1. There exist a pair of nonnegative functions f , g ∈ L1(Sn) such that

‖ f ‖Lp(Sn) = ‖g‖Lp(Sn) = 1,

Ñn,α,p =
∫

Sn

∫
Sn

f (ξ)|ξ − η|α−ng(η)dξdη.

Then, they satisfy the following Euler-Lagrange equations
Ñn,α,p f p−1(ξ) =

∫
Sn
|ξ − η|α−ng(η)dη,

Ñn,α,pgp−1(ξ) =
∫

Sn
|ξ − η|α−n f (η)dη.

(3.3)

Moreover, f , g ∈ C1(Sn) and there exists some positive constant C = C(n, α, p) such that

0 <
1
C

< f , g < C < +∞,

‖ f ‖C1(Sn), ‖ f ‖C1(Sn) ≤ C.
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Proof. Without loss of generality, as in the Proposition 2.5 of [6], we can choose a nonneg-
ative minimizing sequence { f j, gj}+∞

j=1 ⊂ Lp(Sn)× Lp(Sn) such that

‖ f j‖Lpα (Sn) = ‖gj‖Lpα (Sn) = 1, j = 1, 2, · · · ,

Ñn,α,p = lim
j→+∞

∫
Sn

∫
Sn f j(ξ)|ξ − η|α−ngj(η)dξdη

‖ f j‖Lp(Sn)‖gj‖Lp(Sn)
.

So sequences { f p
j }

+∞
j=1 and {gp

j }
+∞
j=1 are bounded in Lpα/p(Sn). By the theory of reflexive

space, we know that there exist two subsequences of { f p
j } and {gp

j } (still denoted by
{ f p

j } and {gp
j }) and two nonnegative functions f p, gp ∈ Lpα/p(Sn) such that

f p
j ⇀ f p and gp

j ⇀ gp weakly in Lpα/p(Sn).

Since 1 ∈ Lpα/(pα−p)(Sn), then∫
Sn

f p
j dξ →

∫
Sn

f pdξ,
∫

Sn
gp

j dξ →
∫

Sn
gpdξ as j→ +∞. (3.4)

Moreover, if we can prove that∫
Sn

∫
Sn

f (ξ)|ξ − η|α−ng(η)dξdη ≤ lim inf
j→+∞

∫
Sn

∫
Sn

f j(ξ)|ξ − η|α−ngj(η)dξdη, (3.5)

then we can prove the attainability of Ñn,α,p.
To prove (3.5), we need the claim

‖ fi‖L1(Sn) ≤ C, ‖ fi‖L1(Sn) ≤ C uniformly. (3.6)

For readability, assume firstly that the claim holds and relegate the proof to the end.
By (3.6), we have up to a subsequence that

f p
j ⇀ f p and gp

j ⇀ gp weakly in L1/p(Sn), (3.7a)

and ∫
Sn

f p
j dξ ≥ C > 0,

∫
Sn

gp
j dξ ≥ C > 0 (3.7b)

via an interpolation inequality. So,

‖ f ‖L1(Sn) ≤ C and ‖g‖L1(Sn) ≤ C.

As in Lemma 3.2 of [5], we have that, as j→ +∞,∫
Sn
|ξ − η|α−ngp

j (η)g1−p(η)dη → Iαg(ξ) (3.8)
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uniformly for all ξ ∈ Sn. Then, for any ε > 0, there exists some N > 0 such that for any
j > N, ∣∣∣∫

Sn
|ξ − η|α−ngp

j (η)g1−p(η)dη − Iαg(ξ)
∣∣∣ ≤ ε

and ∣∣∣∫
Sn

f p
j (ξ) f 1−p(ξ)

∫
Sn

gp
j (η)g1−p(η)

|ξ − η|n−α
dηdξ −

∫
Sn

f p
j (ξ) f 1−p(ξ)

∫
Sn

g(η)
|ξ − η|n−α

dηdξ
∣∣∣

≤ε
∫

Sn
f p
j (ξ) f 1−p(ξ)dξ ≤ Cε. (3.9)

On the other hand, noting f 1−p(ξ) ∈ L1/(1−p)(Sn) and∫
Sn
|ξ − η|α−ng(η)dη ≤ C

∫
Sn

g(η)dη ≤ C,

we have by the weak convergence that, as j→ +∞,∫
Sn

f p
j (ξ) f 1−p(ξ)

∫
Sn

g(η)
|ξ − η|n−α

dηdξ →
∫

Sn

∫
Sn

f (ξ)|ξ − η|α−ng(η)dηdξ. (3.10)

Combining (3.9) and (3.10), it holds that

lim
j→+∞

∫
Sn

∫
Sn

f p
j (ξ) f 1−p(ξ)gp

j (η)g1−p(η)

|ξ − η|n−α
dηdξ =

∫
Sn

∫
Sn

f (ξ)g(η)
|ξ − η|n−α

dηdξ. (3.11)

Then, for any ε > 0, there exists some N1 > 0 such that for any j > N1,∫
Sn

∫
Sn

f (ξ)g(η)
|ξ − η|n−α

dηdξ − ε

≤
∫

Sn

∫
Sn

f p
j (ξ) f 1−p(ξ)gp

j (η)g1−p(η)

|ξ − η|n−α
dηdξ

≤
(∫

Sn

∫
Sn

f j(ξ)gj(η)

|ξ − η|n−α
dηdξ

)p(∫
Sn

∫
Sn

f (ξ)g(η)
|ξ − η|n−α

dηdξ
)1−p

.

Because of the arbitrariness of ε, we obtain (3.5) and then prove that the function pair
( f , g) ∈ L1(Sn)× L1(Sn) is a minimizer.

Now, we give the proof of the claim (3.6). From

‖ f j‖Lpα (Sn) = ‖gj‖Lpα (Sn) = 1,

we get ∫
Sn

∫
Sn

f j(ξ)|ξ − η|α−ngj(η)dξdη ≥ C1 > 0
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by (1.4) and
‖ f j‖Lp(Sn) ≤ C2, ‖gj‖Lp(Sn) ≤ C2,

by Hölder’s inequality. Then, by the definition of Nn,α,p, we have

‖ f j‖Lp(Sn) ≥ C3 > 0, ‖gj‖Lp(Sn) ≥ C3 > 0,∫
Sn

∫
Sn

f j(ξ)|ξ − η|α−ngj(η)dξdη ≤ C4.

It follows, via the reversed Hölder’s inequality, that

‖Iα f j‖Lp′ (Sn) ≤ C5 < ∞ and ‖Iαgj‖Lp′ (Sn) ≤ C5 < ∞,

where 1
p +

1
p′ = 1. Then, by a similar argument as the proof of Lemma 3.2 of [5], we have

(3.6).
By renormalization, we assume that the minimizer f , g ∈ L1(Sn) satisfy

‖ f ‖Lp(Sn) = ‖g‖Lp(Sn) = 1.

Then, f , g satisfy the Euler-Lagrange equations (3.3).
Since f , g ∈ L1(Sn) and 0 < p < pα < 1, it is easy to prove from (3.3) that f ≥ C6 > 0

and g ≥ C6 > 0. Then, by (3.3), we have f < C7 and g < C7. Moreover, since α > n ≥ 1,
we have f , g ∈ C1(Sn) and

‖ f ‖C1(Sn), ‖g‖C1(Sn) ≤ C8 < +∞.

Thus, we complete the proof.

3.2 Minimizer of critical HLS inequalities, namely Theorem 1.2

As Lemma 2.1 and Lemma 2.2, we have

Lemma 3.2. Ñn,α,p → Ñn,α as p → p−α and the corresponding minimizer pairs { fp, gp} ∈
C1(Sn)× C1(Sn) satisfying

‖ fp‖Lp(Sn) = ‖gp‖Lp(Sn) = 1

form a minimizing sequence for sharp constant Ñn,α, namely,

Ñn,α = lim
p→p−α

∫
Sn

∫
Sn fp(ξ)|ξ − η|α−ngp(η)dξdη

‖ fp‖Lpα (Sn)‖gp‖Lpα (Sn)
.

Proof. Since the proof is similar to Lemma 2.1 and Lemma 2.2, then we omit the details
for conciseness.
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Proof of Theorem 1.2. As in Lemma 3.2, we take the minimizer { fp, gp} ∈ C1(Sn)× C1(Sn)
as a minimizing sequence for Ñn,α. Then, { fp, gp} satisfy (3.3). By the rotational invari-
ance, we assume without loss the generality that

fp(N) = max
ξ∈Sn

fp(ξ).

Case 1: For some subsequence pj → p−α , max{maxξ∈Sn fpj , maxξ∈Sn gpj} is uniformly
bounded. Then, sequences { fpj} and {gpj} are uniformly bounded and equicontinuous
on Sn. Moreover, by (3.3), there exists some positive constant C independent of pj such
that fpj , gpj ≥ C > 0. So, by Arzelà-Ascoli theorem, there exist two subsequences of { fpj}
and {gpj} (still denoted by { fpj} and {gpj}) and two nonnegative functions f , g ∈ C1(Sn)
such that

fpj → f and gpj → g uniformly on Sn.

Then, ∫
Sn

f pα(ξ)dξ = lim
pj→pα

∫
Sn

f
pj
pj (ξ)dξ = 1,∫

Sn
gpα(ξ)dξ = lim

pj→pα

∫
Sn

g
pj
pj(ξ)dξ = 1,

and by (3.3) and Lemma 3.2, as j→ +∞
Ñn,α f p−1(ξ) =

∫
Sn
|ξ − η|α−ng(η)dη,

Ñn,αgp−1(ξ) =
∫

Sn
|ξ − η|α−n f (η)dη,

namely, { f , g} are minimizers.

Case 2: For any subsequence pj → p−α , fpj(N) → +∞ or maxξ∈Sn gpj → +∞. Without
loss of generality, we assume fpj(N)→ +∞.

Case 2a:

lim sup
j→+∞

fpj(N)

maxξ∈Sn gpj

= +∞.

Then, there exists a subsequence of {pj} (still denoted by {pj}) such that

fpj(N)→ +∞ and
fpj(N)

maxξ∈Sn gpj

→ +∞.

Let uj = f
pj−1
pj and vj = g

pj−1
pj . Then, uj and vj satisfy∫

Sn
u

qj
j dξ =

∫
Sn

v
qj
j dξ = 1 (3.12)
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and by (3.3), 
Ñn,α,pj uj(ξ) =

∫
Sn
|ξ − η|α−nv

qj−1
j (η)dη,

Ñn,α,pj vj(ξ) =
∫

Sn
|ξ − η|α−nu

qj−1
j (η)dη,

(3.13)

where 1
pj
+ 1

qj
= 1. Applying stereographic projection and dilations on Rn, we get from

(3.13) that
Ñn,α,pj

(
2

1 + |λx|2

) n−α
2

uj(S(λx)) = λαc
∫

Rn

(
2

1+|λy|2
) n+α

2 vj(S(λy))qj−1

|x− y|n−α
dy,

Ñn,α,pj

(
2

1 + |λx|2

) n−α
2

vj(S(λx)) = λα
∫

Rn

(
2

1+|λy|2
) n+α

2 uj(S(λy))qj−1

|x− y|n−α
dy.

(3.14)

Take λ = λj satisfying

2(n−α)/2λ
α/(qj−2)
j uj(S(0)) = 1

and denote 
Uj(x) = λ

α
qj−2−

α
qα−2

j

(
2λj

1 + |λjx|2

) n−α
2

uj(S(λjx)),

Vj(x) = λ
α

qj−2−
α

qα−2

j

(
2λj

1 + |λjx|2

) n−α
2

vj(S(λjx)).

(3.15)

Then, Uj, Vj satisfy the following renormalized equations
Ñn,α,pjUj(x) =

∫
Rn
|x− y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy,

Ñn,α,pj Vj(x) =
∫

Rn
|x− y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

U
qj−1
j (y)dy,

(3.16)

Uj(x) ≥ Uj(0) = 1 and

Vj(x) ≥ λ
α/(qj−2)
j 2(n−α)/2 min

ξ∈Sn
vj =

minξ∈Sn vj

uj(S(0))
→ +∞ (3.17)

uniformly for any x as j→ +∞.

Claim: There exist C1, C2 > 0 such that, for any x, when j→ ∞

0 < C1(1 + |x|α−n) ≤ Uj(x) ≤ C2(1 + |x|α−n) uniformly. (3.18)
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Once the claim holds,

Ñn,α,pj Vj(0) =
∫

Rn
|y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

U
qj−1
j (y)dy

≤C
∫

Rn
|y|α−n(1 + |y|α−n)qj−1dy ≤ C,

which is contradict to (3.17). So, Case 2a does not appear.
Now, we give the proof of the claim (3.18). Noting that

Ñn,α,pj =
∫

Rn
|y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤C < +∞ (3.19)

uniformly as j→ ∞, we obtain from (3.17) that as j→ ∞ and |x| ≥ 1,

∫
Rn

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤
∫
|y|≤1

C
(

2
1 + |λjy|2

) n−α
2 (qα−qj)

dy

+
∫
|y|>1
|y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤C < +∞ (3.20)

and ∫
Rn

|x− y|α−n

|x|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤C
∫

Rn
(1 + |y|α−n)

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤C < +∞ (3.21)

uniformly. Then, by dominated convergence theorem,

lim
|x|→+∞

Uj(x)
|x|α−n =

1
Ñn,α,pj

∫
Rn

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy ≤ C. (3.22)

On the other hand, if we can prove

∫
Rn

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy ≥ c1 > 0 as j→ ∞, (3.23)
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then we have the claim (3.18). By contradiction, we assume that (3.23) does not hold.
Then, there exists a subsequence of {Vj} (still denoted as {Vj}) such that

∫
Rn

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy→ 0 as j→ +∞. (3.24)

For any x ∈ B(0, R0), where R0 is given arbitrarily, and taking R >> R0 large enough,

1 ≤Uj(x) =
1

Ñn,α,pj

∫
Rn
|x− y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤ 1
Ñn,α,pj

(
(R + R0)

α−n
∫
|y|≤R

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

+
∫
|y|>R

(
1 +

R0

R

)α−n
|y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

)
≤ (R + R0)α−n

Ñn,α,pj

∫
|y|≤R

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy +

(
1 +

R0

R

)α−n
.

Then, for any ε > 0, we firstly take R large enough and then let j large enough such that

1 ≤ Uj(x) ≤ 1 + ε,

which imply that Uj(x) → 1, x ∈ B(0, R0) uniformly as j → ∞. Then, for |x| ≥ 2 and by
(3.16), we have

Vj(x) ≥ 1
Ñn,α,pj

∫
|y|≤1
|x− y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

U
qj−1
j (y)dy

≥ 1
Ñn,α,pj

∫
|y|≤1

( |x|
2

)α−n
(

2
1 + |λjy|2

) n−α
2 (qα−qj)

U
qj−1
j (y)dy

≥C|x|α−n, (3.25)

where, in the last inequality, we have used facts: as j→ ∞,

Uj(y)→ 1 and
(

2
1 + |λjy|2

) n−α
2 (qα−qj)

→ 1 uniformly on B(0, 1).
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Then, by (3.25) and letting pj close to pα, we take R >> 2 and obtain

Ñn,α,pj =
∫

Rn
|y|α−n

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤Rα−n
∫
|y|≤R

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

+
∫
|y|>R

|y|α−n · C|y|(α−n)(qj−1)dy

≤Rα−n
∫
|y|≤R

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy + CR(α−n)qj+n.

Taking firstly R large enoug and then letting j → +∞, we have Ñn,α,pj → 0, which is
contradict to Ñn,α,pj → Nn,α. So, (3.23) holds.

Case 2b:

lim sup
j→+∞

fpj(N)

maxξ∈Sn gpj

= 0.

Then, there exists a subsequence of {pj} (still denoted as {pj}) such that

fpj(N)→ +∞ and
fpj(N)

maxξ∈Sn gpj

→ 0,

which implies that maxξ∈Sn gpj → +∞. Similar to Case 2a, we can prove that Case 2b
does not appear.

Case 2c:

lim sup
j→+∞

fpj(N)

maxξ∈Sn gpj

= c0 ∈ (0,+∞).

Then, there exists a subsequence of {pj} (still denoted as {pj}) such that

fpj(N)→ +∞, max gpj → +∞ and
fpj(N)

maxξ∈Sn gpj

→ c0 ∈ (0,+∞).

As Case 2a, we introduce function pairs {Uj, Vj} defined as (3.15) and then they satisfy
(3.16), Uj(x) ≥ Uj(0) = 1 and

Vj(x) ≥ λ
α/(qj−2)
j 2(n−α)/2 min

ξ∈Sn
vj =

minξ∈Sn vj

uj(S(0))
→ c1−pα

0 ∈ (0,+∞) (3.26)

uniformly for any x as j→ +∞. So, {Vj(x)} have uniformly lower bound C > 0.
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Repeating the proof of (3.18), there exist two positive constant C1 and C2 such that, as
j→ +∞,

0 < C1(1 + |x|α−n) ≤ Uj(x) ≤ C2(1 + |x|α−n), (3.27a)

0 < C1(1 + |x|α−n) ≤ Vj(x) ≤ C2(1 + |x|α−n), (3.27b)

uniformly for any x.
For any given constant R0 > 0 and any x ∈ B(0, R0), as j → +∞, we have by (3.27b)

that

Ñn,α,pjUj(x) =
∫

Rn
|y|α−n

(
2

1 + |λj(x− y)|2

) n−α
2 (qα−qj)

V
qj−1
j (x− y)dy

≤
∫
|y|≤2R0

|y|α−n2
n−α

2 (qα−qj)C
qj−1
1 dy

+
∫
|y|>2R0

|y|α−n2
n−α

2 (qα−qj)C
qj−1
1 |x− y|(α−n)(qj−1)dy

≤C(2R0)
α + C

∫
|y|>2R0

|y|α−n
( |y|

2

)(α−n)(qj−1)
dy ≤ C, (3.28)

namely, Uj(x) is uniformly bounded on B(0, R0). Similarly, Vj(x) is also uniformly bounded
on B(0, R0).

By a similar computation of (3.28) and noting α > n ≥ 1, we have that, as j→ +∞,

∫
Rn
|x− y|α−n−1

(
2

1 + |λjy|2

) n−α
2 (qα−qj)

V
qj−1
j (y)dy

≤C(2R0)
α−1 + C(2R0)

(α−n)qj−1+n ≤ C

uniformly for any x ∈ B(0, R0). Since the arbitrariness of R0, we know that Uj(x) ∈
C1(Rn) and ‖Uj‖C1(B(0,R0)) is uniformly bounded. Similarly, we can prove that Vj(x) ∈
C1(Rn) and ‖Vj‖C1(B(0,R0)) is uniformly bounded.

By Arzelà-Ascoli theorem, there exist two subsequences of {Uj} and {Vj} (still de-
noted as {Uj} and {Vj}) and two functions U, V ∈ C1(Rn) with lower bound C > 0 such
that

Uj → U and Vj → V uniformly on B(0, R0). (3.29)

Combining the arbitrariness of R0, we can prove that U(x) and V(x) satisfy
Ñn,αU(x) =

∫
Rn
|x− y|α−nVqα−1(y)dy in Rn,

Ñn,αV(x) =
∫

Rn
|x− y|α−nUqα−1(y)dy in Rn.

(3.30)
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Since

1 =
∫

Sn
u

qj
j (ξ)dξ =

∫
Rn

U
qj
j (x)λ

n−
αqj

qj−2

j

(
2

1 + |λjx|2

) n−α
2 (qα−qj)

dx

≤
∫

Rn
U

qj
j (x)

(
2

1 + |λjx|2

) n−α
2 (qα−qj)

dx

and

U
qj
j (x)

(
2

1 + |λjx|2

) n−α
2 (qα−qj)

→ Uqα(x)

uniformly on any compact domain, then it holds by (3.27a) that

∫
Rn

Uqα dx = lim
j→+∞

∫
Rn

U
qj
j (x)

(
2

1 + |λjx|2

) n−α
2 (qα−qj)

dx ≥ 1.

Similarly, it also holds by (3.27b) that

∫
Rn

Vqα dx = lim
j→+∞

∫
Rn

V
qj
j (x)

(
2

1 + |λjx|2

) n−α
2 (qα−qj)

dx ≥ 1.

Let
F(x) = Uqα−1(x) and G(x) = Vqα−1(x).

Then ∫
Rn

Fpα dx ≥ 1,
∫

Rn
Gpα dx ≥ 1,

and F, G satisfy 
Ñn,αFpα−1(x) =

∫
Rn
|x− y|α−nG(y)dy in Rn,

Ñn,αGpα−1(x) =
∫

Rn
|x− y|α−nF(y)dy in Rn.

Combining 2 > pα, it holds that

Nn,α =
∫

Rn

∫
Rn

F(x)|x− y|α−nG(y)dxdy and ‖F‖Lpα (Rn) = ‖G‖Lpα (Rn) = 1.

Applying stereographic projection, we can construct a pair of minimizer { f (ξ), g(ξ)} on
Sn as

f (ξ) = (1 + ξn+1)
− n+α

2 F(S−1(ξ)),

g(ξ) = (1 + ξn+1)
− n+α

2 G(S−1(ξ)).

Thus, we complete the proof.
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