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Abstract. In this paper, we give a brief survey of recent results on axially symmetric
Navier-Stokes equations (ASNS) in the following categories: regularity criterion, Liou-
ville property for ancient solutions, decay and vanishing of stationary solutions. Some
discussions also touch on the full 3 dimensional equations. Two results, closing of the
scaling gap for ASNS and vanishing of homogeneous D solutions in 3 dimensional
slabs will be described in more detail.

In the addendum, two new results in the 3rd category will also be presented, which
are generalizations of recently published results by the author and coauthors.
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1 Introduction

The Cauchy problem of Navier-Stokes equations (NS) describing the motion of viscous
incompressible fluids in R3 is{

µ∆v− (v · ∇)v−∇P− ∂tv = 0 on R3 × (0, ∞),

div v = 0, v(x, 0) = v0(x).
(1.1)

Here v is the velocity field, P is the pressure, both of which are the unknowns; v0 is the
given initial velocity; µ > 0 is the viscosity constant, which will be taken as 1 unless
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stated otherwise. One can also add a forcing term on the righthand side, then it becomes
a nonhomogeneous problem.

Thanks to Leray’s work [62] in 1934, we know the above problem has a weak solu-
tion v ∈ L∞((0, ∞), L2(R3)) such that |∇v| ∈ L2((0, ∞), L2(R3)) provided that the initial
condition has finite kinetic energy. Moreover, ‖v(·, t) − v0(·)‖L2(R3) → 0 as t → 0 and
∀T > 0, ∫

|v(x, T)|2dx + 2
∫ T

0

∫
|∇v(x, t)|2dxdt ≤

∫
|v0(x)|2dx < ∞. (1.2)

See Theorem 3.10 in Tsai’s book [110] for a modern and concise proof for example. Solu-
tions satisfying (1.2) are often referred to as Leray-Hopf solutions, in order to distinguish
them from even weaker solutions. In general, one does not know if a Leray-Hopf solution
is smooth, except for a few special cases, usually as a perturbation of a special smooth
solution. Stability of NS under small perturbation is well studied. A general result of
such kind can be found in [94] for example. Over the years several sufficient conditions
under which Leray-Hopf solutions are smooth have been obtained. For example the
Ladyzhenskaya-Prodi-Serrin condition: |v| ∈ Lp,q

x,t with 3
p + 2

q ≤ 1 and 3 < p < ∞ and
the end point result p = 3, q = ∞ by Escauriaza, Seregin and Sverak [33]. See also [31]
by Dong and Wang in higher dimensional cases, including both interior and boundary
regularity. Here and later, a measurable function f = f (x, t) is said to be in Lp,q

x,t if

‖ f ‖Lp,q
x,t
≡
(∫ ∞

0

(∫
R3
| f |pdx

)q/p

dt

)1/q

< ∞.

If 3
p +

2
q = 1, these conditions are scaling invariant or critical under the natural scaling of

the Navier Stokes equations: for λ > 0, if (v, P) solves (1.1), then (vλ, Pλ) defined by

vλ(x, t) ≡ λv(λx, λ2t), Pλ(x, t) ≡ λ2P(λx, λ2t), (1.3)

also solves (1.1). It is easy to see that ‖v‖Lp,q
x,t

= ‖vλ‖Lp,q
x,t

for the above p, q. Sometimes these
conditions can be improved logarithmically, even for endpoint cases. See the articles X.
H. Pan [88], T. Tao [106], Barker and Prange [9], for example. A partial regularity result for
the so-called ”suitable weak solutions” was found by Caffarelli, Kohn and Nirenberg [17],
building on earlier work of Scheffer [95, 96]. These solutions are Leray-Hopf solutions
with an extra integrability condition on the pressure term P. It is proven that the singular
set of suitable weak solutions, if exists, has one dimensional parabolic Hausdorff measure
0. The proof utilizes a blow up argument to deduce an ε regularity result: smallness
of certain scaling invariant integral quantities involving the velocity or vorticity implies
boundedness of solutions. Then the size estimate of the possible singular set follows from
a covering argument. See also the papers of F. H. Lin [65], A. Vasseur [113], J. Wolf [117]
for similar results and shorter proofs, some of which employ a De Giogi type (refined
energy) method instead of blow up method. In [117], using the decomposition

(v · ∇)v =
1
2
∇|v|2 − (∇× v)× v,
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it is observed that one can also use a scaling invariant quantity involving (∇× v)× v
|v| .

One consequence is that small perturbations of Beltrami flows are regular. Recall that
a flow or a vector field v is called a Beltrami flow if the vorticity ∇× v is parallel to v.
These conditional regularity results are consistent with the standard linear theory for sec-
ond order parabolic equations with lower order coefficients, coming from the De Giorgi-
Nash-Moser theory. As far as the regularity conditions are concerned, the nonlinearity
of the NSE only induces a marginal improvement over the linear case. One can see the
difficulty in proving regularity by observing that the energy inequality (1.2) only tells us,
after using Sobolev inequality and interpolation, that v ∈ L10/3,10/3

x,t . In a local space time
domain, this a priori bound is much weaker than the regularity conditions mentioned
above, such as L5,5

x,t . If we hope to prove regularity of the solution, we need to study the
behavior of v at micro or infinitesimal scale. This is amount to studying the behavior of
vλ at a fixed scale while letting λ→ 0. Notice that

‖vλ‖L10/3,10/3
x,t

= λ−1/2‖v‖L10/3,10/3
x,t

→ ∞, λ→ 0.

So the energy inequality does not furnish any information on micro scale. For this reason
NSE is considered as a super critical equation, i.e. a priori estimate is weaker than regu-
larity condition at small scale. Another way to see the super criticality is to consider the
vorticity ω = ∇× v which satisfies the equation

∆ω− (v · ∇)ω + (ω · ∇)v− ∂tω = 0. (1.4)

The energy inequality (1.2) tells us |∇v| ∈ L2,2
x,t . This again is much weaker than the

regularity condition of Lp,q
x,t with 3

p + 2
q < 2, if ∇v are regarded as potential functions for

the vorticity equation. We note that the drift term v∇ω, can be handled even locally by an
integral argument since divv = 0, c.f. [120]. So the most dangerous and mysterious term
in the vorticity equation is the so-called vortex stretching term ω∇v. An avenue of attack
on the regularity problem is to exploit the structure on the sets where the vorticity has
high value, such as angles, intermittency and sparseness. See [18, 32, 42] and a recent [7]
e.g., in [7] Bradshaw, Farhat and Grujic reduce the scaling gap by using sparseness of
the super level sets of the positive and negative parts of the vorticity components at
a scale comparable to the sup of 1/|ω| nearby. There are also many activities on one
component regularity conditions and regularity conditions on directional derivatives of
the velocity: [15, 21, 30, 46, 57, 83, 90, 124] for example. One-sided conditions can also be
imposed on the eigenvalues of ∇v or the middle eigenvalue of the strain tensor [∇v +
(∇v)T]/2. See [121] and [78] for example. However, unless something dramatic happens,
such as the discovery of a critical a priori estimate, a magic cancellation, or an ingenious
construction of a blow up solution, the regularity problem for the 3 dimensional NSE (1.1)
will remain open. Even if some Leray-Hopf solutions are found to blow up in finite time,
it is still interesting to characterize the set of initial values that give rise to Leray-Hopf
solutions that stay smooth all time, which is nonempty.
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In this paper, we will focus on a special case of (1.1), namely when v and P are in-
dependent of the angle in a cylindrical coordinate system (r, θ, x3). That is, for x =

(x1, x2, x3) ∈ R3, r =
√

x2
1 + x2

2, θ = arctan(x2/x1), and the basis vectors er, eθ , e3:

er = (x1/r, x2/r, 0), eθ = (−x2/r, x1/r, 0), e3 = (0, 0, 1),

and solutions are given by

v = vr(r, x3, t)er + vθ(r, x3, t)eθ + v3(r, x3, t)e3.

By direct computation, vr, v3 and vθ satisfy the axially symmetric Navier-Stokes equa-
tions 

(
∆− 1

r2

)
vr − (vr∂r + v3∂x3)v

r +
(vθ)2

r
− ∂rP− ∂tvr = 0,(

∆− 1
r2

)
vθ − (vr∂r + v3∂x3)v

θ − vθvr

r
− ∂tvθ = 0,

∆v3 − (vr∂r + v3∂x3)v
3 − ∂x3 P− ∂tv3 = 0,

1
r

∂r(rvr) + ∂x3 v3 = 0,

(1.5)

which will be abbreviated as ASNS. It looks more complicated than the full 3 dimen-
sional equation. But simplifications happen in the 2nd equation where the pressure term
disappeared. A tip in carrying out vector calculations under the cylindrical system is to
use tensor notations. For example

∇v =∂rv⊗ er +
1
r

∂θv⊗ eθ + ∂x3 v⊗ e3

=(∂rvrer + ∂rvθeθ + ∂rv3e3)⊗ er +
1
r
(vreθ − vθer)⊗ eθ

+ (∂x3 vrer + ∂x3 vθeθ + ∂x3 v3e3)⊗ e3.

Taking the inner product with the second entry, the convection terms become

−(v · ∇)v =− (vrer + vθeθ + v3e3) · (∂rvrer + ∂rvθeθ + ∂rv3e3)⊗ er

− (vrer + vθeθ + v3e3) ·
1
r
(vreθ − vθer)⊗ eθ

− (vrer + vθeθ + v3e3) · (∂x3 vrer + ∂x3 vθeθ + ∂x3 v3e3)⊗ e3

=
[
− (vr∂r + v3∂x3)v

r +
(vθ)2

r

]
er −

[
(vr∂r + v3∂x3)v

θ +
vθvr

r

]
eθ

− (vr∂r + v3∂x3)v
3e3.

This gives rise to the most complicated terms in (1.5).
In 2015, it was observed by Lei-Zhang [73] that ASNS is essentially critical under the

standard scaling. So the aforementioned scaling gap is 0. This observation has the effect
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of making ASNS looks less formidable than the full 3 dimensional case which has a pos-
itive scaling gap. Nevertheless all major open problems for the latter are still open for
the former. In the next three sections, we will describe some recent research results on
the following topics: regularity conditions (Section 2), ancient solutions (Section 3) and
stationary solutions (Section 4). These topics are closely related. The study of possible
singularity of solutions leads to the study of ancient solutions, i.e., solutions whose exis-
tence time extends to −∞. Stationary solutions are ancient solutions but are even more
special. The aforementioned topics have an apparently decreasing order in terms of level
of difficulties: regularity problem > classification of ancient solutions > classification of
homogeneous stationary solutions > classification of homogeneous D solutions.

The last type of solutions are defined as stationary solutions to (1.1) with finite Dirich-
let energy:

∫
R3 |∇v|2dx < ∞, which also vanish at infinity. See Definition 4.1. They were

studied in Leray’s first paper [61]. However as we shall see, even our understanding of
stationary solutions are still very primitive. For example, we still do not know if homo-
geneous D solutions in R3 are zero, even in the axially symmetric case.

Due to the large number of papers in the literature, we need to make a selection on
what to present. This selection only reflects personal interest and knowledge. Some im-
portant results may be missed. For example, we will not address any papers on boundary
value problems seriously, which as well known, have their own complications and com-
plexity. Nor will we touch non-uniquess of very weak solutions. Over the decades, in
conjunction with the development of research on NS, many books have been written, and
it is safe to say that the trend will continue. Let us list a few of them for comprehensive
information and the history of the field [10,14,27,39,56,59,63,64,80,93,99,100,107,108,110].

Any suggestions on missing information or improvement are very welcome.
We end the introduction by listing a number of notations and conventions to be used

throughout, which are more or less standard. The velocity field is usually called v and
the vorticity ∇× v is called ω. We use superscripts to denote their components in co-
ordinates. Given a point x = (x1, x2, x3) ∈ R3, we write x′ = (x1, x2, 0), xh = (x1, x2),
r = (x2

1 + x2
2)

1/2 and θ = arctan(x2/x1). Lp(D), p ≥ 1, denotes the usual Lebesgue
space on a domain D which may be a spatial, temporal or space-time domain. Let X be a
Banach space defined for functions on D ⊂ R3. Lp(0, T; X) is the Banach space of space-
time functions f on the space time domain D× [0, T] with the norm (

∫ T
0 ‖ f (·, t)‖p

Xdt)1/p.
If no confusion arises, we will also use LpX to abbreviate Lp(0, T; X). Sometimes we will
also use Lp

x Lq
t or Lq

t Lp
x to denote the mixed p, q norm in space time. Let D ⊂ R3 be an

open domain, then

H1(D) = W1,2(D) = { f | f , |∇ f | ∈ L2(D)},
H2(D) = W2,2(D) = { f | f , |∇ f |, |∇2 f | ∈ L2(D)},

the standard Sobolev spaces on D. Also, interchangeable notations

divv = ∇ · v, v∇v = ∑ vi∂xi v = v · ∇v
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will be used. If there is no confusion, the vertical variable x3 may be replaced with z. Also
Br(x) denotes the ball of radius r centered at x in a Euclidean space. If s is a number, then
s− means any number which is close but strictly less than s.

2 Regularity criterion

2.1 Critical and slightly super critical regularity conditions

If the swirl vθ = 0, then it is known for long time (O. A. Ladyzhenskaya [58], M. R.
Uchoviskii and B. I. Yudovich [112]), that finite energy solutions to (1.5) are smooth for
all time. See also the paper by S. Leonardi, J. Malek, J. Necas, and M. Pokorny [75]. By
finite energy, we mean (1.2) holds, i.e., the solution is a Leray-Hopf solution.

In the presence of swirl, it is still not known in general if finite energy solutions blow
up in finite time.

However a lower bound for the possible blow up rate is known by the results of C.-
C. Chen, R. M. Strain, T.-P. Tsai, and H.-T. Yau in [28, 29], G. Koch, N. Nadirashvili, G.
Seregin, and V. Sverak in [51], which appeared around 2008. See also the work by G.
Seregin and V. Sverak [102] for a localized version. These authors prove that if

|v(x, t)| ≤ C
r

, (2.1)

then solutions are smooth for all time. Here C is any positive constant.
The proof is based on the fact that the scaling invariant quantity Γ = rvθ : satisfies the

equation

∆Γ− (b · ∇)Γ− 2
r

∂rΓ− ∂tΓ = 0, (2.2)

where b = vrer + v3e3. The bound (2.1) says that the equation is essentially scaling in-
variant and the classical linear regularity theory can be applied after some nontrivial
modification. In [29], the authors use this approach to prove that Γ is Hölder continuous
first. This implies |vθ | is bounded by r−1+α near the z axis, which makes vθ subcritical
under the standard scaling. Here α is a small positive constant. Thus vθ is small in mi-
cro scale. The smallness enters into the equation for ωθ in (2.5) after a scaling argument.
The authors then manage to prove that ωθ is bounded which in turn proves the whole
velocity field v is bounded by the Biot-Savart law. In contrast, a blow up method is used
in [51]. The first step is to show that if a solution of the ASNS blows up in finite time,
then after a suitable scaling and limiting procedure, one obtains a nonzero bounded, mild
solution of the ASNS, which exists in the time interval (−∞, 0]. Such a solution, denoted
by v∞, is called a mild ancient solution. Here the word ”mild” means that a solution,
in addition to being a pointwise or weak solution of the Navier-Stokes equation, must
also satisfy an integral equation involving the Stokes kernel. See (3.1) or [51] for a pre-
cise definition for example. The purpose is to rule out solutions of the form a(t)∇h(x)
where a = a(t) is a differentiable function and h is a harmonic function. The equation for
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Γ = rvθ
∞ again plays an essential role. Using the bound (2.1), which survives the scaling,

and an integration argument involving the maximum principle for Eq. (2.2), it is shown
that vθ

∞ = Γ/r = 0. Therefore v∞ is a swirl free, bounded, mild, ancient solution. Now
the equation for ωθ/r (see (2.4)) satisfies the maximum principle. Using the aforemen-
tioned integration argument for the equation of ωθ/r, exploiting the interplay between
the velocity and vorticity, one can show that v∞ is a constant. The bound (2.1) then forces
v∞ = 0. But we already know that v∞ 6= 0 from the first step. This contradiction shows
that the original solution can not blow up.

Solutions satisfying the bound (2.1) are often referred to as type I solutions. One
reason for this name is that the bound is scaling invariant so one can study the solution
at micro scales using available linear theory. The above result can be summarized as:
type I solutions of ASNS are regular.

Two years later, in the paper [71] by Lei and Zhang, it is proven that if vr, v3 are in the
space of L∞([0, ∞), BMO−1(R3)) and rvθ(·, 0) ∈ L∞, then the solution is regular. Here
BMO is the space of functions with bounded mean oscillation, c.f. [47], and BMO−1 is
the space of tempered distributions which can be written as partial derivatives of BMO
functions. Well-posedness and other properties of solutions to NS have been studied
by Koch-Tataru [52], Miura [79] and Germain-Pavlovic-Staffilani [40]. Note the function
C/r is contained in BMO−1. Hence this result extends the one described in the previous
paragraph. See also [97, 118]. At the first glance, it seems that the main improvement
is just the relaxation of a pointwise condition to an integral type condition. However,
there is an additional feature in that one only needs to impose a condition on the vertical
velocity v3 to gain regularity. See Theorem 2.5 below. The precise statement is:

Theorem 2.1 ( [71]). Let v = v(x, t) be a Leray-Hopf solution to (1.5) in the space time region
R3 × [0, T]. Assume that the initial value satisfies, |rvθ(x, 0)| < C. Suppose also

v(·, t) = ∇× B(·, t) with sup
0<t<T

‖B(·, t)‖BMO ≤ C∗.

Then v is smooth in R3 × (0, T]. Here C and C∗ are arbitrary positive constants.

In the original paper, the pertinent solutions are stated as suitable weak solutions
explained in Section 1. However, no such restriction is actually needed in the proof.
Another regularity condition proposed in [71] only involves a region outside a paraboloid
with the vertex at a given space-time point. This suggests that regularity of a solution at a
space-time point only depends on the behavior of the solution in a small part of a space-
time cube with vertex at the same point. Such a phenomenon was later proven for the
full 3 dimensional NS by Neustupa in [82].

Recently Seregin and Zhou [105] have relaxed the L∞BMO−1 assumption further to
L∞Ḃ−1

∞,∞ assumption. Let us recall Ḃ−1
∞,∞ is the Besov space consisted of tempered distri-

butions f such that the norm

‖ f ‖Ḃ−1
∞,∞

= sup
t>0

t1/2 sup
x

∣∣∣∣∫
R3

G(x, t, y) f (y)dy
∣∣∣∣
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is finite. Here
G(x, t, y) = (1/(4πt)3/2) exp(−|x− y|2/(4t))

is the standard heat kernel on R3.

Theorem 2.2 ( [105]). Any axially symmetric suitable weak solution of (1.5), belonging to
L∞Ḃ−1

∞,∞, is smooth.

Using localized energy inequalities coupled with interpolation of L4 between Ḃ−1
∞,∞

and the homogeneous Sobolev space Ḣ1(R3), they prove the following. If v is a suitable
weak solution to the three dimensional NS from the space L∞(0, T; Ḃ−1

∞,∞), then a number
of scaled energy quantities of v are bounded. Consequently only type I blow up can
occur. In the axially symmetric case, this has been ruled out in [97]. Therefore these
solutions are smooth. We mention that although BMO−1 ⊂ Ḃ−1

∞,∞, the result in [71] goes
beyond suitable weak solutions since there is no need for the local energy inequality.

Without knowing if blow up happens in general, it is desirable to find an upper bound
for the growth of velocity. It is expected that the solutions are smooth away from the axis,
with certain growing bound when approaching the axis. The next theorem confirms this
intuitive idea. Although it did not give the bound (2.1) which is required for smoothness,
it reveals the exact gap between what we have and what we need.

This seems to be the first pointwise bound for the speed (velocity) for the axially
symmetric Navier-Stokes equation. We mention that a less accurate a priori upper bound
for the vorticity has been found in Burke-Zhang [12] a few years earlier. Also, in the
paper [72], Lei-Zhang proved that if the scaling invariant quantity r|v(x, t)| is sufficiently
large at a point (x0, t0), then the solution is close, in C2,1 sense, to a nonzero constant
vector after a suitable scaling.

Theorem 2.3 (Lei-Navas-Zhang [76], velocity bound). Suppose v is a smooth, axially sym-
metric solution of the three-dimensional Navier-Stokes equations in R3 × (−T, 0) with initial
data v0 = v(·,−T) ∈ L2(R3). Assume further rvθ

0 ∈ L∞(R3) and let R = min{1,
√

T/2}.
Then for all (x, t) ∈ R3 × (−R2, 0), it holds

|vr(x, t)|+ |v3(x, t)| ≤ C
√
| ln r|
r2 , 0 < r ≤ min{1/2, R}.

Here r is the distance from x to the z axis, and C is a constant depending only on the initial data.

In the same paper, the following results are also proven.

Theorem 2.4. Under the same assumption as the previous theorem, there exists a constant C,
depending only on the initial data, such that,

|Lθ(x, t)| ≤ C| ln r|1/2

r1/2 , r ≤ min{1/2, R}.
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Here Lθ is the angular part of the stream function, which gives rise to vr and v3 by the
following relations

v3 =
1
r

∂r(rLθ), vr = −∂x3 Lθ .

So it is the most important component of the stream function (vector).

Theorem 2.5. Let v be a Leray-Hopf solution to (1.5) in R3 × (0, ∞) such that rvθ(·, 0) ∈
L∞(R3). Suppose, for a given constant C > 0, and all x ∈ R3 and t ≥ 0,

|v3(x, t)| ≤ C
r

.

Then v is regular for all time.

Proof. From the relation v3 = 1
r ∂r(rLθ), using the notation |x′| = r =

√
x2

1 + x2
2, we have,∣∣∣|x′|Lθ(x, t)

∣∣∣ = ∣∣∣∣∫ |x′|0
∂r(rLθ)dr

∣∣∣∣ ≤ ∫ |x′|0

∣∣rv3∣∣ dr ≤ C|x′|.

Here we just used the assumption on v3. Therefore Lθ is a bounded function. Then from
the main result in [71], we know that v is regular for all time.

Comparing with the previously mentioned results of Chen, Strain, Tsai and Yau [29]
and Koch, Nadirashvilli, Sverak and Seregin [51], there is no restriction on vr in our case.
See also the paper by Chen, Fang, T. Zhang [16].

There are also regularity condition on one component of the velocity and/or vorticity.
J. Neustupa and M. Pokorny [84] proved that the regularity of one component (either
vr or vθ) implies regularity of the other components of the solution. See more refined
results in P. Zhang and T. Zhang [123]. Also proving regularity is the work of Q. Jiu and
Z. Xin [50] under an assumption of sufficiently small zero-dimension scaled norms. D.
Chae and J. Lee [22] also proved regularity results assuming finiteness of another zero-
dimensional integral. A pointwise critical blow up criterion: |ωθ | ≤ C

r2 was also given in
Z. Li and X. Pan [77].

As mentioned earlier, X. H. Pan [88] recently obtained a loglog improvement of the
main result in Chen-Strain-Tsai-Yau and Koch, Nadirashvili, Seregin, and V. Sverak. Al-
though it looks like a small improvement, it is a slightly super critical result based on the
argument in [71]. The proof replies on the robustness of De Giorgi-Nash-Moser method
to prove the function Γ = rvθ has a modulus of continuity at the z axis, under the slightly
supercritical condition on b = vrer + v3e3. The vector b controls the drift term in the
equation for Γ: (2.2).

There are also global regularity result in special cases. G. Tian and Z. Xin [111] con-
structed a family of singular axially symmetric solutions with singular initial data. T.
Hou and C. Li [43] found a special class of global smooth solutions. See also a recent
extension: T. Hou, Z. Lei and C. Li [45].
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2.2 Criticality of ASNS and closing of the scaling gap

Despite these efforts, there is still a finite scaling gap between the regularity condition
and a priori bounds. In almost all the literature, the regularity conditions are critical and
hence are scaling invariant under standard scaling. Improvements are at most logarith-
mic in nature, except for resorting to further requirements such as sparseness of the sets
where the vorticity is high. We have mentioned the Ladyzhenskaya-Prodi-Serrin condi-
tion for regularity requires the velocity to be bounded in suitable function space whose
norm is invariant under standard scaling, such as Lp,q with 3

p + 2
q = 1. However the

energy bound scales as −1/2. So there is a finite gap which makes the equation super-
critical.

However in a recent paper [73], Lei and Zhang made the following observation.
The vortex stretching term of the ASNS is critical.
Previously it was believed to be super-critical, which means in micro scales the equa-

tion becomes chaotic and intractable by current method. Critical equations are still very
difficult but more tools are available to study them. In the next few pages we describe
the result in more details.

Let ω = ∇× v = ωrer + ωθeθ + ω3e3 be the vorticity. Define

J =
ωr

r
, Ω =

ωθ

r
. (2.3)

Then the triple J, Ω, ω3 satisfy the system: for b = vrer + v3e3,
∆J − (b · ∇)J +

2
r

∂r J + (ωr∂r + ω3∂x3)
vr

r
− ∂t J = 0,

∆Ω− (b · ∇)Ω +
2
r

∂rΩ− 2vθ

r
J − ∂tΩ = 0,

∆ω3 − (b · ∇)ω3 + ωr∂rv3 + ω3∂x3 v3 − ∂tω
3 = 0.

(2.4)

These follow from direct computation based on the vorticity equation

(
∆− 1

r2

)
ωr − (b · ∇)ωr + ωr∂rvr + ω3∂x3 vr − ∂tω

r = 0,(
∆− 1

r2

)
ωθ − (b · ∇)ωθ + 2

vθ

r
∂x3 vθ + ωθ vr

r
− ∂tω

θ = 0,

∆ω3 − (b · ∇)ω3 + ω3∂x3 v3 + ωr∂rv3 − ∂tω
3 = 0,

(2.5)

and the relations

ωr = −∂x3 vθ , ωθ = ∂x3 vr − ∂rv3, ω3 = ∂rvθ +
vθ

r
. (2.6)

We mention that the function J was introduced in the recent paper by H. Chen-D. Y. Fang-
T. Zhang [16]. By carrying out an energy estimate on the first two equations, they proved
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the following result: if

|vθ(x, t)| ≤ C
r1−ε

for all x and t > 0, then solutions are regular everywhere. Here ε > 0 and C are positive
constants. This result gives a hint that the ASNS is a little super-critical. The reason is
that vθ has the well known a priori bound

|vθ(x, t)| ≤ 1
r
‖rvθ(·, 0)‖∞, (2.7)

which comes from Eq. (2.2) via the maximum principle.
Now we observe that the vortex stretching terms in all three equations in (2.4) are

critical when viewed in a suitable way. The key is to treat (2.4) as a closed system. There-
fore the vorticity equation of 3 dimensional axially symmetric Navier-Stokes equations
are critical instead of supercritical as commonly believed.

Here are the details. From its a priori bound, we know that vθ at worst scales as
−1 power of the distance. Using the relation (2.6), we see that ωr and ω3 in the vortex
stretching terms in (2.4) at worst scale as −2. The key observation is to treat ωr and
ω3 as potential functions rather than unknowns. It is well known that in a second order
reaction diffusion equation, potentials which scale as−2 power of the distance are critical
instead of supercritical.

But how to treat the other terms ∂r
vr

r , ∂x3
vr

r , ∂rv3 and ∂x3 v3? It turns out that they can
all be converted to J, Ω and ω3 which are treated as unknown functions in (2.4).

In fact one has the following inequalities∥∥∥∇vr

r

∥∥∥
2
≤ ‖Ω‖2,

∥∥∥∇2 vr

r

∥∥∥
2
≤ ‖∂3Ω‖2. (2.8)

These can be seen from the identities

vr = −∂x3 Lθ ,
(

∆ +
2
r

∂r

)Lθ

r
= −Ω,

which imply (
∆ +

2
r

∂r

)vr

r
= ∂x3 Ω.

Then one can use vr

r and ∆ vr

r as test functions respectively to deduce (2.8).
Moreover from the relation

∆∂iv = −∇× ∂iω

and integration by parts, we know that

‖∇∂rv3‖2 + ‖∇∂x3 v3‖2 ≤ C‖∇ω‖2.
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By direct computation, we also have the pointwise relation

|∇ω|2 ≤ 2r2(|∇J|2 + |∇Ω|2) + |∇ω3|2 + 2(J2 + Ω2).

Therefore, even though ωr and ω3 are viewed as potential functions generated by vθ , the
system (2.4) is still a closed system of J, Ω and ω3.

Note that in carrying out energy bound for Eq. (2.4) the drift terms (first order terms)
can be integrated out if functions decay sufficiently fast near infinity. One can also carry
out a localized argument to take care of the drift term as in the paper [120]. We take the
liberty to correct one misstatement in the text on p. 246 in that paper, where it was stated
that weak solutions are Lipschitz in the spatial direction. It should have been ”weak
solutions are locally bounded”.

Now let us introduce the main result in [73].

Definition 2.1. We say that the angular velocity vθ(r, z, t) is in (δ∗, C∗)-critical class if

∫ |vθ |
r
| f |2dx ≤ C∗

∫
|∂r f |2dx + C0

∫
r≥r0

| f |2dx, (2.9a)∫
|vθ |2| f |2dx ≤ δ∗

∫
|∂r f |2dx + C0

∫
r≥r0

| f |2dx, (2.9b)

holds for some r0 > 0, some C0 > 0 and for all t ≥ 0 and all axially symmetric scalar and vector
functions f ∈ H1.

Clearly, under the natural scaling of the Navier-Stokes equations:

vλ(t, x) = λv(λ2t, λx), pλ(t, x) = λ2 p(λ2t, λx),

the above definition is invariant: (vλ)
θ also satisfies (2.9a)-(2.9b) if vθ does.

Theorem 2.6. For arbitrary C∗ > 1, there exists a constant δ∗ > 0 such that for all Leray-
Hopf solutions v to the axially symmetric Navier-Stokes equations with initial value v0 satisfying
‖v0‖H

1
2
< ∞ and ‖rvθ

0‖L∞ < ∞, the following conclusion is true. If the angular velocity field

vθ is in (δ∗, C∗)-critical class, i.e., vθ satisfies the critical Form Boundedness Condition in (2.9a)-
(2.9b), then v is regular globally in time.

An immediate corollary of the theorem is:

Corollary 2.1. Let δ0 ∈ (0, 1
2 ) and C1 > 1. Let v be a Leray-Hopf solution to the axially

symmetric Navier-Stokes equations with initial data v0 ∈ H1/2 and ‖rvθ
0‖L∞ < ∞. If

sup
0≤t<T

|rvθ(r, x3, t)| ≤ C1| ln r|−2, r ≤ δ0, (2.10)

then v is regular globally in time.
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We mention that C∗ in the theorem and C1 in the Corollary 2.1 are independent of
either the profile or the norm of the given initial data. The point is that if (2.10) is sat-
isfied, then (2.9a)-(2.9b) is true. Therefore one can apply the theorem to get the desired
conclusion.

After [73] was posted on the arxiv, in the paper by Dongyi Wei [115], the power in the
log term has been improved to −3/2. Namely, he proved

Theorem 2.7 ( [115]). Let v be a Leray-Hopf solution to the axially symmetric Navier-Stokes
equations with initial data v0 ∈ H2 and ‖rvθ

0‖L∞ < ∞. If, for some δ0 ∈ (0, 1/2),

sup
0≤t<T

|rvθ(r, x3, t)| ≤ C1| ln r|−3/2, r ≤ δ0, (2.11)

then v is regular.

The improvement is achieved by decomposing the space time in a dynamic way when
carrying out the energy estimate for the system of Ω and J in (2.4). More specifically,
in (2.4), one multiplies the first equation by J and the second one by Ω and integrate in
space time. One can justify the integration by using a cut off function φ2 before a potential
singular time t. After integration by parts, one deduces

1
2

∫ (
J2 + Ω2) φ2dy

∣∣∣∣t
0
+
∫ t

0

∫ (
|∇J|2 + |∇Ω|2

)
φ2dyds

≤−
∫ t

0

∫ 2vθ

r
JΩφ2dyds︸ ︷︷ ︸

T1

+
∫ t

0

∫ (
ωr∂r

vr

r
+ ω3∂x3

vr

r

)
Jφ2dyds︸ ︷︷ ︸

T2

+ less singular terms. (2.12)

If we can absorb T1 and T2 by the left hand side, then, we would know that ∇J and ∇Ω
are L2

loc in space time. Since J = ωr/r and Ω = ωθ/r, we then know that ∇ωθ and ∇ωr

are L2
loc in space time around the x3 axis. One can also argue, using the first term on the

left hand side that ωθ and ωr are in the space L∞(0, t; L2
loc). With these information, it is

well known by Sobolev imbedding and bootstrapping that regularity of solutions follow.
The term T1 is the most singular one on the right hand side. The term T2, after using (2.6),
(2.8) and integration by parts, can be shown to be logarithmically less singular than T1.
So the main task is to control T1. Using Cauchy-Schwarz inequality, it is sufficient to use
the left hand side of (2.12) to bound the terms∫ t

0

∫ |vθ |
r

J2φ2dyds,
∫ t

0

∫ |vθ |
r

Ω2φ2dyds.

Let us chose a positive function

r1 = r1(t) ≤ εK(ε)a(t)−1,
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where K is some exponential function and ε is a small number to be chosen suitably;

a(t) =
∥∥∥r−1

∫ r

0
|vθ(ρ, z, t)|dρ

∥∥∥
L∞

.

Splitting the spatial domain along r = r1(t) and using cut-off and integration by parts,
one shows that∫ |vθ |

r
J2φ2dy ≤ ε−1/3

∫
|∂r J|2dy + Cr−2

1 (‖Γ‖L∞ + ε−1/3)
∫

r≥r1/2
J2dy, (2.13)

provided that ‖Γ‖L∞(r≤r1) < ε < 1. The same bound holds when J is replaced by Ω. Now
using the extra condition (2.11), one can substitute (2.13) into (2.12) and turn it into an
ordinary differential inequality. Then the claimed bound for ωθ and ωr in L∞(0, t; L2

loc)
space follows, giving us regularity.

The appearance of the log term is due to the special property of the axially symmetric
Hardy’s inequality : for all ψ ∈ C2

0(R
2), there is one positive constant C such that∫∫ 1

r2| ln r|2 ψ2(r, x3)rdrdx3 ≤ C
∫∫
|∂rψ|2(r, x3)rdrdx3.

It would be interesting if one can lower the power on | ln r| even further in the regularity
criteria. However the drift term, which is almost harmless in the vortex equation so far,
is the main obstacle. For instance, there is a dimension expansion trick in removing the
log term in the Hardy inequality. However the drift term no longer has the divergence
free structure viewing in high dimensions.

3 Ancient solutions

Next we talk about another common way to study the Navier-Stokes equations and many
other nonlinear equations: blow up analysis.

Let v be a Leray-Hopf solution to the NS. Suppose a singularity happens in finite time
T, we would like to know what is it? So we blow down the solution v or blow up the space
time near maximal points of |v| in the time interval [0, ti] ⊂ [0, T), where ti is a sequence
times approaching the singular time (like using a microscope). More specifically, let λi =
supt∈[0,ti ]

|v| and pick points (xi, si) with si ≤ ti such that |v(xi, si)| ≥ λi/2. Consider the
sequence of functions

vi(x, t) ≡ λ−1
i v(λ−1

i x + xi, λ−2
i t + ti), Pi(x, t) ≡ λ−2

i P(λ−1
i x + xi, λ−2

i t + ti).

They are bounded solutions of the NS in a increasingly larger time interval. By standard
regularity theory, vi sub-converges in C2,1

loc topology to a limit function v∞. The resulting
function is still a solution of NS. But it is a bounded solution existing on the time interval
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(−∞, 0). We call such solutions ancient solutions. In general there is no reason that an-
cient solutions are bounded, even when they arise as blow up limits from possible finite
time singularities of Leray-Hopf solutions. Of course we do not know if such singulari-
ties exist for NS. But this is still the case for other parabolic equations where singularities
occur in finite time. The reason is that one can choose a different set of blow up points
(zi, si) where |v(zi, si)| is large but is not comparable to the maximum of |v| before si.
However, since they have existed for a long time, they must be special. In other words,
ancient solutions are rigid. Even if it turns out that no finite time blow up occurs, an-
cient solutions still serve as approximation of the behavior of solutions in regions of high
velocity.

Can one classify all ancient solutions?
The answer is not so easy in general without further assumptions, even for positive

solutions to the heat equation. For example v = ex+t is a nonconstant, positive ancient so-
lution to the 1 dimensional heat equation in R1. It is also not hard to see that v = (0, ex1+t)
is an ancient solution to the 2 dimensional NS. Note this example shows a difference be-
tween stationary and non-stationary Liouville property since it is well known that posi-
tive solutions to the Laplacian, namely, positive harmonic functions in Rn are constants.
However there are also similarities between the two. It is well known that harmonic
functions on Rn of sublinear growth are constants. The same conclusion was proven for
ancient solutions to the heat equation in Souplet-Zhang [104] in 2006, which can be ex-
tended to some noncompact manifold cases. For the NS, there is an additional twist. For
any harmonic function h = h(x) on R3 and a = a(t) a C1 function of time, the function
v = a(t)∇h(x) is an ancient solution of NS. To rule out this kind of solutions, we usually
consider the so-called mild solutions only. For simplicity, we confine ourselves to solu-
tions with locally finite energy, although the notation of mild solutions can be defined for
other, more singular solutions.

Definition 3.1. A function v ∈ L∞
loc(0, T; L2

loc(R
3)) ∩ L2

loc(0, T; H1
loc(R

3)) is called a mild so-
lution to the 3 dimensional NS if

v(x, t) =
∫

R3
G(x, t, y)v0(y)dy +

∫ t

0

∫
R3

K(x, t− s, y)v∇v(y, s)dyds,

where G = G(x, t, y) is the standard heat kernel on R3 and K = K(x, t− s, y) is the Stokes heat
kernel on R3.

By direct calculation, it can be shown that a mild solution in L∞(0, T; R3) is Hölder
continuous in R3 × [δ, T] for any δ > 0. This fact is useful in proving convergence results
involving bounded mild solutions.

See [101] for an earlier treatise and Chapter 5 of [110] for a recent discussion of the
Stokes heat kernel and mild solutions. The latter is often called the Oseen kernel [87]. The
explicit formula is K(x, t, y) = K(x − y, t, 0) ≡ (Kij(z, t, 0)) with z = x − y, i, j = 1, 2, 3
and

Kij(z, t, 0) = G(z, t, 0)δij +
1

4π
∂xi ∂xj

∫
R3

G(w, t, 0)
|z− w| dw. (3.1)
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So, a more reasonable question to ask would be:

Are sublinear, mild ancient solutions of 3 dimensional NS constants? (3.2)

We comment that this question is quite challenging without further restriction on the
growth or decay of the ancient solutions. See a brief discussion at the end of the section.
If the answer to the above question is yes for certain class of ancient solutions, then we
say that the Liouville property or theorem holds for that class.

Of course for the NS, there is the result of [51], which we have seen a little in the
previous section. Their results can be summarized as the following theorem. Note that a
different proof for statement (b) in the stationary case was found in [53] later.

Theorem 3.1 (Koch-Nadirashvili-Seregin-Sverak, [51]).

(a) If v is a bounded, mild ancient solutions of the 2 dimensional NS, then v is constant.

(b) If v is a bounded, mild ancient solutions of the 3 dimensional ASNS, then v is constant if
also vθ = 0.

(c) If v is a bounded, mild ancient solutions of the 3 dimensional ASNS, then v is 0 if also
|v(x)| ≤ C/r.

In the same paper, the authors also made the following conjecture:
The Liouville property is true for bounded, mild ancient solutions of the 3 dimen-

sional ASNS.
Next we describe further results from a recent paper by Lei, Zhang and Zhao [74]. It

is proven, in 2D and the 3D axially symmetric swirl free case, that the Liouville property
holds for mild ancient solutions if the velocity fields are sublinear with respect to the
spatial variable and the vorticity fields satisfy certain decay condition (see Theorem 3.2
and Theorem 3.3). We remark that, unlike the Liouville theorems in [51], there is no need
for the condition that solutions are bounded. Moreover, counterexamples are given when
the velocity fields are linear with respect to the spatial variable. This shows that, under
the condition that solutions are sublinear with respect to the spatial variable, the Liouville
theorems are sharp.

The other main result in that paper is a Liouville property, under an extra decaying
assumption, for bounded ancient solutions of the ASNS with general nontrivial swirl
(see Theorem 3.4). Let v be the bounded ancient mild solutions of the axially symmetric
Navier-Stokes equations with vθ 6= 0 and let Γ = rvθ . We prove that if Γ ∈ L∞

t Lp
x where

1 ≤ p < ∞, then v must be constants.
Actually, in the 3D axially symmetric case, on the above conjecture, one can add the

extra condition that Γ ∈ L∞
t L∞

x without losing much generality. The reason is that Γ
is scaling invariant and it also satisfies the maximum principle. So if the initial value
of a solution satisfies the bound, then it will persist over time. Therefore, any ancient
solution from blow up process will still satisfy this bound. As mentioned, when vθ 6= 0,
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the Liouville property was proved in [51] under the condition |v| ≤ C
r . In comparison,

in [74], one only needs the condition on one component vθ of the velocity v while no
additional conditions are added on the other two components. Moreover, even though
they haven’t totally proved the conjecture in [51], the result can still be considered as a
step forward in understanding the conjecture. That is because the condition Γ ∈ L∞

t Lp
x

with p being any finite number seems not too far from Γ ∈ L∞.
The following are the main results in [74]. We mention that solution v in the next two

theorems are also assumed to be locally bounded in space. Namely, if x is in a compact
set, then |v(x, t)| is uniformly bounded for all t. This assumption was not stated in the
corresponding theorems in [74] although it was implicitly stated in the text. See also a
related result by Pan and Li [89] where v is allowed to grow at (−t)0.5− rate near −∞.

Theorem 3.2. Let v be a smooth, locally bounded ancient solution of the 2D incompressible
Navier-Stokes equations and let ω = ∇× v be the vorticity. If

lim
|x|→+∞

|ω(x, t)| = 0,

uniformly for all t ∈ (−∞, 0), then ω ≡ 0 and v is harmonic.
If, in addition, v satisfies

lim
|x|→+∞

|v(x, t)|/|x| = 0, (3.3)

uniformly for all t ∈ (−∞, 0), then v must be a constant.

Theorem 3.3. Let v be a smooth, locally bounded ancient solution of the 3D axially symmetric
Navier-Stokes equations without swirl and let ω = ∇ × v = ωθeθ be the vorticity. Define
Ω = ωθ

r , if
lim

r→+∞
|Ω| = 0, (3.4)

uniformly for all t ∈ (−∞, 0), then ωθ ≡ 0 and v is harmonic.
If, in addition, v satisfies

lim
|x|→+∞

|v(x, t)|/|x| = 0, (3.5)

uniformly for all t ∈ (−∞, 0), then v must be a constant.

Theorem 3.4. Let v be a bounded ancient mild solution of the 3D axially symmetric Navier-
Stokes equations with vθ 6= 0 and let Γ = rvθ . If Γ ∈ Lp

x L∞
t (R

3 × (−∞, 0)), where 1 ≤ p < ∞,
then v must be a constant.

The condition v being sublinear (the condition (3.3)) in Theorem 3.2 can not be re-
moved, even when ω ≡ 0. Hence, the above 2 dimensional Liouville theorem is sharp.
Here is a counterexample. Let

v = (x1,−x2), p = −1
2

x2
1 −

1
2

x2
2,
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then ω = ∂1u2 − ∂2u1 = 0, and (v, p) satisfies the 2D stationary Navier-Stokes equations.
However, v is not a constant solution.

The first conclusion in Theorem 3.3, the axially symmetric, swirl free case, shows that
if ωθ is sublinear with respect to r, then ωθ ≡ 0. Here is a counterexample to show that
the conclusion will be wrong if ωθ is linear with respect to r, and consequently one cannot
prove v is harmonic. This infers that condition (3.4) is also important. Let

v = (−x1x3,−x2x3, x2
3), p = −1

2
x4

3 + 2x3,

then vθ = v · eθ = 0 and (v, p) satisfies the stationary ASNS However ωθ = −r 6≡ 0,
∆v = (0, 0, 2) 6= 0.

In addition, the condition v being sublinear to x (condition (3.5)) is also necessary,
even when ωθ = 0. Moreover, one can give a counterexample to show that if v is linear in
the spatial variable, then there exists a nontrivial ancient solution of ASNS without swirl.
It then follows that Theorem 3.3 is sharp. For example, let

v =
(
− 1

2
x1,−1

2
x2, x3

)
, p =

1
8

x2
1 +

1
8

x2
2 +

1
2

x2
3,

then we have

vθ = v · eθ = 0, vr = v · er = −
1
2

r, v3 = x3.

These imply that ωθ = ∂x3 vr− ∂rv3 = 0 and (v, p) satisfies the stationary ASNS equations
without swirl. However, v is not a constant solution.

So the remaining case for the Liouville property, which is also the most difficult one,
is when Γ = rvθ(x, t) does not decay near infinity. There are some partial results in the
paper [69] by Lei-Ren-Zhang.

Theorem 3.5. Let v = vθeθ + vrer + v3e3 be a bounded mild ancient solution to the ASNS such
that Γ = rvθ is bounded. Suppose v is periodic in the x3 variable. Then v = ce3, where c is a
constant.

Let us describe the general idea of the proof of this theorem. One will prove, by
the De Giorgi-Nash-Moser method that Γ satisfies a partially scaling invariant Hölder
estimate which forces Γ ≡ 0. Then the problem is reduced to the swirl free case that is
solved in [51]. In general this method will break down in large scale, unless one imposes
scaling invariant decay conditions on vr and v3. Although no decay conditions on vr or v3

are assumed in the theorem, one can demonstrate that the classical Nash-Moser iteration
method can be carefully adapted to this situation. The key observation is the following:
the incompressibility condition ∇ · b = 0 with b = vrer + v3e3, along with the periodicity
in x3 gives one extra information on vr. In fact one will essentially use

vr(r, θ, x3) = −∂x3(Lθ(r, θ, x3)− Lθ(r, θ, 0)) ∈ (L∞)−1,
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where Lθ is the angular stream function. Another helpful factor is that the spatial domain
R2× S1 behaves like a 2 dimensional Euclidean space in large scale, even though it really
behaves 3 dimensionally near the axis. This shows that vr scales by the critical order −1,
which is quite helpful. But the same can not be said for v3. Fortunately, the role of v3 is
not as important as vr in the x3 periodic case.

In contrast to the absence of nontrivial partially periodic ancient solutions for ASNS,
in another 3 dimensional parabolic flow, the Ricci flow, such a solution exists and repre-
sents a typical singularity: (S2 ×R)× (−∞, 0). This important fact is proven by Perel-
man [91].

Next, we present a theorem that deals with non-periodic case, under an extra condi-
tion that Γ converges to its maximum at certain speed. Even though the result cannot yet
reach the full conjecture in [51], its proof utilizes a method of constructing a weight func-
tion by solving an adapted PDE, which is then used in an energy estimate. It may be of
independent value and use elsewhere. This result and the ones in [69] all were posted in
the preprint [68]. In a review process, it was suggested by a reviewer to split that paper.

Let
lim sup

r→∞
Γ = lim sup

r→∞
sup
x3,t

Γ(r, x3, t). (3.6)

It can be shown that if v is any bounded ancient solution such that Γ is bounded, then

lim sup
r→∞

Γ = sup Γ.

Theorem 3.6 ([70]). Let v = vθeθ + vrer + v3e3 be a bounded mild ancient solution to the ASNS
such that Γ = rvθ is bounded. There exists a small number ε0 ∈ (0, 1), depending only on ‖v‖∞,
such that if ∣∣∣Γ2(r, x3, t)− lim sup

r→∞
Γ2
∣∣∣ ≤ ε0

r
lim sup

r→∞
Γ2 (3.7)

holds uniformly for x3, t, and large r, then v = ce3 where c is a constant.

Let us mention that to study the equation of Γ in an isolated manner is likely to fail.
For example without the divergence free condition on the vector field b. There is no
Liouville property for the equation

∆ f − 2
r

∂r f − (b · ∇) f = 0, f (0) = 0, lim
r→∞

f = c in R3,

even when f = f (r) is a one variable function. One can just take b = a(r)er with a(r) ≤ 0,
r exp(

∫
a(r)dr) being integrable on [0, ∞). Then solve the ODE

f ′′ −
(1

r
+ a(r)

)
f ′ = 0.

We remark that Question (3.2) is very difficult even in the bounded, axially symmetric
case, especially without the extra assumption Γ = rvθ ∈ L∞. The reason is that it con-
tains another long standing question for the stationary NS as a special case. Namely,
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is a homogeneous D solution zero? We will discuss the latter in detail in the following
section.

At the end of this section, we introduce a local representation formula for smooth
solutions of NS, which is a useful tool in proving convergence results in NS during and
after blow up or scaling, including ancient solutions. It is largely due to O’Leary [86] and
has been used in several papers including [121]. However, as pointed out by H. J. Dong,
there is a missing term in that formula. A corrected one is given in the addendum of [121],
which is given below. As one application, we can prove that for a local smooth solution v
of NS, v and ∇v is controlled by a local integral of v or |∇v| without any assumption on
the pressure. The smoothness assumption can be relaxed. We refer to [121] addendum
for details.

Given r > 0 and (x, t) in the space time. Let

Qr(x, t) = {(y, s) | |x− y| < r, t− r2 < s < t}

be a standard parabolic cube. Denote by Γ = Γ(x, y) = 1/(4π|x− y|) the Green’s func-
tion on R3, G = G(x, t, y) the standard heat kernel, K = K(x, t, y) the Oseen kernel given
in (3.1). Fixing (x, t), we construct a standard cut-off function η such that η(y, s) = 1 in
Qr/2(x, t), η(y, s) = 0 outside of Qr(x, t), 0 ≤ η ≤ 1. Denote by Kj the j− th column of
the Oseen kernel. The following vector was introduced in [86].

Φj =Φj(x, t− s, y)

=η(y, s)Kj(x, t− s, y) +
1

4π
∇η(y, s)×

∫
R3

curlKj(x, t− s, z)
|z− y| dz

≡ηKj(x, t− s, y) +
−→
Z j(x, t− s, y).

Proposition 3.1 ( [121], Addendum). Suppose v = (v1, v2, v3) is a smooth solution of the NS
(1.1) in Qr(x, t) and Kj be the j-th column of the Oseen kernel K. Then

vj(x, t) =
∫

Qr(x,t)
v(y, s) ·

[
Kj(x, t− s, y)(∆η + ∂sη)(y, s) + 2∇η(y, s)∇yKj(x, t− s, y)

]
dyds

+
∫

Qr(x,t)
v(y, s) ·

[
(∆y
−→
Z j + ∂s

−→
Z j)(x, t− s, y) + v(y, s)∇yΦj(x, t− s, y)

]
dyds

+
∫

Br(x)

[
(∇η · ∇yΓ)vj − ∂yj Γ(∇η · v)− ∂yj η(∇yΓ · v)

]
(y, t)dy.︸ ︷︷ ︸ (3.8)

In the above, if X, Y are two vector fields. Then

X∇Y ≡∑
j

Xj∂jY.

The last term in (3.8) was the missing one. Since all integrands vanish on the lateral
boundary of Qr(x, t), one can apply∇x freely into the integrals on the right sides of (3.8).
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Also it is not hard to see that the formula also works if one replaces (x, t) by any points
in Qr/2(x, t) while keeping the cube Qr(x, t) unchanged.

Using the explicit formula above, one deduces

Proposition 3.2 (Mean value inequalities for (NS), [121], Addendum). Let v be a smooth
solution of the NS (1.1) in Q2r(x, t). Then there exists an absolute constant λ > 0 such that

(a)

|v(x, t)| ≤ λ

r5

∫
Qr(x,t)−Qr/2(x,t)

|v(y, s)|dyds +
λ

r3

∫
Br(x)−Br/2(x)

|v(y, t)|dy

+ λ
∫

Qr(x,t)
K1(x, t; y, s)|v(y, s)|2dyds,

where
K1(x, t; y, s) = 1/(|x− y|+

√
t− s)4,

if t ≥ s and 0 if t < s.

(b)

|∇v(x, t)|

≤ λ

r5

∫
Qr(x,t)−Qr/2(x,t)

|∇v(y, s)|dyds +
λ

r6

∫
Qr(x,t)−Qr/2(x,t)

|v(y, s)|dyds

+
λ

r4

∫
Br(x)−Br/2(x)

|v(y, t)|dy + λ
∫

Qr(x,t)
K1(x, t; y, s)|v(y, s)||∇v(y, s)|dyds.

Using an iteration, one can also remove the kernel function K1 from the above mean
value inequality, assuming v is in a parabolic type Kato class. The latter contains the
standard Lp

x Lq
t regularity class alluded in Section 1 for q < ∞.

Definition 3.2 ( [121]). A vector valued function b = b(x, t) in L1
loc(R

n+1) is in class K1 if it
satisfies the following condition:

lim
h→0

sup
(x,t)∈Rn+1

∫ t

t−h

∫
Rn
[K1(x, t; y, s) + K1(x, s; y, t− h)]|b(y, s)|dyds = 0.

The parabolic Kato norm of b on a time interval [t1, t2] and scale h is

B(b, t1, t2, h) ≡ sup
(x,t)∈Rn×[t1,t2]

∫ t

t−h

∫
Rn
[K1(x, t; y, s) + K1(x, s; y, t− h)]|b(y, s)|dyds.

Proposition 3.3 ( [121], Addendum). Let v be a local solution of the NS (1.1) in Q4r(x, t) ⊂
R3 ×R, satisfying the energy inequality (1.2) localized in Q4r(x, t). Suppose also that v|Q4r(x,t)
is in class K1. Then both v and |∇v| are bounded functions in Q2r = Q2r(x, t).
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Moreover, for some positive constants C = C(v) and r0, depending only on the size of the
Kato norm of v in the time interval [t − 16r2

0, t] with scale 16r2
0 such that the following hold.

When 0 < r < r0,

|v(x, t)| ≤ C
r3 sup

s∈[t−(2r)2,t]

∫
Br(x)
|v(y, s)|dy,

|∇v(x, t)| ≤ C
r5 ‖∇v‖L1(Q2r) +

C
r4 sup

s∈[t−(2r)2,t]

∫
Br(x)
|v(y, s)|dy.

4 Stationary solutions

4.1 D solutions

In this section we discuss the stationary Navier-Stokes equations{
(v · ∇)v +∇p− ∆v = f in Ω ⊂ R3,
∇ · v = 0.

(4.1)

Here Ω is an open domain and f is a forcing term. Boundary conditions will vary case
by case.

We will focus on the decay and vanishing properties of the so-called homogeneous
D solutions to (4.1) in certain unbounded domain Ω ⊂ R3 with various boundary con-
ditions and requirements of the behavior of v at infinity. Here the name “D solutions”
arises from the condition that solutions v have finite Dirichlet integrals (energy)∫

Ω
|∇v(x)|2dx < +∞. (4.2)

Definition 4.1. A smooth solution to (4.1) is called a D solution on Ω if (4.2) holds. It is referred
to as DS.

A homogenous D solution on Ω is a D solution v on Ω such that v = 0 on ∂Ω, f = 0 and
|v(x)| → 0 as |x| → ∞. It is referred to as HDS.

An axially symmetric homogenous D solution on Ω is referred to as ASHDS.

If no confusion arises, we will drop the reference to the domain Ω from D solutions.
Existence of D solutions with several boundary conditions were studied in the pioneer

work of Leray [61, (p. 24)] by variational method. The following uniqueness problem has
been open since then:

Is a homogeneous D solution equal to 0 ?

This is also part of the very difficult uniqueness problem for the steady Navier-Stokes
equation, which states that if the right hand of the first equations of (4.1) is a nontrivial
smooth function, decaying sufficiently fast, do we have the uniqueness of D solutions.
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For axially symmetric compact domains with a hole at the axis, the uniqueness fails, as
pointed out by Yudovich [119] over 50 years ago. However for general domains, the
problem is wide open. Let us explain Yudovich’s construction of 2 solutions. Let Ω be
the above compact domain. For a divergence free vector field A, find a nontrivial solution
φ of the following ”eigenvalue problem” for vector fields.

∆φ− (A · ∇)φ− (φ · ∇)A−∇τ = 0 in Ω,
∇ · φ = 0 in Ω,
φ = 0 on ∂Ω.

(4.3)

Then A + φ and A− φ will be two distinct solutions of the stationary NS with the same
forcing term, the same boundary value, but different pressure terms. But there is a prob-
lem. How to find a nontrivial solution to (4.3). Yudovich found a special A so that (4.3)
has a variational structure and found a nontrivial solution by solving a constrained max-
imum problem. His choice of A is

A = −r−3eθ

in the polar coordinates.
Now let us focus on the decay and vanishing problems for DS. In the 2 dimensions,

the corresponding vanishing property in the full space case is solved by Gilbarg and
Weinberger [41], using the line integral method.

Theorem 4.1 ( [41]). Let velocity v and pressure p be a solution of the Navier-Stokes equation
defined over the entire R2 and assume∫

R2
|∇v(x)|2dx < +∞.

Then v and p are constant.

They also proved a number of asymptotic properties of 2 dimensional D solutions in
general. For example, they proved that the pressure p from Leray’s D solution in 2 D
exterior domains with f = 0 must converge to a constant at infinity.

However, for the 3 dimensional problem, it is not even known if a general D-solution
has any definite decay rate comparing with the distance function near infinity, even when
the domain is R3. The situation is akin to the regularity problem. This time the scaling
gap happens at infinity. Namely, to prove vanishing, one always needs to impose a con-
dition that the solution decays in some sense near infinity sufficiently fast. However, no
decay rate has been proven a priori for HDS (homogeneous D solutions) in R3, making
the situation looks bleaker than the regularity problem. Another eerie similarity with
the regularity problem occurs in that some partial a priori decay can be proven quickly
outside a small set. In fact, R. Finn [35, (p. 229)], already observed the following partial
decay property for any 3 dimensional vector field v having a finite Dirichlet integral and
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tending to a constant vector v∞ as |x| → ∞. For any δ > 0, there exists a measurable set
Eδ ⊂ S2, such that |Eδ| ≤ δ and

|v− v∞| ≤
C

δ1/2|x|1/2 , ∀x = |x|ω, ω ∈ S2\Eδ. (4.4)

So the current situation is, in order to prove vanishing, one needs to establish a priori
decay of sufficiently fast order, such as |v(x)| ≤ c/|x|2/3, c.f. Theorem 4.4. However
the only a priori decay is a slow and partial one, except for solutions which are small in
suitable sense.

Perhaps it is also not a surprise that just the decay and convergence property itself
for general D solutions is an intricate matter in both 2 and 3 dimensions. In [34, 35],
Finn proved that any D solution in 3 dimensional exterior domains converges pointwise
uniformly to a constant vector v∞ at infinity. Furthermore, in case v∞ 6= 0, he showed
that if |v(x)− v∞| ≤ C|x|−α for some α > 1/2 as x → ∞, then α can be replaced by 1. He
also introduced a concept called ”physically reasonable (PR) solutions” to the stationary
NS in 3 dimensional exterior domains, which are those satisfying v(x) = O(|x|−1) if
v∞ = 0 or |v(x)− v∞| = O(|x|−α) for some α > 1/2, if v∞ 6= 0. Finn [36] then proved
the existence and uniqueness of a PR solution in a 3 dimensional exterior domain when
the boundary data are small enough. It is straight forward to show a PR solution is a
D solution. However, in case v∞ = 0, whether the converse is true has remained open
till now. As mentioned, if v∞ = 0, we can not prove any decay rate at infinity for v so
far, not to mention the expected decay rate of |x|−1. One exception is when the solution
is small in a suitable sense. Then the decay can be proven as a linear Stokes problem
in exterior domains. See Galdi [38] where the viscosity constant ν is large and therefore
a fixed Dirichlet integral is relatively small. Note that one will not run into the Stokes
paradox which happens when v∞ 6= 0 and v = 0 on the boundary of the exterior domain
Ω. In the case of v∞ 6= 0, Babenko [3] showed that every D solution is a PR solution if the
forcing term is of bounded support.

One would be tempted to think that the 2 dimensional situation is simpler, which is
the case for the regularity problem. But this is not true. Finiteness of the Dirichlet integral
(4.2) does not entail any decay of v in 2 dimensions. Only recently, Korobkov, Pileckas,
and Russo [54] managed to prove the following convergence result.

Theorem 4.2. Let v be a D-solution to NS in an exterior domain Ω ⊂ R2 without forcing term.
Then v converges pointwise uniformly at infinity to a constant vector v∞ ∈ R2.

The proof builds on earlier work in Gilbarg and Weinberger [41], Amick [1, 2]. Fine
analysis of the level sets of the vorticity plays an important role. These are curves in
R2. There is still a problem on whether v∞ agrees with the one from Leray’s original
construction [61]. The interested reader may consult the introduction of [54] for a detailed
account of related and expanded results.

Let’s recall some of vanishing results with extra integral or decay assumptions for the
solution v in 3 dimensions. If the domain Ω = R3, Galdi [39] Theorem X.9.5 proved that
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if v ∈ L9/2(R3) is a homogeneous D-solution, then v = 0. A log factor improvement was
shown in Chae and Wolf [26]. In [25], Chae proved that homogeneous D solutions are 0
by assuming ∆v ∈ L6/5(R3), which scales the same as ‖∇v‖2.

Theorem 4.3 ([25]). Let v be a homogeneous D solution in R3. Suppose

‖∆v‖L6/5(R3) < ∞,

then v = 0.

Chae’s proof uses the property that the head pressure Q = 1
2 |v|2 + p is non-positive

if p(x) → 0 at infinity. This fact follows from the maximum principle. Then he uses
v(Q− ε)δ

− as a test function in the stationary NS. Letting ε, δ→ 0, one concludes that∫
R3
|∇v|2dx = 0,

and hence v = 0.
Seregin [98] proved vanishing of homogeneous D solutions under the condition that

v ∈ L6(R3) ∩ BMO−1. In a recent paper [55], Kozono-Terasawa-Wakasugi showed van-
ishing of homogeneous D solutions if either the vorticity ω = ω(x) decays faster than
c/|x|5/3 at infinity, or the velocity v decays like c/|x|2/3 with c being a small number. i.e.,
They proved

Theorem 4.4 ([55]). Let v be a homogeneous D solution in R3 and ω = ∇× v be the vorticity.
If either

|ω(x)| = o(|x|−5/3) or |v(x)| ≤ c|x|−2/3

for a small positive constant and all large |x|, then v = 0.

Afterwards, W. D. Wang [114] and N. Zhao [122] proved a similar result for the axially
symmetric D solutions independently. Note that no decay condition is imposed in the e3
direction on one hand, but no improvement on the decay exponent is made on the other.
However the result is still encouraging since we now have a priori estimates on v and ω,
c.f. Theorems 4.8 and 4.9.

Theorem 4.5 ( [114, 122]). Let v be an axially symmetric homogeneous D solution in R3 and
ω = ∇× v be the vorticity. If either

|ω(x)| = o(r−5/3) or |v(x)| = o(r−2/3)

for all large |x|, then v = 0.

The results in [55] has also been extended to D solutions in some Lebesgue and Mor-
rey spaces in [20].

Under certain smallness assumption, vanishing result for homogeneous 3 dimen-
sional solutions in a slab R2 × [0, 1] was also obtained in the book [39], Chapter XII.

As mentioned, D solutions in general noncompact domains have been studied in [61].
Besides the whole space, the next simplest noncompact domains are the half space and
slabs. Let us present a vanishing result for D solutions in a slab in R3.
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Theorem 4.6 ([24], vanishing of HDS in a slab). Let v be a smooth solution to the problem{
(v · ∇)v +∇p− ∆v = 0, ∇ · v = 0 in R2 × [0, 1],
v(x)|x3=0 = v(x)|x3=1 = 0,

(4.5)

such that the Dirichlet integral satisfies the condition:∫ 1

0

∫
R2
|∇v(x)|2dx < ∞. (4.6)

Then, v ≡ 0.

Comparing with the full space case, one can show by Poincaré inequality, with the
help of Dirichlet boundary and the finite integral condition (4.6), that the velocity v be-
longs to L2, which indicates that the decay rate of v = v(x) is like 1/|x| in the integral
sense. However one does not have a good knowledge of the pressure p. The Dirich-
let boundary condition is known to induce complications on the vorticity and pressure.
The main difficulty is to deal with the pressure term. Earlier, Pileckas and Specovius-
Neugebauer [92] studied the asymptotic decay of solutions of the Navier-Stokes equa-
tion in a slab. They prove, under certain weighted integral assumption on the velocity
v = v(x) and 3rd order derivatives, v = v(x) decays like 1/|x| or 1/|x|3. See Theorem 3.1
in [92]. Then the vanishing of v in the homogeneous case follows easily. However, these
authors required that

(1 + |x|)2+β|v3(x)|+ (1 + |x|)3+β|∂x1 v3(x)|

with β ∈ (−2,−1) is in L2 in addition to further integral decay conditions of the first,
second and third order derivatives of v, and consequently restriction on the pressure.
These conditions are not available to us. Furthermore in the periodic case, which will be
dealt with later, it is not even known that v is L2.

Besides if the Dirichlet energy is infinite, the vanishing property may be false. An
example is v = (x3(1− x3), 0, 0), p = −2x1.

In the paper [24], there is an extra assumption that v is bounded, which turns out to be
unnecessary. Also it seems interesting to study the decay property of nonhomogeneous
solutions in a slab.

Now if the domain is the whole R3, one can show that if the positive part of the radial
component of D solutions decays at order −1 of the distance in spherical coordinates,
then the D-solution vanishes.

Theorem 4.7 ( [24]). Let vρ = vρ(x) be the radial component of 3 dimensional D-solutions in
spherical coordinates. If

vρ(x) ≤ C
|x| , x ∈ R3, (4.7)

for some positive constant C, then v ≡ 0.
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We should compare with the result in [55] where the authors prove, if the weak L9/2

norm of v is small, then v vanishes. This includes the case |v(x)| ≤ c|x|−2/3 for certain
small constant c. In contrast, our assumption here is worse on the order of the distance
function. However we only impose the condition on the positive part of the radial com-
ponent of the solution and there is no restriction on the other two components.

Next we concentrate on axially symmetric homogeneous D solutions, for which the
vanishing problem is also wide open. However as we shall see, a priori decay of the
solutions v and vorticity ω in the er direction is available, albeit insufficient for vanishing
result in the whole space case. The set up of equations have been given in (1.5) for the
velocity and (2.5) for the vorticity, except that we are happy to drop the time variable all
together. The relation between v and ω are given in (2.6).

For the decay of v and ω, the combined results of Chae-Jin and S. K. Weng spanning
8 years can be condensed into:

Theorem 4.8 ([19, 116]). Let v be a homogeneous D solution of ASNS in R3. For x ∈ R3,

|v(x)| ≤ C (log r/r)1/2 , |ωθ(x)| ≤ Cr−(19/16)− , |ωr(x)|+ |ω3(x)| ≤ Cr−(67/64)− . (4.8)

Here C is a positive constant and for a positive number a, a− represents a number which is smaller
than but close to a.

Their proof is based on line integral techniques from Gilbarg and Weinberger [41]. In
our recent work [23], the decay estimate on the vorticity ω is improved and a short proof
for the decay of the velocity v is found under a slightly more general condition. Let us
mention that in both the previous and following theorems, one can add a fast decaying
forcing term and still obtain the decay estimates. The proof is the same.

Theorem 4.9 ( [23], a priori decay v and ω). Let u be a smooth axially symmetric solution to
the problem  (v · ∇)v +∇p− ∆v = 0, ∇ · v = 0 in R3,

lim
|x|→∞

v(x) = 0, (4.9)

such that the Dirichlet integral satisfies the condition: for a constant C, and all R ≥ 1,∫ ∞

−∞

∫
R≤|x′|≤2R

(
|∇v(x)|2dx + |v(x)|6

)
dx′dx3 < C < ∞. (4.10)

Then the velocity and vorticity satisfy the following a priori bound. For a constant C0 > 0,
depending only on the constant C in (4.10) such that

|v(x)| ≤ C0
(ln r)1/2
√

r
,

|ωθ(x)| ≤ C0
(ln r)3/4

r5/4 , |ωr(x)|+ |ω3(x)| ≤ C
(ln r)11/8

r9/8 , r ≥ e.
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Now we outline the proof of the decay result in Theorem 4.9 briefly. We start with
the observation that in a large dyadic ball, far away from the x3 axis, after scaling, the
axially symmetric Navier-Stokes equation resembles a 2 dimensional one. Then the 2
dimensional Brezis-Gallouet inequality introduced in [8] implies that a smooth vector
field with finite Dirichlet energy is almost bounded. After returning to the original scale,
one can show that v is bounded by C

( ln r
r

)1/2 for large r. It is curious that the ASNS
hardly plays a role in the proof, except for guaranteeing ∆v is bounded.

Next by combining the energy estimates of the equations for ω in the stationary (2.5),
Brezis-Gallouet inequality and scaling technique, we will show that, with x3 taken as 0
for convenience,

|ωθ(r, 0)| ≤ Cr−1(ln r)1/2‖(vr, vθ , v3)‖1/2
L∞([ 3

4 r, 5
4 r]×[−r,r])

, (4.11a)

|ωr(r, 0)|+ |ω3(r, 0)| ≤ Cr−1(ln r)1/2‖(vr, v3)‖1/2
L∞([ 3

4 r, 5
4 r]×[−r,r])

+ Cr−1/2(ln r)1/2‖(∇vr,∇v3)‖1/2
L∞([ 3

4 r, 5
4 r]×[−r,r])

. (4.11b)

The details can be founded in [23]. Then using the decay of v and (4.11a), we can deduce
that the decay rate of ωθ is r−5/4(ln r)3/4.

In order to obtain decay of ωr and ω3 from (4.11b), we need the decay of ∇vr,∇v3

which can be connected with ωθ by the Biot-Savart law

−∆(vrer + v3e3) = ∇× (ωθeθ).

Then ∇vr, ∇v3 can be written as integral representations of ωθ in the form of∫
R3 K(x, y)ωθ(y)dy, where K(x, y) are Calderon-Zygmund kernels. The decay relations

between ∇vr, ∇v3 and ωθ are shown in Lemma 3.2 of [23]. At last, a combination of
(4.11b), decay of v and ∇vr, ∇v3 imply the decay of ωr, ω3 in Theorem 4.9.

Clearly, if the Dirichlet integral is finite i.e., ‖∇v‖L2(R3) < ∞, then (4.10) is satisfied.
In [23], we also proved a vanishing result when D solutions are periodic in x3 variable
under the additional assumption that vθ and v3 have zero mean in the x3 direction. With
some extra work, one can also reach the vanishing result assuming the integral in (4.10)
grows at a certain positive power of R.

In a subsequent paper [24], the extra condition that vθ , v3 have zero mean in the x3
direction has been removed, under the stronger assumption that the Dirichlet integral is
finite. We state it as the following theorem, with ASHDS standing for axially symmetric
homogeneous D solutions.

Theorem 4.10 (Vanishing of Periodic ASHDS). Let v be a smooth axially symmetric solution
to the problem

(v · ∇)v +∇p− ∆v = 0, ∇ · v = 0 in R2 × S = R2 × [−π, π],
v(x1, x2, x3) = v(x1, x2, x3 + 2π),

lim
|x′|→∞

v(x) = 0,
(4.12)
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with finite Dirichlet integral: ∫ π

−π

∫
R2
|∇v(x)|2dx < +∞.

Then v = 0.

We outline the proof of the above results briefly. We start with the observation that
in x3−periodic case with Ω = R2 × S, the horizontal radial component of the solution vr

satisfies ∫ π

−π
vrdx3 = 0.

Poincaré inequality and the finite Dirichlet integral condition indicate that vr ∈ L2(Ω).
Then using of x3-periodicity again, we can actually prove that the L∞ oscillation of the
pressure p is bounded in a dyadic annulus. The method is similar to the line integral
technique in [41] except it is carried out in a 3 dimensional domain. At last by testing
the vector equation (4.12) with vφ2(|x′|), where φ(x′) is supported in {x′| |x′| < 2R} and
equal to 1 in {x′| |x′| < R}, and making R approach ∞, we can prove that v ≡ 0. This
result seems to add an extra weight in the belief that ASHDS in R3 is 0. The reason is that
in the periodic case, finiteness of the Dirichlet integral of v does not imply any decay of v.
For example the function f = ln ln(2+ r) has finite Dirichlet integral. Yet v still vanishes.

The next theorem treats the case with Dirichlet boundary condition (DBC) in a slab,
even allowing the Dirichlet integral to be log divergent. Recall from Theorem 4.6 that
three dimensional D solutions in a slab with DBC is 0. Why do we come back to the
slab case? One reason is that infinite Dirichlet energy may induce non-uniqueness/non-
vanishing as shown in the example after Theorem 4.6. So one would like to know, under
what rate of divergence of the energy, vanishing of D solutions and especially ASHDS is
preserved. In addition, solutions with infinite Dirichlet energy is also of interest in tur-
bulence theory. These include the study of Kolmogorov flows such as flows in a channel
with periodic forcing terms. See e.g., [37].

Theorem 4.11 ([24]). Let v be a smooth, axially symmetric solution to the problem (v · ∇)v +∇p− ∆v = 0, ∇ · v = 0, in R2 × [0, 1],
lim
|x′|→∞

v = 0, v(x)|x3=0 = v(x)|x3=1 = 0, (4.13)

such that the Dirichlet integral satisfies the condition: for a constant C, and all R ≥ 1,∫ 1

0

∫
R≤|x′|≤2R

|∇v(x)|2dx < C < ∞. (4.14)

Then vθ = 0. Moreover, there exists a positive constant C0, depending only on the constant C in
(4.14) such that

|vr(x)|+ |v3(x)| ≤ C0

(
ln r

r

)1/2

. (4.15)
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Since vθ = 0 i.e., the flow is swirl free, the Navier-Stokes system reduces to
(vr∂r + v3∂x3)v

r + ∂r p = (∆− r−2)vr,
(vr∂r + v3∂x3)v

3 + ∂x3 p = ∆v3,
∂rvr + r−1vr + ∂x3 v3 = 0,
lim
r→∞

(vr, v3) = 0, (vr, v3)(r, x3)|x3=0,1 = 0.

(4.16)

So our vanishing problem now is much like a two dimensional problem. But we do not
know any vanishing result for swirl free case in a slab with Dirichlet boundary condition
and (4.14).

The decay estimate in the er direction still holds if there is an inhomogeneous term of
sufficiently fast decay. However, we are not aware any decay estimate in the e3 direction,
except in the swirl free case, c.f. Theorem 1.2 [116]. If one works a little harder, then one
can reach the same conclusion as the theorem assuming the integral in (4.14) grows at
certain power of R.

Let us give a description of the proof of Theorem 4.11. From (2.2), the quantity Γ :=
rvθ satisfies

(vr∂r + v3∂x3)Γ−
(

∆− 2
r

∂r

)
Γ = 0. (4.17)

So Γ enjoys maximum principle, which means, for bounded open sets Ω ⊂ R3,

sup
x∈Ω
|Γ| ≤ sup

x∈∂Ω
|Γ|. (4.18)

We will show that the decay rate of vθ is at least r−(
3
2 )
−

for large r. Take this decay for
granted at the moment. By using the above maximum principle and a sliding argument
along the x3 axis together with the fact that Γ(x)→ 0 as r → ∞, one can prove vθ ≡ 0.

We are left to prove the above decay property of vθ , which take three steps.
In step one: the Laplace Green’s function G on R2× [0, 1] with homogeneous Dirichlet

boundary condition will be introduced and a number of properties of G explained. The
point is that G has fast decay near infinity. See e.g., [81].

In step two: we obtain the following decay of ωr, ω3 by using a refined Brezis-
Gallouet inequality, energy methods and scaling techniques:

|(ωr(x), ω3(x))| . r−1 ln r,

for large r. Furthermore, by the same procedure, we can show that

|(∂x3 ωr(x), ∂rω3(x))| . r−3/2(ln r)3/2. (4.19)

In step three, we use the Biot-Savart law to get the representation of vθ by integrals
involving G and (∂x3 ωr, ∂rω3), which implies that vθ decays in the same rate as ∂x3 ωr and
∂rω3. Now that we know vθ decays faster than order 1, as mentioned one can apply the
maximum principle on the function Γ = rvθ to conclude vθ = 0.



Q. Zhang and X. Pan / Anal. Theory Appl., 38 (2022), pp. 243-296 273

When deriving the results in [23, 24], one uses the standard tools such as energy es-
timate, vorticity equation and inter-play of velocity and vorticity. The new input is di-
mension reduction and the use of two additional tools: Brezis-Gallouet inequality and
Bogovskii’s estimate, which are given a brief overview here. Some refinements of them
are also given for a class of domains.

The Brezis-Gallouet inequality is a limiting case of the Sobolev inequality in 2 di-
mensions for H2 extension domains. An analogous inequality also holds in higher di-
mensions by Brezis-Wainger [11]. Recall that a domain Ω ⊂ Rn is called a H2 ex-
tension domain if the following properties hold. There exists an extension operator
P : H2(Ω) → H2(Rn) such that P is a bounded operator from Hi(Ω) to Hi(Rn), i = 1, 2
and P f |Ω = f for all f ∈ H2(Ω). For instance, Lipschitz domains are H2 extension
domains. See e.g., [13].

Lemma 4.1 ( [8]). Let Ω ⊂ R2 be a bounded open domain with H2 extension property, its
complement or R2. Let f ∈ H2(Ω). Then there exists a constant CΩ, depending only on Ω, such
that

‖ f ‖L∞(Ω) ≤ CΩ‖ f ‖H1(Ω) log1/2
(

e +
‖∆ f ‖L2(Ω)

‖ f ‖H1(Ω)

)
. (4.20)

The proof uses extension properties of H2 functions and Fourier transform. A variant
of it can be found in [44] with a proof using the Green’s function.

It is easy to see that the above inequality implies the next one, which was used in [23,
24].

‖ f ‖L∞(Ω) ≤ CΩ(1 + ‖ f ‖H1(Ω)) log1/2 (e + ‖∆ f ‖L2(Ω)

)
. (4.21)

The constant CΩ depends on the domain in an implicit way. In applications, it is conve-
nient to have an estimate on CΩ. Next we prove the following refined Brezis− Gallouet
inequality for a class of domains in the (r, x3) plane, whose constant is independent of the
thinness of the domains. A price to pay is that the functions need to have zero boundary
value in the x3 direction or mean zero in the x3 direction.

Lemma 4.2. For R� 1 and 0 ≤ α ≤ 1, set

D̄0 =
{
(r, x3) : 1− 1

2
Rα−1 ≤ r ≤ 1 +

1
2

Rα−1, |x3| ≤ Rα−1rα
}

.

Then if f ∈ H2(D̄0) satisfies
f ||x3|=Rα−1rα = 0, (4.22)

we have
‖ f ‖L∞(D̄0)

≤ C0(1 + ‖∇ f ‖L2(D̄0)
) log1/2(e + Rα−1‖∆ f ‖L2(D̄0)

), (4.23)

where C0 is independent of R. Here

∇ = er∂r + e3∂x3 and ∆ = ∂2
r + ∂2

x3

are the two dimensional gradient and Laplacian in the (r, x3) plane, respectively.
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Proof. Note that we can not simply make zero extension for f outside of the domain and
apply the regular Brezis-Gallouet inequality. The reason is that the extended function
may not be in H2.

Define with scaled function

f̃ (r̃, x̃3) = f (Rα−1r̃, Rα−1 x̃3),

where (r̃, x̃3) ∈ Ũ0 and

Ũ0 =
{
(r̃, x̃3) : R1−α − 1

2
< r̃ < R1−α +

1
2

, |x̃3| ≤ |Rα−1r̃|α
}

.

Observe that Ũ0 is almost a square for large R.
Using (4.21), we know

‖ f (r, x3)‖L∞(D̄0)
= ‖ f̃ (r̃, x̃3)‖L∞(Ũ0)

≤C0(1 + ‖ f̃ ‖H1(Ũ0)
) log1/2 (e + ‖∆ f̃ ‖L2(Ũ0)

)
=C0(1 + ‖∇ f̃ ‖L2(Ũ0)

+ ‖ f̃ ‖L2(Ũ0)
) log1/2 (e + ‖∆ f̃ ‖L2(Ũ0)

)
. (4.24)

The point is that the constant C0 is independent of R. This is because we can first
extend the function f̃ to be a H2 function in the whole (r̃, x̃3) plane. From the proof of the
original Brezis-Gallouet inequality, we know the constant relies only on the H2 extension
property of functions in a domain. The extension property only depends on the thickness
of the original domain, which is scaled to 1.

By the change of variables and relationship between f and f̃ , we deduce

‖∇ f̃ ‖L2(Ũ0)
= ‖∇ f ‖L2(D̄0)

, ‖ f̃ ‖L2(Ũ0)
= R1−α‖ f ‖L2(D̄0)

, ‖∆ f̃ ‖L2(Ũ0)
= Rα−1‖∆ f ‖L2(D̄0)

.

Inserting the above equalities into (4.24), we find

‖ f (r, x3)‖L∞(D̄0)

≤C0(1 + ‖∇ f ‖L2(D̄0)
+ R1−α‖ f ‖L2(D̄0)

) log1/2 (e + Rα−1‖∆ f ‖L2(D̄0)

)
. (4.25)

Now if f satisfies (4.22), the Poincaré inequality implies

R1−α‖ f ‖L2(D̄0)
≤ C‖∇ f ‖L2(D̄0)

,

where C is independent of R. At last, combination of the above inequality and (4.25)
infers (4.23).

Now let us introduce Bogovskiĭ’s [4, 5] work on solving the divergence equation on
a bounded domain with W1,p

0 functions (4.26). We only present a special case written as
Lemma III.3.1 of [39]. More general results can be found in Chapter III of the same book.
See also a later paper by Brezis and Bourgain [6] for further results in the special case
p = n on torus.
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Lemma 4.3. LetO ⊂ Rn, n ≥ 2, be a bounded domain which is star shaped with respect to every
point in a ball B(x0, R) ⊂ O. Then for any f ∈ L2(O), satisfying

f ∈ Lp(O), 1 < p < ∞, with
∫
O

f = 0,

there exists a constant C = C(O, p, n) and at least one vector field V : O → Rn such that

∇ ·V = f , V ∈W1,p
0 (O), ‖∇V‖Lp ≤ C‖ f ‖Lp . (4.26)

Furthermore, let diam(O) be the diameter of O, there is a positive constant c0(n, p), depending
only on n, p such that the following estimate holds:

C ≤ c0(n, p) [diam(O)/R]n (1 + diam(O)/R) .

The proof is based on an explicit integral formula found by Bogovskiĭ.

V(x) =
∫
O

N(x, y) f (y)dy, N(x, y) =
x− y
|x− y|n

∫ ∞

|x−y|
φ
(

y + r
x− y
|x− y|

)
rn−1dr, (4.27)

where φ ∈ C∞
0 (BR(x0)) with

∫
φ = 1 is a fixed function.

Sometimes the constant C in (4.26) can be improved for some domains, as indicated
in the following:

Proposition 4.1. Consider the domains

OR =
{

x | R ≤ |xh| ≤ 2R, |x3| ≤ |xh|α
}
⊂ R3,

where α ∈ [0, 1] and R ≥ 1. For any f ∈ L2(OR) with
∫
OR

f = 0, Problem (4.26) with p = 2
has a solution such that

‖∇V‖L2(OR) ≤ CαR1−α‖ f ‖L2(OR), (4.28)

where Cα is independent of R.

Proof. The existence of V is already known by Lemma 4.3. So we just need to prove (4.28).
For x̄ = (x̄1, x̄2, x̄3) ∈ O, define

f̄ (x̄1, x̄2, x̄3) := f (Rx̄1, Rx̄2, Rα x̄3) = f (x1, x2, x3).

Note x1 = Rx̄1, x2 = Rx̄2 but x3 = Rα x̄3.
It is easy to see that f̄ satisfies the assumption in Lemma 4.3. So by Lemma 4.3, there

exists a vector function V̄ : O → R3 satisfying (4.26). Then for x ∈ OR, define

V(x1, x2, x3) = (V1(x1, x2, x3), V2(x1, x2, x3), V3(x1, x2, x3))

=
(

RV̄1
( x1

R
,

x2

R
,

x3

Rα

)
, RV̄2

( x1

R
,

x2

R
,

x3

Rα

)
, RαV̄3

( x1

R
,

x1

R
,

x3

Rα

))
=
(

RV̄1(x̄1, x̄2, x̄3), RV̄2(x̄1, x̄2, x̄3), RαV̄3(x̄1, x̄2, x̄3)
)

. (4.29)
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By a direct computation, we have

∇ ·V = f , V ∈W1,2
0 (OR) in x variables,

∇ · V̄ = f̄ , V̄ ∈W1,2
0 (O) in x̄ variables,

where V̄ = (V̄1(x̄), V̄2(x̄), V̄3(x̄)). Now we estimate the L2 norm of ∇V. We use α, β to
take values only on 1, 2 and i, j to take values on 1, 2, 3. So we have

‖∇V‖2
L2(OR)

=
3

∑
i,j=1

∫
|x3|≤|xh|α

∫
R≤|xh|≤2R

∣∣∣∂V j

∂xi

∣∣∣2dxhdx3

=
∫
|x3|≤|xh|α

∫
R≤|xh|≤2R

( 2

∑
α,β=1

∣∣∣∂Vβ

∂xα

∣∣∣2 + 2

∑
β=1

∣∣∣∂Vβ

∂x3

∣∣∣2 + 2

∑
α=1

∣∣∣∂V3

∂xα

∣∣∣2 + ∣∣∣∂V3

∂x3

∣∣∣2)dxhdx3

=
∫
|x3|≤|xh|α

∫
R≤|xh|≤2R

( 2

∑
α,β=1

∣∣∣∂V̄β

∂x̄α

∣∣∣2( xh

R
,

x3

Rα

)
+ R2−2α

2

∑
β=1

∣∣∣∂V̄β

∂x̄3

∣∣∣2( xh

R
,

x3

Rα

)
+

1
R2(1−α)

2

∑
α=1

∣∣∣∂V̄3

∂x̄α

∣∣∣2( xh

R
,

x3

Rα

)
+
∣∣∣∂V̄3

∂x̄3

∣∣∣2( xh

R
,

x3

Rα

))
dxhdx3.

Therefore,

‖∇V‖2
L2(OR)

=R2+α
∫
|x̄3|≤|x̄h|α

∫
1≤|x̄h|≤2

( 2

∑
α,β=1

∣∣∣∂V̄β

∂x̄α

∣∣∣2(x̄h, x̄3) + R2(1−α)
2

∑
β=1

∣∣∣∂V̄β

∂x̄3

∣∣∣2(x̄h, x̄3)

+
1

R2(1−α)

2

∑
α=1

∣∣∣∂V̄3

∂x̄α

∣∣∣2(x̄h, x̄3) +
∣∣∣∂V̄3

∂x̄3

∣∣∣2(x̄h, x̄3)
)

dx̄hdx̄3

≤CR4−α‖∇V̄‖2
L2(O). (4.30)

Also it is easy to see
‖ f ‖2

L2(OR)
= R2+α‖ f̄ ‖2

L2(O). (4.31)

Combining (4.30), (4.31) and (4.26), we have

‖∇V‖2
L2(OR)

≤ CR4−α‖∇V̄‖2
L2(O) ≤ CR4−α‖ f̄ ‖2

L2(O) = CR2(1−α)‖ f ‖2
L2(OR)

.

This finishes the proof of Proposition 4.1.

In Section 4.3, we will see some applications of Lemma 4.3 and Proposition 4.1 to
flows in a slab (channels of fixed finite depth) or aperture domains.
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4.2 Self-similar solutions

Another useful class of special solutions to the NS are self-similar solutions and their
variants such as discretely self-similar solutions etc. A solution v to the NS is called self-
similar if it is invariant under the natural scaling (1.3) for all parameters λ > 0, namely

v(x, t) = vλ(x, t) ≡ λv(λx, λ2t), ∀λ > 0, x ∈ R3,

and all t > 0 or all t < 0. In general, if v = vλ for one particular λ, then v is called a
discretely self-similar solution with factor λ. Given a self-similar v, if it is independent
of time, it is called stationary self-similar; otherwise, if v is defined for t < 0, then it is
called backward self-similar; if v is defined for t > 0, then it is called forward self-similar.
Stationary self-similar solutions can serve as one model of stationary solutions of NS
near a singularity or spatial infinity. A backward one serves as a model of possible type I
singularity of solutions of NS; and a forward self-similar solution can be used to describe
long time behavior of solutions of the NS. Detailed study can be found in [110, Chapter
8].

Self-similar solutions are determined by their profile U. In the stationary case

v(x) = |x|−1U(x), U(x) ≡ v(x/|x|).

Here U can be regarded as a vector defined on the unit sphere or a homogeneous vector
field on R3 − {0} of degree 0. In the time dependent case

v(x, t) = λ(t)U(λ(t)x), U(x) = v(x, sgn t), λ(t) = (t sgn t)−1/2.

Let the number m = 0, 1,−1 for the stationary, forward and backward cases respectively.
Then the profiles U satisfy the following stationary equations in R3 if m 6= 0 and in
R3 − {0} if m = 0.

−∆U + (U · ∇U) +∇P− m
2

U − m
2

x∇U = 0, divU = 0, (4.32)

where, as usual

x = (x1, x2, x3), U = (U1, U2, U3) and x∇U =
3

∑
i=1

xi∂iU.

There is a family of stationary self-similar solutions, called Landau solutions [60],
which, in the spherical coordinates, are explicitly given by

Ub = curl(L eθ) =
1

ρ sin φ
∂φ(L sin φ)eρ −

1
ρ

∂ρ(ρL)eφ, (4.33a)

L =
2 sin φ

(a− cos φ)
, b = 16π

(
a +

a2

2
ln

a− 1
a + 1

+
4a

3(a2 − 1)

)
e3, a > 1. (4.33b)
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With the parameter b, Ub actually solves the nonhomogeneous problem in R3:

−∆Ub + (Ub · ∇)Ub +∇Pb = bδ, divUb = 0,

where δ = δ(x) is the Dirac delta function centered at 0. The spherical system we take is
the standard one

x = (x1, x2, x3) = (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ).

Here ρ = |x|, φ is the polar angle between x and e3, θ is the azimuthal angle. This system
is a convenient one for studying self-similar solutions.

The Landau solutions are axially symmetric without swirl. The following result due
to Sverak [103] shows that they are the only (-1)-homogenous ones. Earlier Tian and Xin
proved in [111] that all (-1)-homogeneous, axially symmetric solutions in C2(R3\{0}) are
Landau solutions. Here we are using the notion of ”(-m)-homogeneous” interchangeably
with ”homogeneous of degree −m”.

Theorem 4.12. If a homogeneous vector field v of degree −1 is a solution to the stationary NS in
R3\0, then v = Ub for some b ∈ R3.

Extension of the theorem to (−1)-homogenous solutions with singularities at the
poles of S2 can be found in recent papers by Li, Li and Yan [66, 67].

Backward self-similar solutions of the form

v(x, t) =
1√

T − t
U
(

x√
T − t

)
, t ∈ [t0, T), x ∈ R3, (4.34)

was proposed by Leray as a candidate for possible type I singularity of the time depen-
dent NS at time T. Here t0 is the initial time. Leray asked whether there is a self-similar
solution of the NS in above form with finite energy, i.e., (1.2) holds. For such solutions
U ∈ L2(R3). In 1996, Necas, Ruzicka and Sverak [85] proved that the only such solution
is 0. In [109], T. P. Tsai generalized the result to very weak self-similar solutions satisfying
the local finite energy condition. For a definition of very weak solutions, see [110, p. 53]
for example.

Theorem 4.13. Suppose v is a self-similar very weak solution of the NS with zero force in the
cylinder B1 × (−1, 0) ⊂ R3 × (−1, 0). It is zero if it has finite local energy

sup
−1<t<0

∫
B1

|v(x, t)|2dx + 2
∫ 0

−1

∫
|∇v(x, t)|2dxdt < ∞,

or if the profile U ∈ Lq(R3) for some q ∈ [3, ∞). Also U is constant if U ∈ L∞(R3).

The proof is based on the fact that the total head pressure

Q =
1
2
|U(x)|2 + P(x) +

1
2

x ·U(x)
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satisfies the equation

−∆Q +
(

U(x) +
1
2

x
)
· ∇Q(x) = −|curlU(x)|2 ≤ 0.

If one can prove that Q behaves well at infinity, then the maximum principle and finite
energy assumption will force U = 0.

In the forward self-similar case, Jia and Sverak proved the first existence result for
large self-similar initial values in Cα(R3\{0}).

Theorem 4.14 ( [48]). Assume v0 is scale-invariant and locally Hölder continuous in R3\{0}
with div v0 = 0 in R3. Then the Cauchy problem (1.1) has at least one scale-invariant solution v
which is smooth in R3 × (0, ∞) and locally Hölder continuous in (R3 × ([0, ∞))\{(0, 0)}.

The proof uses Leray-Schrauder fixed point theorem to solve Eq. (4.32) with m = 1 in
a weighted neighborhood around

µe∆v0 = µ
∫

R3
G(x, 1, y)v0(y)dy.

Here µ ∈ (0, 1] is a parameter and G is the standard heat kernel on R3. More specifically,
one looks for Uµ solving (4.32) such that∣∣∣∇α

(
Uµ(x)− µe∆v0(x)

)∣∣∣ ≤ C(α, v0)

(1 + |x|)2+α
, α = 0, 1.

One can convert this to a fixed point problem of an integral operator involving the Stokes
kernel, which is easy to solve if µ is small. If one has compactness for the integral opera-
tor, then Leray Schauder theorem ensures the solution exists for µ = 1. The compactness
is based on a priori Hölder estimates near the initial time for the local Leray solutions
from the book [63]. Then

v = t−1/2U1(t−1/2x)

is a solution in the above theorem.
These solutions potentially have application in searching non-unique Leray Hopf so-

lutions of NS. Denote by
vµ = t−1/2Uµ(t−1/2x)

the unique scale-invariant solution with initial data µv0 and µ sufficiently close to 0. Note
for large µ the uniqueness is unknown. In the paper [49], Jia and Sverak consider solu-
tions of NS in the form vµ(x, t) + t−1/2φ(t−1/2x, t). The linearization of the equation for φ
takes the form t∂tφ = Lµφ. For small enough µ the eigenvalues of Lµ are away from the
imaginary axis with real part less than zero. They suggest two potential scenarios under
which the solution curve can be continued as a regular function of µ and the eigenvalues
of Lµ can cross the imaginary axis. Under these hypotheses two solutions of the NS are
obtained with initial data µv0; Although these have infinite energy but by analysis on cer-
tain critical singularities in some lower order terms, the authors are then able to localize
these solutions to obtain possible non-uniqueness for Leray-Hopf solutions.
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4.3 Addendum: extra results on D solutions, by X. Pan and Q. Zhang

In this subsection, we present some new vanishing results on D solutions which extend
those in [24]. The improvements are on wider domains and relaxation of symmetry or
growth condition on the solutions. These results seem to be new and are not presented
elsewhere in the literature. The general idea of the proof is similar to that of the previous
results.

For Theorem 4.10, we can weaken the axially symmetric assumption on the three
components of vr, vθ , v3 to the case that only vθ is axially symmetric. Denote xh = (x1, x2)
and S the 1 dimensional periodic domain with period being 1. We have the following
result.

Theorem 4.15 (Vanishing of periodic HDS with just axial symmetry of vθ). Let (v, P) be a
bounded smooth solution to the problem{

(v · ∇)v +∇P− ∆v = 0, ∇ · v = 0 in R2 × S,
v(xh, x3) = v(xh, x3 + 1) in R2 × S,

(4.35)

with finite Dirichlet integral ∫
R2×S

|∇v(x)|2dx < +∞. (4.36)

If just vθ is axially symmetric (independent of θ), then we have v ≡ ce3.

The next theorem deals with ASHDS in an aperture domain

Ω := {x|xh ∈ R2, |x3| ≤ (max(1, r))α}

for some α ≥ 0. Study of flows in aperture domains is also of usefulness, as mentioned
in [39, Chapter XIII].

Theorem 4.16 (ASHDS on aperture domains). Let (v, P) be an axially symmetric bounded
smooth solution to the problem

(v · ∇)v +∇P− ∆v = 0, ∇ · v = 0 in Ω; v(x) = 0 on ∂Ω (4.37)

with finite Dirichlet integral (4.2). Then we have

(i) v ≡ 0 if 0 ≤ α < 1/2;

(ii) vθ ≡ 0 if 0 ≤ α < 3/4.

When α = 0, we can remove the axial symmetry assumption of the solution, which
goes back to Theorem 4.6.
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4.3.1 Proof of Theorem 4.15, one component axially symmetric periodic solutions

The proof is divided into two steps.

Step 1. L2 boundedness of vr and L2 mean oscillation of P.

Lemma 4.4. For n ∈ N/{0}, denote Cn = {xh| n ≤ |xh| ≤ 2n}. Let (v, P) be the solution of
(4.35). Under the assumptions of Theorem 4.15, we have

‖vr‖L2(R2×S) < C∗, (4.38a)

‖P− Pn‖L2(Cn×S) ≤ C∗n, (4.38b)

where

C∗ = C(‖v‖L∞ , ‖∇v‖L2) and Pn :=
1

|Cn × S|

∫
Cn×S

Pdx

is the average of P on Cn × S.

Proof. In cylindrical coordinates, if vθ is independent of θ, the divergence free condition
of the second equation of (4.35) is translated as

∇ · v =
1
r

∂r(rvr) +
1
r

∂θvθ + ∂x3 v3 =
1
r

∂r(rvr) + ∂x3 v3 = 0.

Integrating the above inequality in S about x3 and by using the periodic boundary con-
dition, we can deduce ∫

S
vrdx3 = 0.

Then the one dimensional Poincaré inequality indicates that

∫
R2×S

|vr|2dx =
∫

R2×S

∣∣∣∣vr − 1
|S|

∫
vrdx3

∣∣∣∣2 dx3dxh .
∫

R2

∫ 1

0
|∂x3 vr|2dx3dxh < ∞.

This proves (4.38a).
In Proposition 4.1, if α = 1 and the domain OR is replaced by ΩR =

{
x|R ≤ |xh| ≤

2R, |x3| ≤ 2R
}

, it is not hard to see the proof is still valid. Now set R = n with n ∈
N\{0}. From Proposition 4.1, there exists a V ∈ H1

0(Ωn) satisfying ∇ ·V = f and (4.28)
with f = P− Pn and OR replaced by Ωn.

Now multiplying the first equation of (4.35) with V and integration on Ωn, we get

∫
Ωn

∇(P− Pn) ·Vdx =
∫

Ωn

(∆v− v · ∇v) ·Vdx.
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Integration by parts and (4.28) indicate that∫
Ωn

(P− Pn)
2dx =

∫
Ωn

(P− Pn)∇ ·Vdx = −
∫

Ωn

(
∆v− v · ∇v

)
·Vdx

=
∫

Ωn

3

∑
i,j=1

∂ivj∂iV j + ∂i(vivj)V jdx =
∫

Ωn

3

∑
i,j=1

(
∂ivj − vivj)∂iV jdx

≤‖∇V‖L2(Ωn)

(
‖∇v‖L2(Ωn) + ‖v‖

2
L∞‖1‖L2(Ωn)

)
≤C‖P− Pn‖L2(Ωn)

(
‖∇v‖L2(Ωn) + ‖v‖

2
L∞‖1‖L2(Ωn)

)
. (4.39)

Then we can obtain

‖P− Pn‖L2(Ωn) ≤ C
(
‖∇v‖L2(Ωn) + ‖v‖

2
L∞(Ωn)

n3/2).
Remembering that (v, P) is periodic in the x3 direction, the above inequality can be
rewritten as

n1/2‖P− Pn‖L2(Cn×S) ≤ C
(
n1/2‖∇v‖L2(Cn×S) + ‖v‖2

L∞(Cn×S)n
3/2).

This implies (4.38b).

Step 2. Trivialness of v. Let φ(s) be a smooth cut-off function satisfying

φ(s) = 1, s ∈ [0, 1]; φ(s) = 0, s ≥ 2, (4.40)

with the usual property that φ, φ′ and φ′′ are bounded. Set

φn(yh) = φ
( |yh|

n

)
.

Testing the NS in (4.35) with vφn, we find that∫
Ω×S
|∇v|2φndx

=−
3

∑
i=1

∫
Ω×S

vi∇vi · ∇φndx +
∫

Ω×S

(
1
2
|v|2 + (P− Pn)

)
v · ∇φndx.

Here Ω is the 2 dimensional ball {xh | |xh| < 2n}. It follows that∫
Ω×S
|∇v|2φndx

.
∫
Cn×S
|v||∇v||∇φn|dx +

∫
Cn×S
|v · ∇φn| |v|2dx +

∫
Cn×S
|P− Pn| |v · ∇φn|dx

=:I1 + I2 + I3. (4.41)
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Observe that, as n→ ∞,

I1 .
‖v‖L∞(Cn×S)

n
‖∇v‖L2(Cn×S)‖1‖L2((Cn×S)

. ‖v‖L∞(Cn×S)‖∇v‖L2(Cn×S) → 0, (4.42a)

I2 . ‖v‖2
L∞(Cn×S)

∫
Cn×S
|vr∂rφn|dx

.
‖v‖2

L∞(Cn×S)

n
‖vr‖L2(Cn×S)‖1‖L2(Cn×S)

. ‖v‖2
L∞(Cn×S)‖v

r‖L2(Cn×S) → 0, (4.42b)

I3 .
∫
Cn×S
|P− Pn| |vr∂rφn|dx

.
1
n
‖P− Pn‖L2(Cn×S)‖vr‖L2(Cn×S)

. C0‖vr‖L2(Cn×S) → 0. (4.42c)

Here we have applied Cauchy-Schwarz inequality, the boundedness of the oscillation of
P in dyadic annulus from Lemma 4.4 and vr ∈ L2(Ω× S). Combining those estimates of
I1, I2 and I3, (4.41) yields ∫

Ω×S
|∇v|2dx = 0,

which means v is a constant vector. The vr = 0 by Lemma 4.4 and vθ = 0 by axial
symmetry. So actually we have

v ≡ ce3.

4.3.2 Proof of Theorem 4.16, axially symmetric solutions on aperture domains

First we show an a priori decay of v.

Proposition 4.2. Under the assumption of Theorem 4.16, we have

v = O
( ln1/2 r

r1/2

)
as r → +∞. (4.43)

The proof is based on Brezis-Gallouet inequality [8] and its refinement, together with
scaling and dimension reduction techniques, which is similar to [24, part 5.2, pp. 1403-
1406].

Fixing
x0 ∈ Ω := {x||xh| ∈ Ω, |x3| ≤ max{1, rα}}

such that |x′0| = r0 is large. Without loss of generality, we can assume, in the cylindrical
coordinates, that x0 = (r0, 0, 0), i.e., (x3)0 = 0, θ0 = 0. Consider the scaled solution
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ṽ(x̃) = r0v(r0 x̃), which is also axially symmetric. Hence ṽ can be regarded as a two
variable function of the scaled variables r̃, x̃3. Consider the two dimensional domain

D̄0 =
{
(r̃, x̃3) : 1− 1

2
rα−1

0 ≤ r̃ ≤ 1 +
1
2

rα−1
0 , |x̃3| ≤ rα−1

0 r̃α
}

.

Then for ṽ = ṽ(r̃, x̃3), we have ṽ(1, 0) = r0v(x0). Recall that ṽ satisfies the Dirichlet
boundary condition. Applying the refined Brezis-Gallouet inequality (Lemma 4.2) on
D̄0, after a simple adjustment on constants, we can find an absolute constant C such that

|ṽ(1, 0)| ≤ C

[(∫
D̄0

|∇̃ṽ|2dr̃dx̃3

)1/2

+ 1

]
× log1/2

[
rα−1

0

(∫
D̄0

|∆̃ṽ|2dr̃dx̃3

)1/2

+ e

]
,

where ∇̃ = (∂r̃, ∂x̃3) and ∆̃ = ∂2
r̃ + ∂2

x̃3
. From this and the assumption that 1/2 ≤ r̃ ≤ 2,

we see that

|ṽ(1, 0)| ≤ C

[(∫
D̄0

|∇̃ṽ|2r̃dr̃dx̃3

)1/2

+ 1

]
× log1/2

[
rα−1

0

(∫
D̄0

|∆̃ṽ|2r̃dr̃dx̃3

)1/2

+ e

]
.

Now we can scale this inequality back to the original solution u and variables r = r0r̃ and
z = r0 x̃3 to get

r0|v(x0)| ≤C

[
√

r0

(∫
D0

|∇v|2rdrdx3

)1/2

+ 1

]

× log1/2

[
rα+1/2

0

(∫
D0

(|∂2
r v|2 + |∂2

x3
v|2)rdrdx3

)1/2

+ e

]
,

where
D0 =

{
(r, x3) : r0 −

1
2

rα
0 ≤ r ≤ r0 +

1
2

rα
0 , |x3| ≤ rα

}
.

By condition (4.2), this proves the claimed decay of velocity. Note that by our assumption
in the theorem, the solution u is globally bounded and then it is not hard to prove that
the first and second derivative of v are also bounded.

The rest of the proof of Theorem 4.16 is divided into two subsections.

4.3.3 Proof of case (i): 0 ≤ α < 1/2

First we will give a L2 estimate of v and mean oscillation of the pressure P by using the
preceding Proposition 4.1.

Lemma 4.5. Let (v, P) be the solution of (4.37) and OR =
{

x | R ≤ |xh| ≤ 2R, |x3| ≤ |xh|α
}

,
then we have ∫

OR

|v|2dx ≤ o(R2α), (4.44a)

‖P− PR‖L2(OR) ≤ o(1)R(1−α)(1 + Rα−1/2 ln1/2 R), (4.44b)
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as R→ ∞. Here
PR :=

1
|OR|

∫
OR

Pdx

is the average of P on OR.

Proof. Since we have zero boundary, the one dimensional Poincaré inequality indicates
that ∫

OR

|v|2dx =
∫

R≤|xh|≤2R

∫
|x3|≤rα

|v|2dx3dxh

.R2α
∫

R≤|xh|≤2R

∫
|x3|≤rα

|∂x3 v|2dx3dxh . o(R2α),

by the definition of D solutions. This proves (4.44a).
From Proposition 4.1, there exists a V ∈ H1

0(OR) satisfying ∇ ·V = f and (4.28) with
f = P− PR. Now multiplying (4.37)1 with V and integrating on OR, we get∫

OR

∇(P− PR) ·Vdx =
∫
OR

(∆v− v · ∇v) ·Vdx.

The same derivation as (4.39) indicates that∫
OR

(P− PR)
2dx =

∫
OR

(P− PR)∇ ·Vdx

≤‖∇V‖L2(OR)

(
‖∇v‖L2(OR) + ‖v‖L∞(OR)‖v‖L2(OR)

)
≤CR1−α‖P− PR‖L2(OR)

(
‖∇v‖L2(OR) + ‖v‖L∞(OR)‖v‖L2(OR)

)
.

Here to reach the last line, we used (4.28). Then we can obtain

‖P− PR‖L2(OR) ≤CR(1−α)
(
‖∇v‖L2(ΩR) + ‖v‖L∞(ΩR)‖v‖L2(ΩR)

)
=o(1)R(1−α)(1 + Rα−1/2 ln1/2 R),

which is (4.44b).

Vanishing of v
Now we are in a position to complete the proof of case (i) of Theorem 4.16. Let φ(s)

be the smooth cut-off function defined in (4.40). Set

φR(y′) = φ
( |y′|

R

)
,

where R is a large positive number. Now testing the NS in (4.37) with vφR, we obtain∫
Ω
−∆v(vφR)dx =

∫
Ω
− ((v · ∇)v +∇(P− PR)) (vφR)dx.
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Integration by parts yields that∫
Ω
|∇v|2φRdx− 1

2

∫
Ω
|v|2∆φRdx =

1
2

∫
Ω
|v|2v · ∇φRdx +

∫
Ω
(P− PR)v · ∇φRdx.

Then we have, since φR depends only on r, that∫
Ω
|∇v|2φRdx

.
1

R2

∫
OR

|v|2dx +
1
R

∫
OR

|vr| |v|2dx +
1
R

∫
OR

|P− PR| |vr|dx

.
1

R2

∫
OR

|v|2dx +
‖vr‖∞

R

∫
OR

|v|2dx +
1
R

(∫
OR

(vr)2dx
)1/2 (∫

OR

|P− PR|2dx
)1/2

.
(

R2α−2 + R2α−3/2 ln1/2 R + o(1) + Rα−1/2 ln1/2 R
)
.

When 0 ≤ α < 1/2, let R→ +∞, we arrive at∫
Ω
|∇v|2dx = 0,

which shows that v ≡ c. Besides, recall v = 0 at the boundary, then at last we deduce
v ≡ 0. This completes the proof of case (i) of Theorem 4.16.

4.3.4 Proof of case (ii): 1/2 ≤ α < 3/4

The proof is divided into 2 steps.
Step 1. Caccioppoli inequality for Γ = rvθ

First for R > 2, pick the domains

D(R) = Ω ∩ (BR ×R),
D(R1, R2) = D(R1)\D(R2), R1 > R2 > 2.

Here BR is the 2 dimensional ball centered at the origin in R2, with radius R. We first
derive a Caccioppoli type energy estimates of Γ by Eq. (2.2). Consider a standard test
function ψ(r) satisfying

supp ψ ⊂ Bσ1
, ψ = 1 in Bσ2

, 0 ≤ ψ ≤ 1, 0 < σ2 < σ1 ≤ 1,

|∇kψ| ≤ C
(σ1 − σ2)k for k = 1, 2.

Lemma 4.6. Let 1
2 ≤ σ2 < σ1 ≤ 1, R ≥ 2 and ψR(x) = ψ( r

R ). Denote f := |Γ|q for q > 1.
Then we have ∫

D(σ1R)
|∇( f ψR)|2 .

(1 + ‖vr‖L∞ Rα)2

(σ1 − σ2)2R2

∫
D(σ1R,σ2R)

f 2,

here and in the proof
‖vr‖L∞ = ‖vr‖L∞(D(σ1R,σ2R)).
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Proof. Recall (2.2) without time variable is:

∆Γ− b∇Γ− 2
r

∂rΓ = 0

with b = vrer + v3e3. Testing this by q|Γ|2q−2Γψ2
R in Ω gives

1
2

∫
Ω

(
b · ∇ f 2 +

2
r

∂r f 2
)

ψ2
Rdx = q

∫
Ω

∆Γ|Γ|2q−2Γψ2
Rdx. (4.45)

Later the integral variables dx will not be written out for simplicity unless there is confu-
sion. Using Cauchy-Schwartz’s inequality and integration by parts, we have

q
∫

Ω
∆Γ|Γ|2q−2Γψ2

R = q
∫

D(σ1R)
∆|Γ||Γ|2q−1ψ2

R

=− q
∫

D(σ1R)
(2q− 1)|∇|Γ||2Γ2q−2ψ2

R +∇|Γ||Γ|2q−1 · ∇ψ2
R

=−
∫

D(σ1R)

(
2− 1

q

)
|∇( f ψR)|2 −

(
2− 2

q

)
f∇ψR · ∇( f ψR)−

1
q

f 2|∇ψR|2

.−
∫

D(σ1R)
|∇( f ψR)|2 + C

∫
D(σ1R)

f 2|∇ψR|2. (4.46)

Also we have

−
∫

Ω

1
r

∂r f 2ψ2
R =− 2π

∫ σ1R

0

∫
|x3|≤(max{1,r})α

∂r f 2ψ2
Rdx3dr

≤2π
∫ σ1R

0

∫
|x3|≤(max{1,r})α

f 2∂rψ2
Rdx3dr

.
∫

D(σ1R,σ2R)
f 2(|∇ψR|2). (4.47)

Consequently, using (4.45) and combining (4.46) and (4.47), we get∫
D(σ1R)

|∇( f ψR)|2 ≤C
∫

D(σ1R,σ2R)
f 2 |∇ψR|2 −

1
2

∫
D(σ1R)

b · ∇ f 2ψ2
R

≤ C
(σ1 − σ2)2R2

∫
D(σ1R,σ2R)

f 2 − 1
2

∫
D(σ1R)

b · ∇ f 2ψ2
R. (4.48)

By the divergence-free property of the drift term b, we have

−1
2

∫
Ω

b · ∇ f 2ψ2
R =

∫
D(σ1R)

f 2ψRb · ∇ψR =
∫

D(σ1R,σ2R)
( f ψR) f vr∂rψR

≤C
‖vr‖L∞

(σ1 − σ2)R
‖ f ψR‖L2(D(σ1R,σ2R))‖ f ‖L2(D(σ1R,σ2R))

≤Cε
‖vr‖2

L∞ R2α

(σ1 − σ2)2R2 ‖ f ‖2
L2(D(σ1R,σ2R)) + εR−2α‖ f ψR‖2

L2(D(σ1R,σ2R))

≤Cε
‖vr‖2

L∞ R2α

(σ1 − σ2)2R2 ‖ f ‖2
L2(D(σ1R,σ2R)) + Cε‖∇( f ψR)‖2

L2(D(σ1R,σ2R)), (4.49)
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where at the third line of (4.49), we have used the fact f = 0 on the boundary of Ω, and
the following 1-dimensional Poincaré inequality.

‖ f ψR‖2
L2(D(σ1R,σ2R)) =

∫ 2π

0

∫ σ1R

σ2R

∫ rα

−rα
| f ψR|2dx3rdrdθ

≤CR2α
∫ 2π

0

∫ σ1R

0

∫ rα

−rα
|∂x3( f ψR)|2dx3rdrdθ

≤CR2α‖∇( f ψR)‖2
L2(D(σ1R)). (4.50)

Combining (4.48) and (4.49), by choosing small ε, we get∫
D(σ1R)

|∇( f ψR)|2 .
(1 + ‖vr‖L∞ Rα)2

(σ1 − σ2)2R2

∫
D(σ1R,σ2R)

f 2. (4.51)

Thus, we complete he proof.

Step 2. Vanishing of vθ

We will show that Γ decays to 0 as r → ∞. Then the maximum principle implies Γ
and hence vθ = 0. We use Moser’s iteration.

By Hölder inequality and Sobolev imbedding theorem, for any 0 < β < 4, we have

‖ f ψR‖2+β

L2+β(D(σ1R)) =
∫

D(σ1R)
| f ψR|2+β =

∫
D(σ1R)

| f ψR|2−
β
2 | f ψR|

3
2 β

.
( ∫

D(σ1R)
| f ψR|2dy

)1− β
4
( ∫

D(σ1R)
| f ψR|6dy

)β/4

.‖ f ψR‖
2− β

2
L2(D(σ1R))‖∇( f ψR)‖

3
2 β

L2(D(σ1R))

.Rα(2− β
2 )‖∇( f ψR)‖

2− β
2

L2(D(σ1R))‖∇( f ψR)‖
3
2 β

L2(D(σ1R))

≤Rα(2− β
2 )‖∇( f ψR)‖2+β

L2(D(σ1R)), (4.52)

where at the last line we have used (4.50). Using (4.51) and (4.52), we deduce∫
D(σ2R)

f 2+β . Rα(2− β
2 )
[ (1 + ‖vr‖L∞ Rα)2

(σ1 − σ2)2R2 ‖ f ‖2
L2(D(σ1R,σ2R))

]1+ β
2
.

Remember f = |Γ|q and set κ = 1 + β
2 , then we obtain∫

D(σ2R)
|Γ|2qκ . Rα(2− β

2 )
[1 + ‖vr‖L∞ Rα

(σ1 − σ2)R

]2κ( ∫
D(σ1R,σ2R)

|Γ|2q
)κ

. (4.53)

For integer j ≥ 0 and a constant σ = 1
2 , set

σ2 =
1
2
(1 + σj+1) and σ1 =

1
2
(1 + σj).
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Let q = κ j, then we arrive at(∫
D( R

2 (1+σj+1))
Γ2κ j+1

dy
) 1

2 (
1
κ )

j+1

.Rα(1− β
4 )(

1
κ )

j+1[1 + ‖vr‖L∞ Rα

σj+2R

]( 1
κ )

j (∫
D( R

2 (1+σj), R
2 (1+σj+1))

Γ2κ j
dy
) 1

2 (
1
κ )

j

.

By iterating j, the above inequality gives(∫
D( R

2 (1+σj+1))
Γ2κ j+1

dy
) 1

2 (
1
κ )

j+1

.R
α(1− β

4 )
j

∑
i=0
( 1

κ )
i+1

(1 + ‖vr‖L∞ Rα)∑
j
i=0(

1
κ )

i

σ∑
j
i=0(i+2)( 1

κ )
i R∑

j
i=0(

1
κ )

i

(∫
D(R, 3

4 R)
Γ2dy

) 1
2

.

Letting j→ ∞ yields that

sup
x∈D( R

2 )

|Γ| . Rα( 2
β−

1
2 )
(1 + ‖vr‖L∞ Rα)

2+β
β

R
2+β

β

(∫
D(R,R/2)

Γ2dy
) 1

2

. (4.54)

Next we use the 1-dimensional Poincaré inequality to see that∫
D(R,R/2)

Γ2dy =
∫ 2π

0

∫ R

R/2

∫ rα

−rα
r2(vθ)2dx3rdrdθ

≤R2
∫ 2π

0

∫ R

R/2

∫ rα

−rα
(vθ)2dx3rdrdθ

≤CR2+2α
∫ 2π

0

∫ R

R/2

∫ rα

−rα
(∂x3 vθ)2dx3rdrdθ

≤CR2+2α‖∇v‖2
L2(Ω∩{R/2≤|x′|≤R}). (4.55)

Inserting (4.55) into (4.54), we can get

sup
x∈D( R

2 )

|Γ| . R(α−1) 2
β+

α
2 (1 + ‖vr‖L∞ Rα)

2+β
β ‖∇v‖L2(Ω∩{R/2≤|x′|≤R}).

Using the decay estimates for vr, we have

sup
x∈D( R

2 )

|Γ| . R(α−1) 2
β+

α
2 (1 + Rα−1/2 ln1/2 R)

2+β
β ‖∇v‖L2(Ω∩{R/2≤|x′|≤R}). (4.56)

When 1/2 ≤ α < 3/4, from (4.56), we find

sup
x∈D( R

2 )

|Γ| ≤CR(α−1) 2
β+

α
2 (Rα−1/2 ln1/2 R)

2+β
β

≤CR(2α− 3
2 )

2
β+

3
2 α− 1

2 (ln R)
2+β
2β → 0 as R→ ∞
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by choosing sufficiently small β such that(
2α− 3

2

) 2
β
+

3
2

α− 1
2
< 0,

since 2α− 3
2 < 0. This indicates that Γ ≡ 0 in Ω.

So at last we have proved that Γ ≡ 0 when 0 ≤ α < 3/4, which shows that vθ ≡ 0.
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