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Abstract

This articles first investigates boundary integral operators for the three-dimensional

isotropic linear elasticity of a biphasic model with piecewise constant Lamé coefficients in

the form of a bounded domain of arbitrary shape surrounded by a background material.

In the simple case of a spherical inclusion, the vector spherical harmonics consist of eigen-

functions of the single and double layer boundary operators and we provide their spectra.

Further, in the case of many spherical inclusions with isotropic materials, each with its

own set of Lamé parameters, we propose an integral equation and a subsequent Galerkin

discretization using the vector spherical harmonics and apply the discretization to several

numerical test cases.
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1. Introduction

We consider three-dimensional boundary value or interface problems of the isotropic elas-

ticity equation related to the following operator:

Lu := −div
(

2µe(u) + λTr
(
e(u)

)
Id
)
, (1.1)

where the strain tensor reads e(u) = 1
2 (∇u+∇u>). It is obvious to see that the operator L is

self-adjoint on L2(R3)3.

In the definition of the operator (1.1), µ, λ ∈ R, µ > 0, 2µ + 3λ > 0 are the so-called

(constant) Lamé parameters. The parameter µ denotes the shear modulus which describes the

tendency of the object to deform at a constant volume when being imposed with opposing

forces. The other Lamé parameter λ has no physical meanings but is introduced to simplify

the definition of the operator (1.1). Indeed, it is related to the bulk modulus K through the

relation

λ = K − 2

3
µ,

where the bulk modulus K represents the object’s tendency to deform in all directions when

acted on by opposing force from all directions. We refer to [12] for more detailed descriptions
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of the Lamé parameters. It is sometimes useful to introduce Poisson’s ratio ν which is defined

by

ν =
λ

2(µ+ λ)
, (1.2)

and whose admissible range is (−1, 1/2). The material is extremely compressible in the limit

ν → −1 while extremely incompressible in the other limit ν → 1/2 [18].

A model of linear elasticity with appropriate boundary conditions can be approximated by

the classic finite element method, see for example [15,19] just to name a few contributions from

an abundant body of literature, for the general case with non-homogeneous source term. On

the other hand, displacement fields u being homogeneous solutions, i.e., Lu = 0 within a given

domain, can also be represented by isotropic elastic potentials [3,13] and elasticity in piecewise

constant isotropic media can then be treated as integral equations for specified interface condi-

tions. At the origin of the integral formulation lies the definitions of layer potentials and their

corresponding integral operators [3, 20] based on the Green’s function [1] in the context of the

isotropic linear elasticity.

In particular, on a unit sphere, one can introduce the vector spherical harmonics forming an

orthonormal basis of [L2(S2)]3 and which are eigenfunctions of the corresponding double and

single layer boundary operators based on the Green’s function [1] of isotropic linear elasticity.

The vector spherical harmonics were introduced in [9,10] as an extension of the scalar spherical

harmonics [16,23] to the vectorial case. They were further used in the discretization of different

physical models such as the Navier-Stokes equations [8] or Maxwell’s equations [2,6]. However,

they are not widely used and only sparely reported in literature, in particular in the context

of isotropic elasticity. We demonstrate in this article that the corresponding integral operators

have interesting spectral properties which can be made explicit by employing the vector spherical

harmonics.

Our main motivation for this work is the derivation of an integral equation to model elastic

materials represented by piecewise constant Lamé constants with spherical inclusions following

similar principles that were presented in [4,5,14] in the case of scalar diffusion. The particular

choice of the vector spherical harmonics as basis functions for a Galerkin discretization thereof

leads then to an efficient and stable numerical scheme by exploiting the spectral properties

of the involved integral operators. A similar physical model was introduced in [22] with an

algebraic formula of the approximate solution. However, with the spectral properties of the layer

potentials and integral operators at hand, our approach first introduces an integral formulation

for the exact solution and thus a rigorous mathematical framework. In a second step, we then

propose the Galerkin discretization. The mathematical framework lays out the basis to derive

a rigorous error analysis which we plan in the future.

We summarize the main contributions and organization of this work as follows:

• In Sections 2 and 3, we give an introduction and overview of the layer potentials and

corresponding boundary integral operators of the isotropic linear elasticity operator (1.1)

on an arbitrary bounded domain with Lipschitz boundary which are sparely reported in

the literature.

• Analytical properties of layer potentials and boundary integral operators are presented

and proven in Section 3.4.

• On the unit sphere, we introduce the vector spherical harmonics in Section 4 and prove

spectral properties of the boundary operators and layer potentials of this particular basis.
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• As an application, we consider a piecewise constant elastic model with spherical inclusions

and derive a integral equation in Section 6 that is then discretized by means of the vector

spherical harmonics and tested numerically in Section 7.

2. Preliminaries

Denote S2 the unit sphere and B the unit ball in R3. Let throughout this paper Ω− ⊂ R3

denote a bounded domain with Lipschitz boundary Γ = ∂Ω− and outward pointing normal

vector field n : Γ→ S2. Further, we denote by Ω+ the unbounded set R3\Ω−.

2.1. Notations

We will first introduce some standard notions in the context of integral equations which can

be found in standard textbooks (see, e.g., [17, 20,21]).

Let Ω be a domain with Lipschitz boundary, e.g., Ω = Ω− or Ω = Ω+ (unbounded).

Following the conventions and notation of [20], we define for s ∈ R

Hs
loc(Ω) =

{
u ∈

(
C∞comp(Ω)

)∗ ∣∣∣ ∀χ ∈ C∞comp(Ω) : χu ∈ H`(Ω)
}
, (2.1)

see Definition 2.6.1 in [20], and note that this consist of a slightly unconventional definition of

H`
loc(Ω), see also Remark 2.6.2. We further define, see Definition 2.6.5 in [20], for s ∈ R

Hs
comp(Ω) =

⋃
K

{u ∈ Hs
loc(Ω) | supp(u) ⊂ K} , (2.2)

where the union is taken over all relatively compact subsets K ⊂ Ω, and introduce

V0(Ω−) =

{
v ∈ H1(Ω−)

∣∣∣∣ ∫
Ω−

v = 0

}
. (2.3)

Next, we denote by H
1
2 (Γ)3 the Sobolev space of order 1

2 with the usual Sobolev-Slobodeckij

norm ‖λ‖2
H

1
2 (Γ)

:=
∑3
k=1 ‖λk‖2

H
1
2 (Γ)

for λ = (λ1, λ2, λ3)> and with

‖λk‖2
H

1
2 (Γ)

:= ‖λk‖2L2(Γ) +

∫
Γ

∫
Γ

|λk(x)− λk(y)|2

|x− y|3
dxdy.

Moreover, we defineH−
1
2 (Γ)3 :=

(
H

1
2 (Γ)3

)∗
and we equip this Sobolev space with the canonical

dual norm ‖ · ‖
H−

1
2 (Γ)

. We introduce

γ∓ : H1
loc(Ω∓)3 → H

1
2 (Γ)3 (2.4)

as the continuous, linear and surjective interior and exterior Dirichlet trace operators respec-

tively, see Theorem 2.6.8 [20], and define the jump operator by

JϕK = γ−ϕ− γ+ϕ. (2.5)

Further, let γ : H1
loc(R3)3 → H

1
2 (Γ)3 be given by γϕ = γ−ϕ = γ+ϕ almost everywhere.

Consider now the stress tensor T associate with L, as is defined by (1.1), reading

T ϕ := 2µe(ϕ) + λTr e(ϕ) Id, ϕ ∈ H1
loc(Ω∓)3. (2.6)
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For the domains Ω∓, the classical normal derivative operator, satisfying

T ∓n ϕ := γ∓(T ϕn), (2.7)

for regular ϕ, can be extended to an operator T ∓n : H1
L(Ω∓)3 → H−

1
2 (Γ)3, with H1

L(Ω)3 = {u ∈
H1(Ω)3 | Lu ∈ L2

loc(Ω)3}, based on Green’s first identity. We then define the corresponding

jump operator by

JT ϕK = T −n ϕ− T +
n ϕ. (2.8)

Further, define Tn : H1
L(R3)3 → H−

1
2 (Γ)3 the global normal derivative operator given by

Tnϕ = T −n ϕ = T +
n ϕ.

2.2. Fundamental solutions

Consider the matrix-valued fundamental solution G = (Gij)ij to the linear isotropic elastic-

ity equation such that Gi, the i-th column of the matrix G satisfies the following identity:

LGi(x) = δ(x) ei, (2.9)

with L defined by (1.1), δ being the Dirac distribution at the origin and ei the canonical basis

in R3. The Green’s function G is given by [17,21]:

Gij(x) :=
1

8πµ|x|

(
λ+ 3µ

λ+ 2µ
δij +

λ+ µ

λ+ 2µ

xixj
|x|2

)
, (2.10)

where we recall that µ, λ are the Lamé constants and δij is the Kronecker symbol.

2.3. Rigid displacement

For a given domain Ω ⊂ R3, we consider the following problem: find u ∈ H1
loc(Ω)3 such that

Lu = 0, in H−1(Ω)3 (2.11)

with appropriate boundary conditions. Equation (2.11) holds obviously if e(u) = 0. Indeed, we

call the displacement u ∈ H1
loc(Ω)3 a rigid displacement if e(u) = 0. It is well-known that the

displacement u is a rigid displacement if and only if it has the form u = Ax+ b where A ∈ R3×3

is a constant skew matrix and b ∈ R3 a constant vector (see, e.g., [11, 17]).

3. Layer Potentials

In this section, we introduce the layer potentials and associated boundary operators which

only have been sparsely reported in the literature for the operator L. We therefore provide a

complete overview.

3.1. Single layer potentials

Using the fundamental solution (2.10), we can now define the single layer potential S :

H−
1
2 (Γ)3 → H1(R3nΓ)3 associated to the isotropic elasticity operator L:

(Sφ)(x) :=

∫
Γ

G(x− y)φ(y) dy, x ∈ R3nΓ. (3.1)
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Further, see e.g., [3], such function Sφ defined on R3nΓ is continuous across the interface Γ,

i.e. JSφK = 0 and a single layer boundary operator V : H−
1
2 (Γ)3 → H

1
2 (Γ)3 can be defined by

restricting the single layer potential to the boundary Γ:

(Vφ)(x) :=

∫
Γ

G(x− y)φ(y) dy, x ∈ Γ, (3.2)

so that γSφ = Vφ. The following result is obvious:

Lemma 3.1. For φ ∈ H− 1
2 (Γ)3 and Sφ defined by (3.1), let L be the isotropic elasticity oper-

ator (1.1) and we have

LSφ = 0 in R3nΓ.

3.2. Double layer potential

We introduce the double layer potential D : H
1
2 (Γ)3 → H1(R3\Γ)3, by

Dϕ(x) =

∫
Γ

Tn,y(G)(x− y)ϕ(y) dy, x ∈ R3\Γ, (3.3)

where the subscript y means that the normal derivative operator Tn, defined in Section 2.1,

is taken with respect to the y-variable. We define the double layer boundary operator K :

H
1
2 (Γ)3 → H

1
2 (Γ)3 by

(Kϕ)(x) =

∫
Γ

Tn,y(G)(x− y)ϕ(y) dy, x ∈ Γ, (3.4)

in the sense of principal value. Further, the adjoint double layer boundary operator K∗ :

H−
1
2 (Γ)3 → H−

1
2 (Γ)3 is given as

(K∗φ)(x) =

∫
Γ

(Tn,x(G))
>

(x− y)φ(y) dy, x ∈ Γ, (3.5)

Similar to Lemma 3.1, the following result is obvious:

Lemma 3.2. For ϕ ∈ H 1
2 (Γ)3 and Dϕ defined by (3.3), we have

LDϕ = 0 in R3\Γ,

where L is the isotropic elasticity operator (1.1).

3.3. Newton potential

Finally, for sake of completeness, we also give the Newton potential associated to the isotrop-

ic elasticity operator (1.1). Define N : Hs
comp(R3)3 → Hs+2

loc (R3)3 for s ∈ R:

Nψ(x) =

∫
R3

G(x− y)ψ(y) dy, x ∈ R3, (3.6)

where G is the Green’s function defined by (2.10). Following the definition for the elasticity

operator L and all ψ ∈ D′(R3)3, we have

ψ = LNψ = NLψ, in D′(R3)3. (3.7)

Let γ∗ : H−
1
2 (Γ)3 → H−1

comp(R3)3, Tn∗ : H
1
2 (Γ)3 → H−1

comp(R3\Γ)3 be the adjoint of the

trace operator γ and the adjoint of the normal derivative operator Tn respectively, defined in

Section 2.1. We then give an equivalent definition of the single and double layer potential:

S = Nγ∗, D = NT ∗n . (3.8)
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3.4. Properties of layer potentials

We are now listing a selection of known results of layer potentials that will be used in the

following. Let us first recall the following theorem given in [3] (see also [21, Section 6.7]):

Theorem 3.1. Let φ ∈ H−
1
2 (Γ)3 and the single layer potential S, the adjoint double layer

boundary operator K∗ be defined by (3.1) and (3.5) respectively. Then the interior and exterior

normal traces of the stress tensor satisfy

T −n Sφ =
1

2
φ+K∗φ, T +

n Sφ = −1

2
φ+K∗φ, on H−

1
2 (Γ)3. (3.9)

We now show several jump conditions relating to the boundary layer potentials above which

can be found, for example, in [17, Theorem 6.10].

Theorem 3.2. Let Ω− ∈ R3 be a bounded Lipschitz domain with boundary Γ. Consider the

single and double layer potentials defined by (3.1) and (3.3) respectively. Then it holds

JSφK = 0, JDϕK = −ϕ, on H
1
2 (Γ)3,

JT SφK = φ, JT DϕK = 0, on H−
1
2 (Γ)3 (3.10)

for all φ ∈ H− 1
2 (Γ)3, ϕ ∈ H 1

2 (Γ)3.

We now consider the invertibility of the single layer boundary operator (3.2) (see [17, The-

orem 10.7] or [21, Theorem 6.36].

Lemma 3.3. Let Ω− ⊂ R3 be a bounded domain with Lipschitz boundary Γ. If µ > 0 and

λ ≥ 0, the single layer boundary operator V defined by (3.2) is coercive, i.e.

〈Vφ, φ〉
H

1
2 (Γ)×H−

1
2 (Γ)

> c ‖φ‖2
H−

1
2 (Γ)

, ∀φ ∈ H− 1
2 (Γ)3.

Corollary 3.1 (Invertibility of the single layer boundary operator). Let Ω− ⊂ R3 be

a bounded domain with Lipschitz boundary Γ and µ > 0 and λ ≥ 0. Then, the single layer

boundary operator V : H−
1
2 (Γ)3 → H

1
2 (Γ)3 is invertible.

4. Real Vector Spherical Harmonics

4.1. Surface gradient

In the following, we introduce the real vector spherical harmonics. We begin with some

conventions of the gradient. On a given domain Ω, consider a scalar valued function f : Ω→ R3

and a column-vector valued function F : Ω→ R3, we define their gradients by

∇f(x) ∈ R3, with (∇f)i =
∂f

∂xi
, ∇F (x) ∈ R3×3, with (∇F )ij =

∂Fi
∂xj

. (4.1)

Note in particular that ∇f is a column-vector while ∇F are row-wise gradients for each com-

ponent Fi.

Restricting the considerations to the unit ball Ω = B and it surface ∂Ω = S2, we denote by

∇s = θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ
(4.2)
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the surface gradient operator and r̂, θ̂, φ̂ are radial, polar and azimuthal unit vectors which are

supposed to be row vectors. Let f denote a scalar function and F a vector-valued function, i.e.

f ∈ R and F ∈ R3 and with the convention of the gradient field, the surface gradient (4.2) can

alternatively be written as
∇sf = ∇f − n(n>∇f),

∇sF = ∇F − (∇Fn)n>,
(4.3)

where ∇ is the gradient in R3 based on the convention (4.1). It is immediate to verify that

∇sf
>n = 0, ∇sFn = 0.

4.2. Definition of vector spherical harmonics

The construction of the vector spherical harmonics is based on the scalar real spherical

harmonics defined on the unit sphere S2 denoted by (Y`m)
|m|≤`
l≥0 which are normalized such that

〈Y`m, Y`′m′〉S2 =

∫
S2
Y`mY`′m′ = δ``′δm′m′ .

The vector spherical harmonics V`m,W`m, X`m : S2 → R3 of degree ` ≥ 0 and order m, |m| ≤ `
are given by

V`m := ∇sY`m(θ, φ)− (`+ 1)Y`m(θ, φ)r̂,

W`m := ∇sY`m(θ, φ) + `Y`m(θ, φ)r̂,

X`m := r̂ ×∇sY`m(θ, φ).

(4.4)

The symbol × represents the cross product in R3. We refer to Appendix A for some explicit

expressions of the vector spherical harmonics for the first few degrees. The vector spherical

harmonics satisfy the following orthogonal properties:∫
S2
V`m ·W`′m′ = 0,

∫
S2
W`m ·X`′m′ = 0,

∫
S2
X`m · V`′m′ = 0,∫

S2
V`m · V`′m′ = δ``′δm′m′(`+ 1)(2`+ 1),

∫
S2
W`m ·W`′m′ = δ``′δm′m′`(2`+ 1),∫

S2
X`m ·X`′m′ = δ``′δm′m′`(`+ 1).

(4.5)

The scalar spherical harmonics (and thus the vector spherical harmonics) can be extended to

any sphere Γr(x0) = ∂Br(x0) by translation and scaling. We will introduce the following scaled

scalar product on Γr(x0) given by

〈u, v〉Γr(x0) =
1

r2

∫
Γr(x0)

u(s) · v(s)ds =

∫
S2
u(x0 + rs′) · v(x0 + rs′)ds′. (4.6)

In practice, the exact value of the scalar product (4.6) cannot be computed explicitly in general.

With a set {st, wt}
Tg

t=1 of integration points and weights on the unit sphere, the scalar product

is approximated by the quadrature rule

〈u, v〉Γr(x0),t =

Tg∑
t=1

wt u(x0 + rst) · v(x0 + rst). (4.7)

In the numerical tests below in Section 7, we will use the Lebedev quadrature points [7], which

have the property that scalar spherical harmonics up to a certain degree Ng are integrated



842 B. STAMM AND S.Y. XIANG

exactly. This relationship is displayed in Table 4.1. It can be noticed that the number of points

increases quadratically with Ng.

Further, the family of vector spherical harmonics gives a complete basis of L2(Γr(x0))3 and

any real function f ∈ L2(Γr(x0))3 can be represented as

f(x) =

∞∑
`=0

∑̀
m=−`

[v]`mV`m

(x− x0

r

)
+ [w]`mW`m

(x− x0

r

)
+ [x]`mX`m

(x− x0

r

)
, (4.8)

where [v]`m, [w]`m, [x]`m ∈ R.

Table 4.1: DegreeNg and number of points Tg of Lebedev quadrature rules such that spherical haromon-

ics up to degree Ng are integrated exactly with Tg points.

Ng 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Tg 6 14 26 38 50 74 86 110 146 170 194 230 266 302

Ng 31 35 41 47 53 59 65 71 77 83 89 95 101 107

Tg 350 434 590 770 974 1202 1454 1730 2030 2354 2702 3074 3470 3890

4.3. Properties of the derivatives

We give some derivative properties of the surface gradient (4.3) that shall be useful in the

upcoming analysis. In the following, let u be the a scalar-valued function, F,G be vector-valued

functions and A be a matrix-valued function. We have the following product rule:

∇s(uF ) = F∇su
> + u∇sF,

∇s(F
>G) = ∇sF

>G+∇sG
>F.

(4.9)

We also have the property for the cross product:

∇s(F ×G) = ∇sF ×G−∇sG× F. (4.10)

Later proof also requires the triple product(
A× F

)>
G = A>

(
F ×G

)
=
(
G×A

)>
F. (4.11)

Now let h = h(r) be a scalar function which does not depend on the polar angles and u =

u(θ, φ), H = H(θ, φ) a scalar and a vector valued function respectively depending only on the

polar angles. Then there holds

∇(hu) = hrur̂ + 1
rh∇su,

∇(hH) = hrHr̂
> + 1

rh∇sH.
(4.12)

For the scalar function h = h(r), denote by hr, hrr the first and second derivative. Then we

have

div(hV`m) = −(`+ 1)
(
hr +

`+ 2

r
h
)
Y`m,

div(hW`m) = `
(
hr −

`− 1

r
h
)
Y`m,

div(hX`m) = 0,

(4.13)
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and

∆(hV`m) =
(
hrr +

2

r
hr −

(`+ 1)(`+ 2)

r2
h
)
V`m,

∆(hW`m) =
(
hrr +

2

r
hr −

(`− 1)`

r2
h
)
W`m,

∆(hX`m) =
(
hrr +

2

r
hr −

`(`+ 1)

r2
h
)
X`m.

(4.14)

Eqs. (4.13) and (4.14) are given in [9]. Finally, the following identities hold, resulting directly

from the definition of the vector spherical harmonics:

∇sY`m =
1

2`+ 1
(`V`m + (`+ 1)W`m), Y`mr̂ =

1

2`+ 1
(W`m − V`m). (4.15)

5. Spectral Properties of the Layer Potentials

We will give the main results in Section 5.1, prepare some preliminary results in Section 5.2

and finally provide the proofs in Section 5.3.

5.1. Main results

Consider the single layer potential S and the single layer boundary operator V defined by

(3.1) and (3.2), we have the following result.

Theorem 5.1. Let Y`m be the matrix such that

Y`m = (V`m|W`m|X`m) := (Y 1
`m|Y 2

`m|Y 3
`m). (5.1)

Then we have:

1. On the unit sphere S2, VY`m(x) = Y`mAV,`, where V is the single layer boundary operator

defined by (3.2) and AV,` is a constant matrix given by

AV,` =


(3`+1)µ+`λ

(2`+3)(2`+1)µ(2µ+λ) 0 0

0 (3`+2)µ+(`+1)λ
(2`−1)(2`+1)µ(2µ+λ) 0

0 0 1
µ(2`+1)


= diag(τ1

V,`, τ
2
V,`, τ

3
V,`). (5.2)

2. When |x| < 1, we have

(SY`m)(x) = Y`m

(
x

|x|

)
Ain
S,`(x),

where S is the single layer potential given by (3.1) and the matrix Ain
S,`(x) has the form

Ain
S,`(x) =


(3`+1)µ+`λ

(2`+3)(2`+1)µ(2µ+λ) |x|
`+1 0 0

(`+1)(µ+λ)
2(2`+1)µ(2µ+λ) (|x|`+1 − |x|`−1) (3`+2)µ+(`+1)λ

(2`−1)(2`+1)µ(2µ+λ) |x|
`−1 0

0 0 1
(2`+1)µ |x|

`

 .
(5.3)



844 B. STAMM AND S.Y. XIANG

3. When |x| > 1, we have

(SY`m)(x) = Y`m

(
x

|x|

)
Aout
S,`(x),

where the matrix Aout
S,`(x) is given by

Aout
S,`(x) =


(3`+1)µ+`λ

(2`+3)(2`+1)µ(2µ+λ) |x|
−`−2 `(µ+λ)

2(2`+1)µ(2µ+λ) (|x|−`−2−|x|−`) 0

0 (3`+2)µ+(`+1)λ
(2`−1)(2`+1)µ(2µ+λ) |x|

−` 0

0 0 1
(2`+1)µ |x|

−`−1

 .
(5.4)

The following result is a corollary of Theorem 5.1.

Corollary 5.1. Let Y`m be the a matrix defined by (5.1). Then, on the unit sphere S2, there

holds

K∗Y`m = KY`m = Y`mAK∗,`,

where K is the double layer boundary operator (3.5) with its adjoint K∗ and AK∗,` is a constant

and diagonal matrix:

AK∗,` =


− 2(2`2+6`+1)µ−3λ

2(2`+1)(2`+3)(2µ+λ) 0 0

0 2(2`2−2`−3)µ−3λ
2(2`+1)(2`−1)(2µ+λ) 0

0 0 1
2µ(2`+1)


= diag(τ1

K∗,`, τ
2
K∗,`, τ

3
K∗,`). (5.5)

Remark 5.1. Recall that the Lamé constats µ, λ satisfy µ > 0, 2µ + 3λ > 0, we can verify

that the eigenvalue τkK∗,` of the adjoint double layer boundary operator is − 1
2 if and only if

` = 1, k = 2. And the eigenvectors associated with the eigenvalue − 1
2 are W1m, m = ±1, 0.

The following theorem gives explicit expressions of the double layer potential.

Theorem 5.2. Let Y`m be given by (5.1) and D the double layer potential on the unit sphere

introduced in (3.3), we have:

1. For |x| < 1,

(DY`m)(x) = Y`m

( x
|x|

)
Ain
D,`(x)

where

Ain
D,`(x) =

 ain,D,`
11 |x|`+1 ain,D,`

12 |x|`+1 0

ain,D,`
21,1 |x|`+1 + ain,D,`

21,2 |x|`−1 ain,D,`
22,1 |x|`+1 + ain,D,`

22,2 |x|`−1 0

0 0 − `+1
(2`+1)µ |x|

`

 .
(5.6)

2. For |x| > 1,

(DY`m)(x) = Y`m

( x
|x|

)
Aout
D,`(x)
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where

Aout
D,`(x) =

a
out,D,`
11,1 |x|−`−2 + aout,D,`

11,2 |x|−` aout,D,`
12,1 |x|−`−2+aout,D,`

12,2 |x|−` 0

aout,D,`
21 |x|−` aout,D,`

22 |x|−` 0

0 0 `
(2`+1)µ |x|

−`−1

 .
(5.7)

The constants ain,D,`
ij , aout,D,`

ij are listed in Appendix B.

The results of Theorems 5.1, 5.2 and Corollary 5.1 can be extended to any sphere Γr(x0) =

∂Br(x0), which is, a sphere centered at x0 with radius r0, by setting Y`m

(
x−x0

|x−x0|

)
and using

the following scaling in r:

(SY`m)(x) = rY`m

( x− x0

|x−x0|

)
A

in/out
S,`

(x−x0

r

)
,

(DY`m)(x) = Y`m

( x− x0

|x− x0|

)
A

in/out
D,`

(x− x0

r

)
, (5.8)

(VY`m)(x) = rY`m

( x− x0

|x− x0|

)
AV,`, (K∗Y`m)(x) = (KY`m)(x) = Y`m

( x− x0

|x− x0|

)
AK∗,`.

5.2. Preliminary lemmas

To prove the results of Section 5.1 in the upcoming Section 5.3, we derive first several

preliminary lemma.

Lemma 5.1. For a scalar function h = h(r), we have the following identities

2e
(
h(r)V`m

)
n|S2 =

( (3`+2)hr(1)−`(`+2)h(1)

2`+ 1

)
V`m +

(−(`+1)hr(1)− (`+1)(`+2)h(1)

2`+ 1

)
W`m,

2e
(
h(r)W`m

)
n|S2 =

(−`hr(1) + `(`−1)h(1)

2`+ 1

)
V`m +

( (3`+ 1)hr(1) + (`− 1)(`+ 1)h(1)

2`+ 1

)
W`m,

2e
(
h(r)X`m)

)
n|S2 =

(
hr(1)− h(1)

)
X`m, (5.9)

where n is the outward pointing unit normal vector of the unit sphere S2.

Proof. We consider h(r)V`m first. Following (4.9) and (4.12), we have,(
∇(h(r)V`m) +∇(h(r)V`m)>

)
n|S2

=hr(1)
(
V`mr̂

> + r̂V >`m

)
n + h(r)(∇sV`m +∇sV

>
`m)n|S2

=hr(1)
(
V`m + r̂V >`m

)
r̂ + h(1)(∇sV`m +∇sV

>
`m)r̂, (5.10)

where we also use the fact that n is equal to the radial basis r̂ on the unit sphere S2. Consider

now the first term hr(1)(V`m+r̂V >`m)r̂. To compute r̂V >`mr̂, we need first the relation∇sY
>
`mr̂ = 0

following from (4.3). Then according to the definition of the vector spherical harmonics V`m
given by (4.4), we have

(r̂V >`m)r̂ = (r̂∇sY
>
`m)r̂ − (`+ 1)Y`mr̂r̂

>r̂ = −(`+ 1)Y`mr̂ =
(`+ 1)

2`+ 1
(−W`m + V`m). (5.11)
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Therefore, the first term in (5.10) yields

V`m + r̂V >`mr̂ =
3`+ 2

2`+ 1
V`m −

`+ 1

2`+ 1
W`m.

Now consider the second term (∇sV`m + ∇sV
>
`m)r̂. According to (4.3), we have ∇sV`mr̂ = 0.

The definition of V`m (4.4) gives

∇sV
>
`mr̂ = ∇s(∇sY`m)>r̂ − (`+ 1)∇s(Y`mr̂)

>r̂.

We compute the two terms separately. Using the product rule (4.9), we have

∇s(∇sY`m)>r̂ = ∇s(∇sY
>
`mr̂)−∇sr̂

>∇sY`m = −(Id−r̂r̂>)>∇sY`m = −∇sY`m.

For ∇s(Y`mr̂)
>r̂, we use (4.9) and have

∇s(Y`mr̂)
>r̂ = ∇sY`mr̂

>r̂ + (Y`m∇sr̂)
>r̂ = ∇sY`m + Y`m∇sr̂

>r̂ = ∇sY`m,

where we use the fact that ∇sr̂ is a symmetric matrix and ∇sr̂r̂ = 0. Therefore, there holds

∇sV
>
`mr̂ = −(`+ 2)∇sY`m = − `+ 2

2`+ 1

(
`V`m + (`+ 1)W`m

)
. (5.12)

The computation of e
(
h(r)V`m

)
n is thus completed in view of (5.11) and (5.12). A similar

computation gives h(r)W`m. Consider now h(r)X`m. Similar to (5.10), we have to compute

the sum:

e
(
h(r)X`m

)
n|S2 = hr(1)

(
X`m + r̂X>`m

)
r̂ + h(1)(∇sX`m +∇sX

>
`m)r̂.

Notice that X`m = r̂ × ∇sY`m is orthogonal to r̂ and it follows immediately that X>`mr̂ = 0.

Further, by (4.3), there holds ∇sX`mr̂ = 0. Then, it remains to consider X`mr̂ and ∇sX
>
`mr̂.

For the term ∇sX
>
`mr̂, we use the relation (4.10) and have

∇sX
>
`mr̂ =

(
∇s(r̂ ×∇sY`m)

)>
r̂ = (∇sr̂ ×∇sY`m)>r̂ +

(
r̂ ×∇s(∇sY`m)

)>
r̂.

Both terms can be computed by (4.11):(
r̂ ×∇s(∇sY`m)

)>
r̂ = ∇s(∇sY`m)>(r̂ × r̂) = 0,

and
(∇sr̂ ×∇sY`m)>r̂ =(r̂ ×∇sr̂)

>∇sY`m =
(
r̂ × (Id−r̂r̂>)

)>∇sY`m

=(r̂ × Id)>∇sY`m = ∇sY`m × r̂.

This gives

∇sX
>
`mr̂ = −X`m.

Then we get the result for h(r)X`m.

By (4.13), (5.9), we get, for a displacement h(r)V`m + g(r)W`m + h(r)X`m, it holds that

T −n
(
f(r)V`m + g(r)W`m + h(r)X`m

)
= T +

n

(
f(r)V`m + g(r)W`m + h(r)X`m

)
=
( µ

2`+ 1

(
(3`+ 2)fr(1)− `(`+ 2)f(1)− `gr(1) + `(`− 1)g(1)

)
+

λ

2`+ 1

(
(`+ 1)fr(1) + (`+ 1)(`+ 2)f(1)− `gr(1) + `(`− 1)g(1)

))
V`m
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+
( µ

2`+ 1

(
− (`+ 1)fr(1)− (`+ 1)(`+ 2)f(1) + (3`+ 1)gr(1) + (`+ 1)(`− 1)g(1)

)
+

λ

2`+ 1

(
− (`+ 1)fr(1)− (`+ 1)(`+ 2)f(1) + `gr(1)− `(`− 1)g(1)

)
W`m

+ µ
(
hr(1)− h(1)

)
X`m. (5.13)

The flowing lemma concerns the double layer boundary operator and its adjoint. In particular,

on a sphere, we have the following lemma.

Lemma 5.2. Let K be the double layer boundary operators defined by (3.4) on a sphere and

K∗ its adjoint operators. Then for v ∈ L2(S2)3, we have Kv = K∗v.

Proof. Indeed, we have

∂xk
Gji(x− y) =

1

8πµ|x− y|3

(
− λ+ 3µ

λ+ 2µ
δij(xk − yk)

+
λ+ µ

λ+ 2µ

(
(xi − yi)δjk + (xj − yj)δik −

3(xi − yi)(xj − yj)(xk − yk)

|x− y|2
))

,

and

Tr ex(Gj) Id = divxGj(x− y) = − (xj − yj)
4π|x− y|3

1

λ+ 2µ
.

Hence, we have(
2µex(Gj) + λTr ex(Gj) Id

)
ik

xk
|x|

=− 1

4π(λ+ 2µ)|x− y|3
( µ

λ+ 3µ
(δij(xk − yk) + δjk(xi − yi) + δik(xj − yj))

+
3(xi − yi)(xj − yj)(xk − yk)

|x− y|2
))xk
|x|

The same result holds for
(

2µey(Gi) + λTr ey(Gi) Id
)
jk

yk
|y| by replacing x by y. Further, for

x, y ∈ S2, the following relation holds:

(x− y) · x
|x|

= 1− x · y
r

= (y − x) · y
|y|
.

Therefore, we have

(K∗v)i(x) =
∑
j

∫
Γ

1

4π(λ+ 3µ)|x− y|3

((
− µ

λ+ 3µ
δij −

3(xi − yi)(xj − yj)
|x− y|2

)
(x− y) · x

|x|
vj(y)

+
µ

λ+ 3µ
(xjyi − xiyj)vj(y)

)
dy

=
∑
j

∫
Γ

1

4π(λ+ 2µ)|x− y|3

((
− µ

λ+ 3µ
δij −

3(yi − xi)(yj − xj)
|x− y|2

)
(y − x) · y

|y|
vj(y)

+
µ

λ+ 3µ
(xjyi − xiyj)vj(y)

)
dy = (Kv)i(x).

This completes the proof of the lemma. 2
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5.3. Proof of the principal results

We are now ready to prove Theorem 5.1.

Proof. [Proof of Theorem 5.1] Consider the single layer potential S defined by (3.1). Note

that for any φ ∈ H− 1
2 (S2)3, as announced in Lemma 3.1, u = Sφ satisfies the following linear

isotropic elasticity system

Lu = −div
(

2µe(u) + λTr e(u) Id
)

= 0, in R3\S2 . (5.14)

Now we determine u = SV`m by means of separation of variables in spherical coordinates. That

is, we propose the Ansatz displacement field SV`m as a function of the spherical coordinates of

form u = SV`m = h(r)V`m + g(r)W`m + h(r)X`m where f, g, h are three scalar functions of r

to be determined. Using the relation

div(Tr e(u) Id) = ∇(div u),

and plugging the Ansatz into (5.14), together with (4.13)-(4.15), we have the following equation:[(
µ+

`+ 1

2`+ 1
(µ+ λ)

)(
frr +

2

r
fr −

(`+ 1)(`+ 2)

r2
f
)

− `

2`+ 1
(µ+ λ)

(
grr −

2`− 1

r
gr +

(`− 1)(`+ 1)

r2
g
)]
V`m

+

[(
µ+

`

2`+1

(
µ+λ)

)(
grr+

2

r
gr−

(`−1)`

r2
g
)
− `+ 1

2`+1
(µ+λ)

(
frr +

2`+ 3

r
fr +

`(`+ 2)

r2
f
)]
W`m

+ µ
[
hrr +

2

r
h− `(`+ 1)

r2
h
]
X`m = 0. (5.15)

Since V`m,W`m, X`m is an orthogonal basis, all the coefficients of V`m,W`m, X`m must be zero

in (5.15). Let first ` ≥ 1 and we have six sets of analytical solutions to (5.15) reading

(i) (ii) (iii) (iv) (v) (vi)

f r−`−2 − `
2`+1 (µ+ λ)r−` 0 2

2l+3

(
µ+ `

2`+1 (µ+ λ)
)
r`+1 0 0

g 0 2
2`−1

(
µ+ `+1

2`+1 (µ+ λ)
)
r−` 0 `+1

2`+1 (µ+ λ)r`+1 r`−1 0

h 0 0 r−`−1 0 0 r`

in which (i), (ii), (iii) are admissible only for |r| > 0 while (iv), (v), (vi) are unbounded when

|r| → ∞. Now, we consider the exterior and the interior of the unit sphere separately in which

we aim to get SV`m. For the sake of simplicity, write

p12 = − `

2`+ 1
(µ+ λ), p22 =

2

2`− 1

(
µ+

`+ 1

2`+ 1
(µ+ λ)

)
,

q11 =
2

2l + 3

(
µ+

`

2`+ 1
(µ+ λ)

)
r`+1, q21 =

`+ 1

2`+ 1
(µ+ λ).

Write SV`m as a linear combination of the three solutions in the exterior and three in the

interior of the unit sphere:

SV`m =

a
in
`mq11r

`+1V`m +
(
ain
`mq21r

`+1 + bin`mr
`−1
)
W`m + cin`mr

`X`m |r| < 1,(
aout
`m r

−`−2 + bout
`m p12r

−`
)
V`m + bout

`m p22r
−`W`m + cout

`m r
−`−1X`m |r| > 1,

(5.16)
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where a
in/out
`m , b

in/out
`m , c

in/out
`m ∈ R are constants to be determined. In order to determine these

six unknown constants, we use the jump relation given by Theorems 3.2:

JSV`mK = 0, JT SV`mK = V`m. (5.17)

Since V`m,W`m, X`m is an orthogonal basis, it follows immediately from the first equality in

(5.17) that

ain
`mq11 = aout

`m + bout
`m p12 ain

`mq21 + bin`m = bout
`m p22, cin`m = cout

`m .

Now take the inner product of the second equation (5.17) with V`m,W`m, X`m. With the

computations in (5.13), we have

2`− 1 =µain
`mq11(3`+ 2)(`+ 1) + λin

`mq11(`+ 1)2 − (µ+ λ)
(
ain
`mq21`(`+ 1) + bin`m`(`− 1)

)
− µ

(
aout
`m (3`+ 2)(−`− 2)− bout

`m p12(3`+ 2)`
)

− λ
(

(`+ 1)(`− 2)aout
`m − bout

`m p12(`+ 1)l
)
− (µ+ λ)bout

`m p22`
2,

0 =µ
(
ain
`mq21(3`+ 1)(`+ 1) + bin`m(3`+ 1)(`− 1)

)
+ λ

(
ain
`mq21`(`+ 1) + bin`m`(`− 1)

)
− (µ+ λ)ain

`mq11(`+ 1)2 + µbout
`m p22`(3`+ 1) + λbout

`m p22`
2

− (µ+ λ)
(
aout
`m (`+ 1)(`+ 2) + bout

`m p12(`+ `)`
)
,

0 =µ(`cin`m + (`+ 1)cout
`m ).

Hence, we conclude

ain
`m =

1

2µ(2µ+ λ)
, aout

`m =
1

2`+ 3

(
µ+

`

2`+ 1
(µ+ λ)

)(
µ(2µ+ λ)

)−1
,

bin`m = − `+ 1

2`+ 1
(µ+ λ)

(
2µ(2µ+ λ)

)−1
, bout

`m = cin`m = cout
`m = 0.

Similar computations following the same logic give the results for W`m, X`m for ` ≥ 1.

In the case where ` = 0, we only have to treat V00 since W00 = X00 = 0. Using (5.16)–(5.17),

we have

SV00 =


1

3(2µ+ λ)
r2V00 r ≤ 1,

1

3(2µ+ λ)
r−1V00 r > 1.

(5.18)

Notice that the result (5.18) is indeed consistent with the cases where ` ≥ 1. We have proved

therefore the theorem. 2

Corollary 5.1 can now be deduced.

Proof. [Proof of Corollary 5.1] As is shown in (3.9), we have

2K∗V`m = T +
n SV`m + T −n SV`m.

Again, apply the computation in (5.13), we have

T −n SV`m + T +
n SV`m =

−2(2`2 + 6`+ 1)µ+ 3λ

(2`+ 1)(2`+ 3)(2µ+ λ)
V`m.
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Hence, we have

K∗V`m =
2(2`2 + 6`+ 1)µ+ 3λ

2(2`+ 1)(2`+ 3)(2µ+ λ)
.

Similar computations give the results for the other two components W`m, X`m. Further, Lem-

ma 5.2 provides the result for the double layer operator K. 2

Finally, the proof of Theorem 5.2 follows the same structure to that of Theorem 5.1 in

employing the jump relations

JDφK = −φ, JT DφK = 0

for the choices φ = V`m,W`m, X`m respectively.

6. Application

We study here a case of an elasticity problem involving several spherical inclusions as an

application of the results in the above sections, derive an integral equation formulation and

propose a Galerkin formulation thereof based on the vectorial spherical harmonics.

6.1. Problem setting

Set the sets of indices J1, J2, J such that M + 1 ∈ J2, J1 ∩ J2 = ∅ and

J1 ∪ J2 = {1, 2, . . . ,M,M + 1}, J = J1 ∪ J2\{M + 1}, (6.1)

and let Ωi ⊂ R3, i ∈ J be non-overlapping balls, centered at xi ∈ R3 with radius ri, all contained

in an additional ball BR centred at the origin with the radius R. Moreover, define the domains

ΩM+1 = R3\BR, Ω0 := BR\
⋃

i∈J1∪J2

Ωi, Ω := BR\
⋃
i∈J2

Ωi. (6.2)

Denote the boundaries Γi = ∂Ωi, i ∈ {0} ∪ J1 ∪ J2. Then, it holds that Γ0 =
⋃

i∈J1∪J2
Γi. Set

further n0 as the outward pointing unit normal vector with respect to the domain Ω0 and ni
the outward pointing normal vector with respect to each domain Ωi, i ∈ J1 ∪ J2. Then it holds

that ni = −n0. We refer to Fig. 6.1 for an illustration of geometry configuration.

In the numerical example presented below, we assume that each inclusion Ωi, i ∈ J1 is

filled with an isotropic elastic medium associated with Lamé parameters µi, λi. The remaining

background domain Ω0 is filled with medium of Lamé constants µ0, λ0. Further, we denote

T inj

±
the normal derivative operator acting on the boundary Γj with Lamé constants µj , λj

and the normal vector nj :

T inj

±
u = γ±j

(
(2µie(u) + λi Tr e(u) Id)nj

)
where γ±j are the exterior and interior the trace operators on Γj , following the notations given

by (2.4) by taking Ω− = Ωj . Define the parameter si by

si =

{
−1 i = M + 1,

1 else.
(6.3)

In particular, write

JT uK = T 0
sini

−
u− T 0

sini

+
u, on Γi, i ∈ J1 ∪ J2 (6.4)



Boundary Integral Equations for Isotropic Linear Elasticity 851

Fig. 6.1. Geometry setting of the model where j1 ∈ J1 and j2 ∈ J2.

and it is obvious that

T 0
sini

±
= siT 0

ni

±
.

For given fi ∈ H−
1
2 (Γi)

3, we impose the transmission condition:

JuK = 0, JT uK = fi, on Γi, i ∈ J1.

Further, we let the domain Ω be subjected of a given stress tensor on its boundary. Indeed, we

let each part of the boundary Γi, i ∈ J2 be subjected to a given stress tensor σi ∈ H1/2(Γi)
3:

T 0
ni

+
u = −siσi. (6.5)

Then, we consider the solution u ∈ V0(Ω)3 to the following interface problem:

−div
(
2µie(u) + λi Tr e(u) Id

)
= 0, in Ωi, i ∈ {0} ∪ J1,

JuK = 0, on Γi i ∈ J1,

JT uK = fi, on Γi i ∈ J1,

T 0
ni

+
u = −siσi, on Γi, i ∈ J2.

(6.6)

Standard arguments involving the Lax-Milgram theorem yields the well-posedness of the prob-

lem.

Remark 6.1. In our case, we pre-defined the index set J2 with the condition M + 1 ∈ J2.

However, by equipping the domain ΩM+1 (which is indeed the exterior domain of the sphere

BR) with Lamé parameters µM+1, λM+1, one can also relax the setting and consider the case

where M + 1 ∈ J1.

6.2. Integral equation

Let u ∈ V0(Ω)3 denote the solution to (6.6) satisfying JuK = 0 on Γi for i ∈ J1 and define ν

on Γ0 by

ν = γ−0 u as well as νi = ν|Γi
, ∀i ∈ J1 ∪ J2,
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where γ−0 is the trace operator γ−0 : H1(Ω0)3 → H
1
2 (Γ0)3 defined by (2.4) for Ω− = Ω0. To

deduce an integral equation for ν, we first introduce an auxiliary problem: find a solution

v ∈ H1(Ω)3 to

−div
(
2µ0e(v) + λ0 Tr e(v) Id

)
= 0, in Ω\Γ0,

γ−0 v = γ−0 u, on Γ0.
(6.7)

The auxiliary problem (6.7) admits a unique solution v in Ω and observe that

v = u, in Ω0,

but is different in all Ωi, i ∈ J1. Further, there exists a global density φ supported on Γ0 such

that
v = S0

Gφ =
∑

i∈J1∪J2

S0
i φi in Ω0

v = V0
Gφ =

∑
i∈J1∪J2

V0
i φi on Γ0,

(6.8)

where S0
G is the global layer potential (3.1) with Lamé parameters µ0, λ0 defined on the whole

boundary Γ0 while S0
i is the local single layer potential with Lamé parameters µ0, λ0 defined

locally on the sphere Γi and V0
G,V0

i their corresponding single layer boundary operators (3.2).

Further, according to Theorem 3.2, the density φi is given by the jump relation

φi = JT vK =
(
T 0
sini

−
v − T 0

sini

+
v
)

= si

(
T 0
ni

−
u− T 0

ni

+
v
)
, on Γi, i ∈ J1 ∪ J2. (6.9)

The last equivalence in (6.9) is obtained because u = v on Ω0. Further, both solutions u, v can

be represented by some local densities in each domain Ωi:

u|Ωi = Siϕi, i ∈ J1

v|Ωi = S0
i ψi i ∈ J1 ∪ J2,

where Si is the local layer potential with Lamé parameters µi, λi while S0
i with µ0, λ0, both

of which are defined locally on the sphere Γi. For the corresponding single layer boundary

operators V0
i ,Vi defined by (3.2), we have

V0
i ψi = Viϕi = νi, i ∈ J1.

According to Corollary 3.1, the single layer boundary operators V0
i ,Vi are invertible, so we have

ψi = V0
i
−1

(γiv) = V0
i
−1
νi, on Γi, i ∈ J1 ∪ J2,

ϕi = V−1
i (γiu) = V−1

i νi, on Γi, i ∈ J1.
(6.10)

Now, according to Theorem 3.1, we have

T 0
ni

−S0
i ψi = si

1

2
ψi +K0

i
∗
ψi, on Γi, i ∈ J1 ∪ J2,

T ini

−Siϕi = si
1

2
ϕi +K∗iϕi, on Γi, i ∈ J1,

(6.11)

where K0
i
∗
, K∗i are adjoint double layer boundary operators (3.5) defined locally on Γi with

Lamé constants µ0, λ0 and µi, λi respectively. In problem (6.6), we have

T 0
ni

+
u =

{
T ini

−Siϕi − fi, on Γi, i ∈ J1,

−siσi, on Γi, i ∈ J2,
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where fi ∈ H−
1
2 (Γi)

3, σi ∈ H
1
2 (Γi)

3 are given transmission conditions and Neuman boundary

conditions respectively. Providing (6.9)–(6.11), we have

φi =


1

2
(V0
i
−1 − V−1

i )νi + (K0
i
∗V0

i
−1 −Ki∗V−1

i )νi + fi, i ∈ J1,

1

2
V0
i
−1
νi + siK0

i
∗V0

i
−1
νi + siσi, i ∈ J2.

According to (6.8), we have

(Id−V0
GL)ν = V0

GΣ (6.12)

where L is an operator defined on each Γi:

L|Γi
= Li =

1

2
(V0
i
−1 − V−1

i ) + (K0
i
∗V0

i
−1 −Ki∗V−1

i ), i ∈ J1,

L|Γi
= Li =

1

2
V0
i
−1
νi + siK0

i
∗V0

i
−1
νi, i ∈ J2,

and the vector Σ satisfies

Σ|Γi
=

{
fi, i ∈ J1,

σi, i ∈ J2.

6.3. Galerkin approximation

Introduce VN,i, i ∈ J1∪J2 the set spanned by vector spherical harmonics (4.4) on the sphere

Γi with a maximum degree N :

VN,i =

{
N∑
`=0

∑̀
m=−`

3∑
k=1

[yi]
k
`mY

ki
`m(x)

∣∣∣[yi]k`m ∈ R

}
, (6.13)

where we write Y 1
`m = V`m, Y

2
`m = W`m, Y

3
`m = X`m and Y ki`m(x) = Y k`m

(
x−xi

ri

)
. Define also the

global set

VN =
⊗

i∈J1∪J2

VN,i. (6.14)

We look for the approximation of νN ∈ VN to (6.6) with

∀i ∈ J1 ∪ J2,∀vN,i ∈ VN,i : 〈νN,i − V0
GLνN , vN,i〉Γi

= 〈V0
GΣ, vN,i〉Γi

. (6.15)

In practice, we use the quadrature (4.7) to approximate the inner product and the approximate

solution νN on each Γi thus satisfies

∀i ∈ J1 ∪ J2,∀vN,i ∈ VN,i : 〈νN,i − V0
GLνN , vN,i〉Γi,t = 〈V0

GΣ, vN,i〉Γi,t.

Denote by M = 3(N + 1)2(|J1| + |J2|) the number of degrees of freedom. The RM-vector

collecting all the coefficients [y]k`m denoted by Λ yields the linear system

(D−N)Λ = F, (6.16)

where by (4.5), (4.6), the M×M diagonal matrix D is given by

[Dii]
11
`m,`m = (2`+ 1)(`+ 1), [Dii]

22
`m,`m = (2`+ 1)`, [Dii]

33
`m,`m = (`+ 1)`,
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and where N is a M×M matrix with coefficients

[Nij ]
kk′

`m,l′m′ =
〈
V0
GLjY k

′

`′m′ , Y
ki
`m

〉
Γi,t

. (6.17)

The right hand side F ∈ RM is given by its coefficients:

[Fi]
k
`m = 〈V0

GΣ, Y ki`m〉Γi,t. (6.18)

To derive the entries of the matrix (6.17), recall the spectral results in Lemma 5.1 so that we

have on Γj

Vj−1Y k
′j

`′m′ =
1

rjτ
k′j
V,`′

Y k
′j

`′m′ , V0
j
−1
Y k
′j

`′m′ =
1

rjτk
′0
V,`′

Y k
′j

`′m′ ,

K∗jY
k′j
`′m′ = τk

′j
K∗,`′Y

k′j
`′m′ , K∗0j Y

k′j
`′m′ = τk

′0
K∗,`′Y

k′j
`′m′ ,

where τk
′j
V,`′ , τ

k′j
K∗,`′ are eigenvalues of the single and double layer boundary operator with Lamé

constants µj , λj given by (5.2), (5.5) respectively. Hence, we have

LjY k
′j

`′m′ =
1

rj
Cj`′k′Y

k′j
`′m′ ,

where the constant Cj`′k′ reads

Cj`′k′ =


1

2

( 1

τk
′0
K∗,`′

− 1

τk
′j
V,l′

)
+
(τk′0K∗,`′
τk
′0
V,`′

−
τk
′j
K∗,`′

τk
′j
V,`′

)
j ∈ J1,

1/2 + siτ
k′0
K∗,`′

τk
′0
V,`′

j ∈ J2.

Recall that si denotes the parameter defined by (6.3). Further, by (5.3), (5.4),

(S0
j Y

k′

`′m′)(x) =


rj

[
Y`′m′

( x− xj
|x− xj |

)
Ain
V,`′
(x− xj

rj

)]
k′

|x− xj | ≤ rj ,

rj

[
Y`′m′

( x− xj
|x− xj |

)
Aout
V,`′
(x− xj

rj

)]
k′

|x− xj | > rj ,

where [·]k′ denotes the k′-th column of the obtained matrix. Hence, the coefficient [Nij ]
kk′

`m,`′m′

of the matrix N (6.17) reads

[Nij ]
kk′

`m,`′m′ = 〈V0
GLjY k

′

`′m′ , Y
ki
`m〉Γi,t

=Cj`′k′

Tg∑
t=1

wtY
ki
`m(st)S0

j Y
k′

`′m′(xi + rist)

=Cj`′k′

Tg∑
t=1

wtY
ki
`m(st)

[
Y`′m′

( ytij
|ytij |

)
A
f(j)
V,`′

(ytij
rj

)]
k′

,

where ytij = xi + rist − xj and f(j) takes the value

f(j) =

{
in j = M + 1,

out else.
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In particular, when i = j, we use (4.5) for the exact value of the inner product and obtain:

[Nii]
kk′

`m,`′m′ =

N∑
l′=0

`′∑
m′=−`′

Ci`′k′τ
k′,0
V,` 〈Y

ki
`m, Y

k′i
`′m′〉Γi

.

Finally, the right-hand side vector F with coefficient [Fi]
k
`m is given by:

[Fi]
k
`m =

N∑
`′=0

`′∑
m′=−`′

3∑
k′=1

(
ri[Σi]

k′

`′m′τ
k′0
V,`′〈Y k

′i
`′m′ , Y

ki
`m〉Γi

+
∑

j∈J1∪J2
j 6=i

rj

Tg∑
t=1

[Σj ]
k′

`′m′wtY
ki
`m(st)

[
Y`′m′

( ytij
|ytij |

)
A
f(j)
V,`′

(ytij
rj

)]
k′

)
, i ∈ J1 ∪ J2

where [Σi]
k
`m ∈ R is determined by the right-hand side vector Σ in (6.12) :

Σ|Γi
=

N∑
`=0

∑̀
m=−`

3∑
k=1

[Σi]
k
`mY

ki
`m(x).

Remark 6.2. A similar physical model called “Finite Cluster Model” was considered in [22]

in where an algebraic formulation is derived through the use of M2L-operators (using the fast

multipole method terminology). However, with the jump relations given in (3.10), the algebraic

formulation of the “Finite Cluster Model” can be proven to be equivalent to the discrete integral

formulation (6.15) presented above.

It shall be noted that the mathematical framework introduced here through the use of layer

potentials and boundary operators in order to derive an integral equation (6.12) defining the

exact solution and and the subsequent introduction of the Galerkin discretization (6.15) allows

a mathematical analysis which will be subject of an upcoming work.

7. Numerical Tests

For all following computations, we chose the number of Lebedev integration points Tg such

that, for given N , products of two scalar spherical harmonics of maximal degree N , thus

spherical harmonics of degree 2N , are integrated exactly. The number of points can then be

extracted from Table 4.1.

7.1. One sphere model

We start with a simple model involving only one single sphere whose solution can be com-

puted analytically in order to assess the convergence of the method in this simple setting. For

simplicity, let S2 ⊂ R3 be the unit sphere on which a stress tensor σ ∈ H 1
2 (S2)3 is imposed and

let the Lamé constants be µ0 = λ0 = 1. Let n be the outward pointing normal vector with

respect to the unit sphere S2. The solution u ∈ V0(B)3 to the problem

− div
(
2e(u) + Tr e(u) Id

)
= 0, in B,

Tn−u = σ, on S2,

reads

u(x) =
(
S(1 +K∗)−1σ

)
(x), ∀x ∈ R3, (7.1)
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with S being the single layer potential (3.1) and K∗ the adjoint of the double layer boundary

operator (3.5). For the given tensor σ, if there exists an integer `ex such that we can expand σ

by means of vector spherical harmonics up to order `ex:

σ(x) =

`ex∑
`=1

∑̀
m=−`

3∑
k=1

[Σ]k`mY
k
`m(x),

then the exact solution restricted to the sphere Λex = u|S2 is given explicitly by

Λex =

`ex∑
`=1

∑̀
m=−`

3∑
k=1

τkV,`
1
2 + τkK∗,`

[Σ]k`mY
k
`m(x), (7.2)

where τkV,`, τ
k
K∗,` are the eigenvalues of the single layer boundary operator and the adjoint

double layer boundary operator given by (5.2) and (5.5) resp. They only concern in computing

(7.2) is that the denominator tends to zero if τkK∗,` approaches −1/2. Recall that according to

Remark 5.1, the only possible eigenvectors of K∗ with the eigenvalue−1/2 areW1,−1,W1,0,W1,1.

According to Appendix A, we see that they are constant and parallel to the cartesian basis

ei, i = 1, 2, 3. To ensure that (7.2) is well defined and these modes avoided, we simply impose

that ∫
S2
σ = 0.

We consider the following four cases:

• Case 1. σ = −(x, y, z)>.

• Case 2. σ = −(x, 0, 0)>.

• Case 3. σ = −(x7, y7, z7)>.

• Case 4. σ = −
(

sin(2πx), sin(2πy), sin(2πz)
)>

.

Table 7.1 lists the L2 norm of the numerical solution on the unit sphere ||Λs||L2 in each case

with different degrees of vector spherical harmonics and the relative error is defined by

Re =
||Λs − Λex||L2

||Λex||L2

. (7.3)

The exact solutions Λex in the first three cases are exactly computed by the (7.1), (7.2)

while the in the last cases, the “exact” solution is obtained by taking a large enough `ex (in

this case `ex = 50).

Table 7.1: Relative error Re of the approximation to the one-sphere model.

N Case 1 Case 2 Case 3 Case 4

2 0 0 1.985e-01 5.375e-01

5 0 0 4.020e-03 6.797e-02

8 0 0 4.796e-09 1.370e-04

11 0 0 0 7.892e-13

14 0 0 0 7.097e-13
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7.2. Convergence with respect to the degree N

We study now the convergence of the error measured in the L2 norm with respect to the

degree N of the vector spherical harmonics. Using the notation introduced in Section 6, we

test a model with M = 2 and

J1 = {1}, J2 = {2, 3}.

Let Γ1 be the sphere centered at (1, 0, 0) respectively with radius 0.1 and Γ2 centered at (−1, 0, 0)

with radius 0.1 while Γ3 is centered at (0, 0, 0) with radius 2. The inclusion Ω1 is filled with a

medium represented by the Lamé constants µ1 = 10, λ1 = 10 while the background domain Ω0

uses µ0 = 1, λ0 = 1 as Lamé parameters.

The interface condition JT uK = 0 is imposed on Γ1 while the spheres Γ2,Γ3 are subjected

to a stress tensor T +
n2
u = −σ2 respectively T +

n3
u = σ3. Table 7.2 illustrates the parameters of

the above geometry configuration.

Table 7.2: Geometric configuration of the case study for convergence with respect to the degree of

vector spherical harmonics N involving three spheres.

Set Sphere Center Radius Lamé constants Stress tensor Transmission

J1 Γ1 (1, 0, 0) 0.1 µ1 = 10, λ1 = 10 ——— JT uK = 0

J2 Γ2 (−1, 0, 0) 0.1 ——— T +
n2
u = −σ2 ———

J2 Γ3 (0, 0, 0) 2 µ0 = 1, λ0 = 1 T +
n3
u = σ3 ———

We now test two cases to see the relation between the relative error and the degree of the

spherical harmonics for different kinds of imposed stress tensors σ2, σ3:

1. The two stress tensors are set to be smooth functions such that

T +
n2
u = −σ2 = 10

(
sin(2π(x+ 1)), sin(2π(y + 1)), sin(2π(z + 1))

)>
,

T +
n3
u = σ3 = −2

(
sin(2πx), sin(2πy), sin(2πz)

)>
.

(7.4)

2. The stress tensors are set to be piecewise smooth such that

T +
n2
u = −σ2 =

{
(0.2, 0, 0)> x ≥ 0,

−(0.2, 0, 0)> x < 0,
(7.5)

and

T +
n3
u = σ3 =

{
(1, 0, 0)> x ≥ 0,

−(1, 0, 0)> x < 0.
(7.6)

We compute the “exact” solution to the problem with a large degree of vector spherical

harmonics (Nex = 50) for both cases. In the Fig. 7.1, we illustrate the log of the relative error

(7.3) with respect to the degree N of spherical harmonics of the two tests above. We observe

exponential convergence in the first case where the given stress tensor is regular. In the second

case, the situation is less clear as an initial pre-asymptotic is followed by a very fast convergence

and the asymptotic regime is not yet reached, but the absolute error is already very small.
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Fig. 7.1. The L2 error of the approximation with respect to the degree of spherical harmonics for the

test cases (7.4) (left) and (7.5)–(7.6) (right).

7.3. Computational cost

Next, we study the computational cost of our numerical method by considering an “embed-

ded model” with M inclusions by increasing the value of M . We do the following test with

Matlab on an iMac with a 2,7 GHz Intel Core i5 processor.

We consider a case where a stress tensor T 0nM+1
+
u = − 1

R (x, y, z)> is imposed on a origin-

centered sphere with radius R, denoted by S2
R. Inclusions are taken to be all the spheres with

radii 0.1, centered on a cubic lattice Z3 and which are contained in S2
R. We increase the number

of inclusions M by increasing the value of the radius R of the big sphere. Table 7.3 lists the

number of spheres with respect to the radius R that grows of course cubically.

Table 7.3: Number of spheres w.r.t the radius R.

Radius of the big sphere 1 2 3 4 5

Number of total spheres 2 28 94 252 486

We fill each small inclusion with a medium associated with the Lamé constants µi = 10, λi =

10, i = 1, ...,M and take the transmission condition JT uK = 0 on each embedded sphere.

Further, the Lamé constants of the background domain are fixed to be µ0 = 1, λ0 = 1. The

degree of the vector spherical harmonics is chosen to be N = 3. Further, we stop the iterative

solver of the linear system when the residual is smaller than 10−6. Fig. 7.2 illustrates the

computed elastic deformation of the model computed when R = 3. The colorcode represents

the modulus of the displacement.

We report the result of the computational time in Fig. 7.3 which illustrates that the com-

putational cost with respect to the number of spheres grows as O(M2). This is the normal

scaling for an integral equation involving M spheres, whose iterative solver requires a number

of iterations that is independent of M which we observe.

7.4. The effect of an inclusion

We now consider the unit ball B1 which contains an additional inclusion Ω1 in form of a

sphere centered at the origin with radius 0.5. We study how the displacement on the unit sphere
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Fig. 7.2. The elastic deformation of the embedded model when R = 3. The colorcode represents the

modulus of the displacement.

0 1 2 3 4 5 6 7
Log of the number of spheres

-4

-2

0

2

4

6

8

10

Lo
g 

of
 th

e 
ru

n 
tim

e 
in

 s
ec

on
d

2

1

Fig. 7.3. The run time in second with respect to the number M of spheres (log-log scale).

S2 is influenced by the compressibility of the small inclusions Ω1. We will use the Poisson’s

ratio as the parameter defined by (1.2) describing the compressibility of a substance.

Let the stress tensor −(x, y, z)> be imposed on the unit sphere S2 and fix the shear modulus

of the exterior shell Ω0 = B1\Ω1 to be µ0 = 1 and the shear modulus µ1 = 1 for the inclusion Ω1.

We test several cases where the the exterior shell and the inclusion are associated to different

Poisson’s ratio ν0, ν1. Recall that ν0, ν1 ∈ (−1, 1/2) according to the definition, we have the

limit values of the first Lamé parameter λ1:

λ1 −−−−−→
ν1→−1

−2

3
, λ1 −−−−→

ν1→ 1
2

∞.

In Fig. 7.4, we plot the L2 norm of the displacement on the unit sphere by letting the Poisson’s

ratio ν1 vary in [−1, 0.4998] with different given values of Poisson’s ratio ν0 of the background

domain Ω0. In Fig. 7.5, we give two solutions with different Poisson’s ratios: the left solution is

obtained by setting ν1 = 0.4995 while the other is obtained by setting ν = −1, both embedded

into a background domain with ν0 = 1/6.
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Fig. 7.4. The L2 norm of the solution on the unit sphere with respect to the Poisson’s ratio ν1 of the

inclusion. Each curve is obtained by a given background Poisson’s ratio ν0 specified by the legend.

Fig. 7.5. Two solutions with the Poisson’s ratio ν0 = 1
6
. The left solution is obtained for ν1 = 0.4998

while the left for ν1 = −1. The colorcode represents the modulus of the displacement.

8. Conclusion

In this article, we have discussed the layer potentials and their corresponding integral opera-

tors on arbitrary bounded domains with Lipschitz boundary in the context of isotropic elasticity.

We proved jump relations of layer potentials and the invertibility of the single layer boundary

operator. In the particular case where the body is a unit ball, we present spectral properties

of the boundary operators on the base of the vector spherical harmonics. We then derived a

second-kind integral equation for isotropic elastic materials with spherical inclusions that was

then discretized by employing the vector spherical harmonics as basis functions and exploiting

the spectral properties to enhance efficiency of the discretization. In the last part, we effect

some numerical tests to asses the properties of the method: the accuracy with respect to the

degree of the vector spherical harmonics and the complexity of the computational cost with

respect to the number of spherical inclusions. We also used the method to explore how the

deformation of the elastic material is effected by the value of the Poisson’s ratio.
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Appendix A: Computation of the First Few Vector Spherical

Harmonics

We first start considering the table of vector spherical harmonics up to the second order as

listed below:

` = 0 : Y0,0 =
1

2

√
1

π
,

` = 1 : Y1,−1 =

√
3

4π
y, Y1,0 =

√
3

4π
z, Y1,1 =

√
3

4π
x,

` = 2 : Y2,−2 =
1

2

√
15

π
xy, Y2,−1 =

1

2

√
15

π
yz, Y2,0 =

1

4

√
5

π
(−x2 − y2 + 2z2),

Y2,1 =
1

2

√
15

π
xz, Y2,2 =

1

4

√
15

π
(x2 − y2).

This gives first the obvious result that

` = 0 : V0,0 = −1

2

√
1

π
(x, y, z)> and W00 = X00 = 0.

Using the definition of the surface gradient (4.3), we obtain

` = 1 : ∇sY1,−1 =

√
3

4π

(
(0, 1, 0)− y(x, y, z)

)>
,

∇sY1,0 =

√
3

4π

(
(0, 0, 1)− z(x, y, z)

)>
,

∇sY1,1 =

√
3

4π

(
(1, 0, 0)− x(x, y, z)

)>
,

` = 2 : ∇sY2,−2 =
1

2

√
15

π

(
(y, x, 0)− 2xy(x, y, z)

)>
,

∇sY2,−1 =
1

2

√
15

π

(
(0, z, y)− 2yz(x, y, z)

)>
,

∇sY2,0 =
1

2

√
5

π

(
(−x,−y, 2z)− (−x2 − y2 + 2z2)(x, y, z)

)>
,

∇sY2,1 =
1

2

√
15

π

(
(z, 0, x)− 2xz(x, y, z)

)>
,

∇sY2,2 =
1

2

√
15

π

(
(x,−y, 0)− (x2 − y2)(x, y, z)

)>
.

The spherical harmonics V`m up to order 2 are then given as follows

` = 0 : V0,0 = −1

2

√
1

π
(x, y, z)>,

` = 1 : V1,−1 =

√
3

4π

(
(0, 1, 0)− 2y(x, y, z)

)>
,
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V1,0 =

√
3

4π

(
(0, 0, 1)− 2z(x, y, z)

)>
,

V1,1 =

√
3

4π

(
(1, 0, 0)− 2x(x, y, z)

)>
,

` = 2 : V2,−2 =
1

2

√
15

π

(
(y, x, 0)− 5xy(x, y, z)

)>
,

V2,−1 =
1

2

√
15

π

(
(0, z, y)− 5yz(x, y, z)

)>
,

V2,0 =
1

2

√
5

π

(
(−x,−y, 2z)− 5

2
(−x2 − y2 + 2z2)(x, y, z)

)>
,

V2,1 =
1

2

√
15

π

(
(z, 0, x)− 5xz(x, y, z)

)>
,

V2,2 =
1

2

√
15

π

(
(x,−y, 0)− 5

2
(x2 − y2)(x, y, z)

)>
.

The spherical harmonics W`m up to order 2 are given by

` = 0 : W0,0 = 0,

` = 1 : W1,−1 =

√
3

4π
(0, 1, 0)>, W1,0 =

√
3

4π
(0, 0, 1)>, W1,1 =

√
3

4π
(1, 0, 0)>,

` = 2 : W2,−2 =
1

2

√
15

π
(y, x, 0)>, W2,−1 =

1

2

√
15

π
(0, z, y)>, W2,0 =

1

2

√
5

π
(−x,−y, 2z)>,

W2,1 =
1

2

√
15

π
(z, 0, x)>, W2,2 =

1

2

√
15

π
(x,−y, 0)>.

And finally, the spherical harmonics X`m up to order 2 are given by

` = 0 : X0,0 = 0,

` = 1 : X1,−1 =

√
3

4π
(−z, 0, x)>, X1,0 =

√
3

4π
(y,−x, 0)>,

X1,1 =

√
3

4π
(0, z,−y)>,

` = 2 : X2,−2 =
1

2

√
15

π
(−xz, yz, x2 − y2)>, X2,−1 =

1

2

√
15

π
(y2 − z2,−xy, xz)>,

X2,0 =
1

2

√
5

π
(3yz,−3xz, 0)>, X2,1 =

1

2

√
15

π
(xy, z2 − x2,−yz)>,

X2,2 =
1

2

√
15

π
(yz, xz,−2xy)>.

Appendix B: Entries of Matrices Ain
D,` and Aout

D,`

The coefficients in Ain
D,` and Aout

D,` are given as follows:

ain,D,`
11 = −

(`+ 2)
(
(3`+ 2)µ+ (`+ 1)λ

)(
(3`+ 1)µ+ `λ

)
(2`+ 3)(2`+ 1)2µ(2µ+ λ)

,
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ain,D,`
21,1 = −

(`+ 1)(`+ 2)
(
(3`+ 2)µ+ (`+ 1)λ

)
(µ+ λ)

2(2`+ 1)2(2µ+ λ)
,

ain,D,`
21,2 =

(`+ 1)(`+ 2)
(
(3`+ 2)µ+ (`+ 1)λ

)
(µ+ λ)

2(2`− 1)(2`+ 1)µ(2µ+ λ)
,

ain,D,`
12 = −

`(`− 1)(µ+ λ)
(
(3`+ 1)µ+ `λ

)
(2`+ 3)(2`+ 1)2µ(2µ+ λ)

,

ain,D,`
22,1 = −`(`− 1)(`+ 1)(µ+ λ)2

2(2`+ 1)2µ(2µ+ λ)
,

ain,D,`
22,2 =

(`3 + 24`2 − 5`− 8)µ2 + 2(`3 + 6`2 − 2`− 2)µλ+ (`3 − `)λ2

(2`− 1)(2`+ 1)µ(2µ+ λ)
,

and

aout,D,l
11,1 =

(`+ 1)
(
(`2 + 10`+ 4)µ2 + (2`2 + 8`+ 2)µλ+ (`2 + `)λ

)
2(2`+ 1)(2`+ 3)µ(2µ+ λ)

,

aout,D,`
11,2 = −`(`+ 1)(`+ 2)(µ+ λ)2

2(2`+ 1)2µ(2µ+ λ)
,

aout,D,`
21 =

(`+ 1)(`+ 2)(µ+ λ)
(
(3`+ 2)µ+ (`+ 1)λ

)
(2`− 1)(2`+ 1)2µ(2µ+ λ)

,

aout,D,`
12,1 = −

`(`− 1)(µ+ λ)
(
(3`+ 1)µ+ lλ

)
2(2`+ 3)(2`+ 1)µ(2µ+ λ2)

,

aout,D,`
12,2 =

`(`− 1)
(
(3`+ 1)µ+ `λ

)
(µ+ λ)

2(2`+ 1)(2`+ 3)µ(2µ+ λ)
,

aout,D,`
22 =

(`− 1)
(
(3`+ 1)µ+ `λ

)(
(3`+ 2)µ+ (`+ 1)λ

)
(2`− 1)(2`+ 1)2µ(2µ+ λ)

.
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