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Abstract

In this paper, we develop a two-grid method (TGM) based on the FEM for 2D nonlinear
time fractional two-term mixed sub-diffusion and diffusion wave equations. A two-grid
algorithm is proposed for solving the nonlinear system, which consists of two steps: a
nonlinear FE system is solved on a coarse grid, then the linearized FE system is solved
on the fine grid by Newton iteration based on the coarse solution. The fully discrete
numerical approximation is analyzed, where the Galerkin finite element method for the
space derivatives and the finite difference scheme for the time Caputo derivative with
order « € (1,2) and a1 € (0, 1). Numerical stability and optimal error estimate O(h™"* +
H*»+2 4 T"‘i“{?’*“’%al}) in L?-norm are presented for two-grid scheme, where t, H and h
are the time step size, coarse grid mesh size and fine grid mesh size, respectively. Finally,
numerical experiments are provided to confirm our theoretical results and effectiveness of
the proposed algorithm.

Mathematics subject classification: 65N30, 65M60, 26A33.
Key words: Two-grid method, Finite element method, Nonlinear time fractional mixed
sub-diffusion and diffusion-wave equations, L1-CN scheme, Stability and convergence.

1. Introduction

Fractional partial differential equations (FPDEs) have been the focus of many studies due to
their frequent appearance in various fields such as physics, chemistry, biology and engineering
[4,8,14,28]. Compared with integer-order PDEs, they are better choices for describing some
phenomena or processes with diffusion, relaxation vibrations, memory, hereditary and long-
range interaction in viscoelasticity, electrochemistry and fluid mechanics.

In this paper, we consider the numerical solution of the following nonlinear time-fractional
two-term mixed sub-diffusion and diffusion wave equations:

§DfM u(z,t) + § Dfu(z, t) — Au(z, t) = g(u), (x,t) € Q x (0,T],
u(x,t) =0, (x,t) € 90 x (0,71, (1.1)
u(x,0) = uo(x), u(x,0)=7ao(x), x €,
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where Q C R? is a bounded convex polygonal region with boundary 9Q, x=[x,y], g(-) is twice
continuously differentiable.

The Caputo fractional derivative § D", § D¢ are defined by ([14])

1 L ou(x,s)  ds
SDMu(x,t) = / ’ 1. 1.2
o Dy u(, t) o)), 05 G—so 0<a < (1.2)
€ Do, t) = — /t Pulw,s) _ ds l<a<? (1.3)
0T e 0y Jy T 9s2 (t—s)eL as= '

The nonlinear time-fractional two-term mixed sub-diffusion and diffusion wave equations
have been widely applied in depicting the anomalous diffusion process, modeling viscoelastic
damping, capturing power-law frequency dependence [6,7,10,25,27]. There have existed some
jobs in the area of numerical analysis for linear fractional mixed sub-diffusion and diffusion
wave equations. Sun [20] proposed a new analytical technique of the L-type difference schemes
for time fractional mixed sub-diffusion and diffusion wave equations with the min{2 — ay,3 —
a} order accuracy in a discrete H!'-norm in time and the second order accuracy in space,
respectively. A Galerkin finite element method combined with L1-CN time discrete scheme
for finding the numerical solution of two-term time-fractional mixed diffusion and diffusion
wave equations in [22]. By use of anisotropic linear triangle finite element method, Zhao [27]
presented a fully-discrete scheme for multi-term time-fractional mixed diffusion and diffusion
wave equations with variable coefficient on 2D bounded domain. To the best of our knowledge,
no article is available in the literature concerning a numerical analysis for fully discrete finite
element approximations for the nonlinear time-fractional two-term mixed sub-diffusion and
diffusion wave equations.

As we all know, the TGM is usually regarded as an efficient discretization technique for
solving the nonsymmetric indefinite and nonlinear equations based on a coarse mesh with size
H and a finer mesh with size h (h < H). More precisely, a nonlinear or nonsymmetric problem
is solved on the coarse mesh. Then the solution obtained from coarse grid is used as a initial
guess to solve a linearized problem on the finer mesh [23,24]. Later on, Chen [1,2] proposed
two grid mixed finite element methods to solve nonlinear reaction-diffusion equations. Liu
[15,16] considered a two-grid finite element approximation for a nonlinear time-fractional Cable
equation and nonlinear fourth-order fractional differential equations with Caputo fractional
derivative. Recently, Chen [11,12] also have done some work on the two grid method of fractional
differential equations.

In this article, our main task is to take the Galerkin finite element to construct a fully discrete
TGM scheme for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave
equations, and derive the analysis of the corresponding stability and the error estimate in
L?-norm.

The remainder of the paper is organized as follows. In Section 2, we propose a fully-discrete
scheme for (1.1) based on Galerkin FEM and L1-CN approximation. The unconditional stability
analysis and the corresponding error estimate are deduced. In Section 3, we set up the TGM,
and the stability and a priori error estimate of TGM are proved. In Section 4, the numerical
example is presented to verify our theoretical analysis and some comparisons of computing time
are done. The paper is concluded with some remarks in the last section.

Throughout this paper, let LP(£2) be the Lebesgue space with norm || - ||o,, for 0 < p < oo,
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then denote as W™P(2) the Sobolev with norm || - ||, given by

1

a,, ||P P
fullp = { (Stetzm 10°0E,)7. 1P <00, (1)
maX|q|<m HDQUHO.,ooa p = 0.
When p=2, denote H™(Q) = W™2(Q), || - lm = || - lm2 and || - || = || - [lo.2- The generic

constant C' > 0 (with or without subscript) is independent of n (time level), h (spatial size), 7
(time step size) and may be different in different places.

2. Stability and Convergence Analysis for FEM Scheme

Let 73 be a regular rectangular partition of € with mesh size h, and let V}, be the two-
dimensional subspace of H}(Q), which consists of continuous piecewise polynomials of degree
r(r > 1) on T, and V2 = {v € Vj,v|sq = 0}. Moreover, we also let Ry, : H}(2) — V;? be the
Rize-projection operator satisfying

(V(u— Rpu),Vx) =0, VyeV. (2.1)
Lemma 2.1 ([3]). For u € H}(Q) N H"TY(Q), it has been proved that
lu — Rpu| + hllu — Ruully < CR™Hul|ygq. (2.2)

Note that the corresponding weak formulation of (1.1) is to find u(x,t) : (0,T] — H}(Q)
such that

{ (ng‘lu (z,1),v) + (ng‘u (x,t) ,v) + (Vu (z,t), Vo) = (g(u),v), Vv e H(Q),
u(x,0) = up(x), u(x,0) = a9(x), z €.

(2.3)

Let {t,| = t, = n7;0 < n < N} be a uniform partition in time with time step 7. For a
sequence of smooth functions {¢(t)})_, on [0, 7], we denote

" = (b(tn)v Q/;(X t) = ut(xv t) 950( ) = ut(x,O) = o,

n n—1 k k—1 (24)
gt = ¢ 2¢ R P ¢ (1<k<N), 8¢ =0.
Now we give the L1-CN approximation of the Caputo derivative § D u(z,t), § Dfu(x,t)
as follows:
A n n—1
~ 1 ~ 1 > 1
Dyt =5 <Z Darn- k0¥ 72 + ) bm,nklat¢kz> , (2.52)
k=1 k=1
~ 1 ~ n_l ~ ~ 1 ~ ~
D?¢n7§ =A (ba,Oat(bnl/Q + Z(ba,n—k - ba,n—k—1)6t¢k7§ - ba,n—l¢0>u (25b)
k=1
1 [e% 7-1*0‘1
where \ = F(3 &y A1 = TE=ar) and

by = (k+ 1) gl b= (k+1)2 Y-k 0<k<N-1.

The following useful lemmas are given, which are important for proving the stability and
error estimate of the fully discrete scheme and TGM.
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Lemma 2.2 ([21]) (1) For each t € (0,T), assume that uy(x,t) € L*(Q). Let R, * =
EDMu n—3 DO‘1 "3, which satisfies

n-i o
75 ) < € v a7 (26)

(2) Assume that us(x,t) € L*(Q), and let Ro 5 =¢Deur—2 DO‘ "3 Then we have

1
TR < 3—a )
18574 < C max fusa(a, o)l (27)

Lemma 2.3 ([18,26]). For Ba,k, k=0,1,2,--- ,n, we have

1=1bao>ba1 >bag> - >bag> >0, (2.8)
(2—a)(k+ 1) <bai < (2—a)ki™e. (2.9)
Lemma 2.4 ([5]). For ba, . = (k4 1)'" — k' k = 0,1,--- ,n, any positive integer N
and vector P = [wl,w2, e ,wN] € RY, we have
N n _ N n N nfl~
Z me,n,kwkw" >0, Z Z o m— rwFw™ + Z Z bahn,kflwkw" > 0. (2.10)
n=1k=1 n=1k=1 n=1k=1

Lemma 2.5 ([17]). Assume that {c,} and {g.} are non-negative sequences, and the sequence

{on} satisfies

n—1 n—1
b0 <9go, dn < go+ > q+ > ad;, n>1,
=0 =0

where go > 0. Then the sequence {¢n,} satisfies
n—1 n—1
b < (go+ > qz> exp (Z Cz>-
1=0 =0

Then the L1-CN scheme of (2.3) is to find U™ € V,? for n=1, ---, N, such that

{ (D?U"*%,vh) + (D?U”*%,vh) + (VU”’%vV”h) = (“UW%)’M) , WhEW, (2.11)

UO = RhUQ(X)7 UO = Rhﬂo7 x € Q.

Next, we present the stability and error analysis for fully-discrete scheme, which are then
used in the next section to derive the stability and error analysis for TGM.

Theorem 2.1 (Stability). The fully-discrete scheme (2.11) is unconditional stable.
Proof. Let {U™} be the solution of (2.11). Setting v" = ;U™ 2 € V} in (2.11), we have

(DglU"—% atU"—%) + (DtaU"—%,atU"—%) (VU Va,UnE)
=(g(U™2),0,U"2). (2.12)
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It follows from the definitions of D®' U™ 2, DUz, §;U™ = defined by (2.4) that
(DflU"—%,atU"—%)

1

s S
=3 [(Z bm,nkatUké,atU”é) + (; bal,nklatU’“éﬁtUnéﬂ S

k=1

(Drum=t.oum4)

n—1
=\ (z}a,oatU"—% +> (Ba,n_k - Ba,n_k_l) QU2 — by 10, atU"—é> (2.14)
k=1
n—1
=A HatUnié H2 - Ba,nfkfl - Ba,nfk 8tUk7%7atUni% - Ba,nflﬁ(), 815Un7% ‘| y
> ) ( )~ ( )
and
(VU"*%,vatU”*%) = % (VU™ = [vU™ 1) (2.15)

Substituting (2.13)—(2.15) into (2.12), and multiplying 27 on both sides of this equality, we
have

27| 0, U™ 2|2 + || VU2 — ||[VU™ |2

n—1

=2)\1 Z (Bayn,k,l - Bayn,k) (8tU’“*%,atU”*%)

k=1
+ 207 (ban10°, 007 4) 4 27 (g(U ), 007 F)

n n—1
- )\17- [Z (BahnfkatUki% ) atUnié) + Z (Bal,nfkflatUkié y atUn;)‘|

k=1 k=1
n—1
3 (Bonhor = Banr) (1004517 + o0 5))
k=1

+ ATban1 (HUOII2 +oume ||2) +2r1 (g(U"_%)7 8tU"—%)
n —1
—r [Z (Z’awfkatUk*%vatU”*%) +> (Bal,nklatUk%,atUn%)] . (2.16)

n
k=1 k=1

Denoting 8% = ||[VU?||2 and 8" = |[VU"||> + A\ 327, ban—k]|8:U% 2|2, we then have

B <B4 Arban 1 |01 + 27 | (U ), 0074 |

n n—1
T lZ(l;alvnkatUké’atUn;) + Z (BalynklatUké,atU"é)] ;

k=1 k=1
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which, by induction, gives

=1 =1

-1

n l
: )\172 [Z (l;o‘lvl*katUki%’atUF%) + Z (l;al,szﬂatUk*%,atUlf%)

=1 Lk=1 k=1

(2.17)

Using Cauchy-Schwarz inequality, Young’s inequality and the nonlinear property of g(-), it is
easy to show that

27’2‘( (9tUl )‘<2TZ{
i

_1 )\Ba,n—l _1
lllgUl 2| + 5 lo.U! 2|2}

llg( l_7)|‘2+)‘7—zban l”atUl 2”2
an l =1

Z C =0 242 4 Ar S B 00 P, (218)
=1 =1

where above analysis uses
ban1=(n—1+1)27% = (n-1)*"

=(2-a) /n:Jrl:z:lo‘dx >2-a)(n—k+ 1) (2.19)

By Lemma 2.3, we obtain

2—a

T 7012
mHUOH : (2.20)

ATZEQ,1—1IIUOH2 <
=1
It follows from Lemma 2.4 that

-1

_)\lTi [Z ( ol kat 2,8)5[]1—%) + Z (Bal,l7k713tUk_%73tUl_%)
=1

k=1 k=1

<0. (221

Substituting the estimates (2.18), (2.20) and (2.21) into (2.17), and using the Poincaré inequal-
ity, we have

T2- ~ i 1
U2 < |IVU°||?2 + ———||U°||2 Cr||ut—=2 |2 2.22
07 S IV + g5 10°1F + o orlo =) (222)
By Lemma 2.5, when 7 < %, we have
jom i < ¢ (1001 + 10°)1) (2.23)
which is the desired result. O

We now obtain the L? error estimate for the fully-discrete scheme (2.11), which will be
useful to prove the error estimate for TGM.
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Theorem 2.2 (Error Analysis). Let u™ and U™ be the solution of (2.3) att =t, and (2.11),
respectively. Assume that u € H™ Q) N HY(Q), ur € H2(Q), uy € L*(Q), uwr € L*(Q), then
we have

||un _ Un” =0 (hr+1 4 Tmin{Qfal,Sfa}).

Proof. Combining (2.3) with (2.11) to get

(f)?l (un*% - U”*%) ,vh) + (f)? (u”*% - U”*%) ,vh) + (V (unf% - Unfé) 7vvh)
1

= (g(u=4) = gUH),0") = (R * ) = (Ra 20" (2.24)
Denoting p" = u" — Rpu™, 0" = Rpu™ — U™ and choosing v" = 8,50"_% in (2.24), we obtain

(Dtalan_%,atan_%) + (f)taUn_%ﬁtU”_%) + (Vo"_%,vata"_%>
= (otwrt) =g =3).010"4) = (Dt =h 007t — (Dt 00m )

1

_1 n—1 _
- (vp"*%,vata”ﬁ) - (RZI 2,3,50”*%) - (Ra 2 9" %) . (2.25)
From the definitions of DX U2, D#U™ 2 and 8,U" 2, we have
(D?lgn*%,atanfé)

n n—1
A Z~ 1 n—= 7 -2 n—z
:71 |~<k_1 bal,n—katUk é,atd é) + ( 1ba1,n—k—lat0k %7([%0’ é>‘| , (226)

k=
(Da n—1% ) n—%)
tJ , Ot0

3
|

(]

1
=\ <Bo¢,08t0'n% + (Ba,nfk - Ba,nfkfl) ato'ki% - Ba,nfl&(b ato_n%> (227)

1

|
—

n

=A [Iata"‘5|2 - (Ea,n—k—l - Ba,n—k) (@:Uk_%ﬁm"_%) — (Bm_lao,ata"—%)] .

=

=1

and
1 1 1
(Vor 4, Va4 ) = o (196" = V" 1|?). (2.28)

Since g(+) is twice continuously differentiable, we have

1

gu""%) — g(U"™%), 0,0
( )

<Clun~t =0 H 900"~ F | < C (" 2| + 0" 2]) 00" 3] (2:29)
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Substituting above results into (2.25), and multiplying 27 on both sides of the resulting identity,
we have

27|80 " E |12 4 || Vo™ |2 — [|Vo 2

rban-1 (1°17 + 100" ¥

n—1

A7 Y (a1 = b)) (100" 32 + 0,62 |2)
k=1
1

~ ~ n—1i _1
— 27 (Df‘lp”*%,atanfi) — 27 (Df‘p”*%,atanfé) — 27 (Ral 2 O™ é)

n—1
—2r (Ra2, 007 F) +20C (1" 2] + o)) 9072

n 1

Z (Ba1,n—katak7%uat0n7%) + (Eal,n—k—latUk%aatUn%)l . (230)
k=1 1

3
|

- )\17’

b
Il

n ~
Denoting 6° = [|[Vo?||2 and 6" = || Vo™ |2 + 3 Aban_[0:0" 2|2, we have
k=1

0" <O"! + Aban_1]|6°)2 — 27 (bglpn—%,ata"—%)
= _1 _1 n—1i _1 n—% _1
— 27 (Df‘p” 2, 0y 2) — 27 (Ra1 2 Oy 2) — 27 (Ra 2 O™ 2)
n—1i n—1i n—4i n—21
+27C|p" 2 [[[| 00" 2 || 4 27C 0" 2 ||| O™ 2 |

n—1
- M7 [Z (Eal,n_kato’“-%,ato"-%) +3 (Bm,n_k_latak—%,atan—%)] :
k=1

k=1

which, by induction, gives

0" <00+ AT baa-a |02 - 27> (Df e drt )
=1 =1

n B n N n L
oy (Dol hat ) —ary o (Rt a0t E) —or D (R7E a0 )
=1 =1 P

#2703 0202+ 200 3 o' o2
= =1

n -1
Ny [Z (Parardro™ %, 00" %) + 3 (i)al,l—k—latdk_%,atUl_%)] . (231)

=1 Lk=1 k=1
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By Cauchy-Schwarz inequality, Young’s inequality and Lemma 2.2, we obtain

M:

1 " 67| DM iz 2 "NT 1
l)a1 = 2 8 O' é) S ~t— _ba n—I 0 Ul 2 27
(£ ; -~ ; ol

Il
-

lf%H2

. z": Abon_ 1|0t 22

M:

(Dt p %,atalf%) < Z 6THD~t p

M=

2T

1=1 = Abagn— 1=1 6
wij(#‘% o' h) < OT e un (X, 1) 22 +znj£6 ErasTk
£ ay Ut s )\b lO<t<T tt £ 6 o,n— t )
1 C A
(Re 00 4) £ = max [lun(X,1)[2r020 + 30 2
=1

|

_,\b _; 0<t<T

I
-

n

_1 _1 67C2p' 2> | = A5 _1
203 I’ ey SOV S S o
=1 =1

a,n—I

— 6
-1 67C30 3|2 N s 1—12
2702 lo' =2 [[[|e0’ =2 | < Z )\1?71 + Z Fba,n—l”ato— 2]|%,

By Lemma 2.3, we have

n

1 n(n+ 1)1 N« Tor—«
IR S
b (2—a) 2—a” (2—-a)

=1
It follows from Lemma 2.4 that

-1

_AlTi [i (6a1xl_kat0k72 ato ) ( al,l—k—latUk%,atol%)‘| <0.

k=1 k=1

Based on the above estimates and Lemma 2.1, we have

" 67| DX p|2 6TOT(3
Z T” t P 2” < ( ) max HDal l—§||2

P Aba,n—i - 2—« 1<i<n

< Oh2r+2 max ||D?1 ul_% H72“+1 +C maxn Hutt (X7 t)”27'4—20¢17

1<i<n 1<I<

x || D7 )?

Sh 0rllD7A I _ 67T~ )

P Aba,n—i - 2—« 1<z<

1<I<

< Ch?r+2 max | Deul=3 |2 +1+Clmax e (X, £)]2772,

n O max |lug(X,t)||2rd—2>

0<t<T CTT(3 — o
g eser < B2 o (X ) P2,
=1 )\ba)n_[ 22—« 0<t<

X, |22« OT°T(3 -
ZCT ||uttt( )” < ( ) max ||uttt(X t)H2 6— 2a
O<t<T )\ban I 2 —« 0<t<

=1

n —1 a -1
Z GTle 2”2 < 6T P(?’_O‘)le H < Ch2r+2”ul——H2

=1 )\ba,n—l B 2-«

7 1
ba,nleato'l 2 ||27

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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Combining (2.31)—(2.44), we have

n 612 1—12 .
Hvo_nHQ <C <Z 7:”0' 2 ” 422 4 Fmin{d—2a1,6-2a} | (245)

=1 a,n—I

By Poincaré inequality, Lemma 2.1 and Lemma 2.5, it follows that

o2 < C (h2r+2 + Tmin{4—2o¢1,6—2a}) 7 (2.46)

which implies
Jut = U = O (A1 4 prin{z-enial), (2.47)
The proof is complete. 0

3. Unconditional Stability and Error Estimate for TGM

In this section, we present the following two-grid algorithm based on Newton iteration idea
and derive the stability and error estimate results. TGM has two steps as follows:

Algorithm 3.1. Step 1: On the coarse grid Ty, find u% € V3 for the following nonlinear
system, such that

d n—1 ~ 1 n—1
(et )+ (Dl )+ (V™ Vo)
n—1i 0

U° = Ryug(x), U° = Ryiy, xe.
Step 2: On the fine grid 75, find u} € V)2 for the following linear system, such that
R R no1
(Dfluh 2,wh) + (Df‘uh z,wh) + (Vuh Z,th)

= (9(“7;1_%) —i—g'(u?{_%) (uz_z — uz_%) ,wh) Nwy, € V), (3.2)

U° = Ryup(x), U° = Rpiy, xe.

Remark 3.1. In the two-grid algorithm, we solve the nonlinear fractional equation on the
coarse grid Ty to produce a rough approximation, and then use the rough approximation as
the initial guess to solve the linearized equation on the fine grid 7p.

First, we derive the stability analysis for TGM of step 2.
Theorem 3.1. For the two-grid FE system (3.1) and (3.2), the following stable inequality for
ur € V¥ holds
i 2 < C (vl 12 + [Fugl|? + 1302 + [[u°]2). (3.3)
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Proof. Counsidering (3.2), and we have

M5y, — k- .
(7 (; bal,n katuh gbal,nfk—latuh > 7wh> + <A b

+ (Ba,n—k - Z;a,n—k—l) atu:7% - Ba,n—la0‘| ,’LUh) + (VUZ*%7vwh)

1
n—21
a,Oatuh 2

m\»—A
N

(3.4)

_1 -
where C, Cy,C5 are positive constants. Let wy, = Qpu;, 2, p" = [|[Vul||? + M Y, ban—k 0

1
uz 2|12, and we have

P <P b [0
+2r (G (ufy *) + Crup ), 00u; )

n—1

— M7

k=1
which, by induction, gives

2”2

7C7| ul
o <p° +Aeral 1|\u0|\2+z Alb‘ h
=1 a,n—I

2 ”2 n

TCQH’U,H ~ -1
+ 2 H T A b n—i]|0su, 2|2
> N At

=1

n -1
1 l 1 k—1 -1
- )\17'2 [Z( - katuh %, Oy, 2) + ( ar,l—k—10¢uy, %, Oy, 2)] :

= k=1

It follows from Lemma 2.3 that

n 2 a
SIS oL

22 _ G3T(3— )1

7—O2H'UJH
t
; )‘ba,n—l - 2 —« Ogltax HUH(«T )H

By (2.4), we obtain that

-1

n l _
_/\17’2 lz (l;al,lfkatuiié7atui;%) —+ Z (Bal,lklatuié,atuilé)] S 0.

=1 Lk=1 k=1

i( by n— katuhié Oyuy ) Z ( otk 15tuh%,atuzé>17

(3.6)

(3.7)



A Two-grid FE Algorithm 947

Then, substituting (3.6)~(3.8) into (3.5) yields

T2« C21(3 — )T
n12 <7012 =02 2 2
IV <IVAE + g I8 + = o un (e,
n -3
7C¥lluy, *1?
+ —_——. 3.9
; Abac,nfl ( )
Using Poincaré inequality and Lemma 2.5, we obain
Jui1? < € (IVaRIP + 1217 + o Jun o 1P + 131 (3.10)
Considering (3.1), by (2.23), there exists
lufy|* < C (IVugl* + l[ag1* + [lug1?) - (3.11)
According to (3.11) and (3.10), we have
lupll® < € (IVug I + [ Vup |l + 1@ + [[u”]%) - (3.12)
This completes the proof. O

Now, we are ready to give error estimate for TGM. In the following analysis, we need to
prove [Ju(t,) — Up |

Theorem 3.2. Let u(tn) S H&(Q) N HT+1(Q), U € Hz(Q), Ut € LQ(Q), Uttt € L2(Q), U}? S
VY and UP = Rpug(x), we have

lultn) = gl < € (rminie-ons=ed 4 pret g prersz) (3.13)

Proof. Subtracting (2.3) from (3.2), it yields

(ﬁf‘l (u”*% - u;h%) ,wh) + (f),‘f‘ (u”fé - u;h%) ,wh) + (Vu"fé - Vuzf%,th)
n—1 n—1 ,, -1 no1 nol
= (9(u"=4) = gluyy *) =g/ ) (w * =y 7))
- (RZ;%,wh) - (Rﬁfé,wh) : (3.14)

By Taylor expansion, we have
" 2 2
o) = gty ) gy ) (w0t )+ L) (ot ) )
Then, it follows from (3.15) that

- el N it nol 1 n—1
(00 (7 = 75) ) (58 (0 —4) ) (3 =53 )
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1 1 1 1 1 1
Let u"72 — Rpu™"2 = p"z, Rpu"2 —wy, > = 0" 2 and wy, = 0,0 2. Hence, (3.16)

becomes

Aol n—i n—1 na n—1 n—1 n—3 n—i
§—(Dt1p 2, 050 2)—(Dtp 2,00 2)—(Ra12,8t0 2)
n—= n—s C Y 3 n—s 2 —_a
_(Ra %,atgn—é)Jr(c(un—;_uh 5)+71(u" b é) D™ ) (3.17)

Let 4" = [|Vo™ || + At 5, ban—kll0:c" 2|2, 70 = | Vo?||? and we have

7" AT Y baillF2 =20 Y (Dl E 00t E) —2r Y (Dl E 00! )
=1

=1 =1

— 2TZ (Rf;l%,atal*%> — QTZ (Ritfé,atal*%)

=1 =1
n C 1\ 2 1

+2TZ (71 (ul_% —UlH 2) +C (ul_% —Uﬁl 2) 7at0l—§> : (3.18)
=1

We use a similar process of proof to the estimate (2.47). By Poincaré inequality, Lemma 2.5,
Lemma 2.1 and the estimate (2.47), it follows that

. n _1\2
||O_n||2 <C <||VO’O||2 _|_Tmm{472a1,672a} + Z ” (uli% _ uiq 2) H2 + h2r+2>

= (3.19)
< C (||v0—0||2 + Tmin{4—20¢1,6—201} + H47‘+4 + h27~+2) '
which leads to
u — up|| < HZ+2 4 prl g pmin{2-a13-a}, (3.20)
This concludes the proof. -

Remark 3.2. In the estimate (3.20), we observe that TGM algorithm can achieve the conver-
gence rate h™t! as long as the mesh sizes satisfy H = O(h%).

4. Numerical Examples

In this section, we present two numerical examples to demonstrate the theoretical analysis
and illustrate the efficiency of the algorithm discussed in Section 3. To investigate the spa-
tial and temporal convergence order, we use a bilinear finite element approximation and the
computation is performed by using Matlab.

Example 4.1. The following equation has exact solution u(z,y,t) = t3+*+%1 sin rasin 7y:
SDMu(x,y,t) + § DYu(e, y, t) — Au(z,y,t) = —u + g1,  (2,y,t) € Q2 x (0,T], (4.1)

where Q = (0,1) x (0,1),7 =1, ¢1 is a known function.
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Table 4.1: L?-errors with a1 = 0.25, a = 1.75 and 7 = ﬁ.
TGM H h | ||[u” —up|| Order CPU time
3 1 | 5.2253e-02 \ 7.1870s
% ] 9.6560e-03 2.0822  18.8962s
T 15 | 2.8794e-03 21030  49.0644s
&+ | 1.1387e-03 2.0786 122.6577s
FEM h | |lu™ =U"|| Order CPU time
1 | 5.2253e-02 \ 7.4899s
2 | 9.6560e-03  2.0822  21.0704s
& | 2.8794e-03  2.1030  66.0248s
2= | 1.1387e-03  2.0786  165.8093s
Table 4.2: -errors with a1 = 0.9, a =13 and 7 = ﬁ.

|lu™ —up|| Order CPU time
4.8519e-02 \ 7.4024s
8.7562e-03  2.1114 18.3025s
2.5886e-03  2.1180  48.8763s
1.0516e-03  2.0185  125.4723s

L2
TGM H
1

2

1

3

1

4

1

la;’fl»—AEl»—ltDIH%I»—‘ > gﬁl»—AngwIH»&I»—n >

FEM |lu™ —U™|| Order CPU time
4.8519e-02 \ 12.2758s
8.7562e-03  2.1114 26.9553s
2.5886e-03  2.1180 67.8842s
1.0515e-03  2.0185  157.2231s

Table 4.3: -errors with a1 = 0.6, a = 1.6 and 7 = ﬁ.

|[u™ —up|| Order CPU time
4.8821e-02 \ 7.066s
8.9255e-03  2.0954 19.0976s
2.6655e-03  2.1005 56.5094s
1.0750e-03  2.0347  133.5581s
|[u™—U™| Order CPU time
4.8821e-02 \ 9.1908s
8.9255e-03  2.0954 25.4966s
2.6655e-03  2.1005 65.4233s
1.0750e-03  2.0347  160.2209s

L2
TGM H
1

2

1

3

1

4

1

FEM

la;’fl»—AEl»—ltDIH%I»—‘ > gﬁl»—AaleIH»&I»—n >

Let H, = H, = H, hy = hy = h and h = H? Tables 4.1—4.3 show that the spatial
convergence rates in L2-norm of FEM and Algorithm 3.1 are both equivalent to 2. The con-
vergence results are consistent with the results O(h"*!) of the theoretical analysis. We also
compare the CPU time with FEM and Algorithm 3.1 in Tables 4.1-4.3. And the results show
that Algorithm 3.1 is more efficient than FEM.

The temporal convergence rate of FEM and Algorithm 3.1 are given in Table 4.4-4.7, for

fixed mesh h = H? = %. The numerical results confirm that both FEM and TGM have

temporal convergence rate min{2 — «;,3 — a}. We can see that the computing time required
for the Algorithm 3.1 is much less than FEM.



950

Table 4.4: L*-errors and temporal convergence rate with a; = 0.25 and a = 1.75 for FEM and

Algorithm 3.1.

7 | |lw"=U"| Order CPU time |[u™—U;|| Order CPU time
% 1.8426e-02 \ 40.9931s 1.8426e-02 \ 32.3262s
ﬁ 1.5281e-02  1.2138 47.3536s 1.5281e-02  1.2138 34.6403s
1_16 1.2987e-02  1.2185 49.9114s 1.2987e-02  1.2185 38.7563s
%8 1.1246e-02  1.2219 51.9629s 1.1246e-02  1.2219 40.6421s

Table 4.5: L*-errors and temporal convergence with a; = 0.75 and a = 1.25 for FEM and Algorithm 3.1.

T | lu®=U"|| Order CPU time |u" —Uy| Order CPU time
% 7.0346e-03 \ 44.8760s 7.0346e-03 \ 33.997s
ﬁ 5.7610e-03  1.2956  51.8767s 5.7610e-03  1.2956  36.2469s
%6 4.8493e-03  1.2903 58.0472s 4.8493e-03  1.2903 37.9648s
%8 4.1684e-03  1.2845 63.9364s 4.1684e-03  1.2845 44.0979s

Table 4.6: L2%-errors and temporal convergence with a;

= 0.4 and a = 1.8 for FEM and Algorithm 3.1.

T | " =U"| Order CPU time |u” —Uy| Order CPU time
% 2.5335e-02 \ 33.0361s 2.5335e-02 \ 21.0652s
ﬁ 2.1169e-02  1.1653 39.143s 2.1169e-02  1.1653 23.8922s
1_16 1.8106e-02  1.1705 38.2849s 1.8106e-02  1.1705 28.1527s
1—18 1.5767e-02  1.1744 40.6447s 1.5767e-02  1.1744 29.707s

Table 4.7: L%-errors and temporal convergence with o

= 0.8 and a = 1.4 for FEM and Algorithm 3.1.

Y.P. CHEN, Q.L. GU, Q.F. LI AND Y.Q. HUANG

7 | |lu"=U"| Order CPU time |ju™ —Uy| Order CPU time
% 1.0859e-02 \ 32.8911s 1.0859e-02 \ 22.8447s
ﬁ 8.9067e-03  1.2859 39.262s 8.9067e-03  1.2859 26.5364s
1—16 7.5034e-03  1.2840  43.2461s 7.5034e-03  1.2840 29.9507s
% 6.4523e-03  1.2814 49.9362s 6.4523e-03  1.2814 32.6695s

. /! Y \\ | //”'W\\\ *
Sy | i |

(b) U

(¢) Un
Fig. 4.1. The picture of exact solution, FEM solution and TGM solution when a; = 0.75, « = 1.25,

—1lp_ 1 __ 1
and H = 7,h = 5,7 = 555"

Fig. 4.1 shows the exact solution, FEM solution, and TGM solution for Example 4.1. It is
easy to see that both FEM and TGM can approximation the exact solution well.

Example 4.2. The following equation has exact solution u(z,y,t) = (£37*T% 1) sinrxsinty.

gD?lu(a:, y,t) + ng‘u(x,y, t) — Au(z,y,t) = —e* + go,

(x,y,t) € Q@ x (0,71, (4.2)

where Q = (0,1) x (0,1),7 =1, g2 is a known function.
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Table 4.8: L2-errors with aq = 0.25, a = 1.75 and 7 = ﬁ.

TGM H h | ||[u” —up|| Order CPU time
1.0937e-02 \ 25.2713s
3.4311e-03  2.0148 63.3016s
1.3842e-03  2.0341  134.0828s
6.4958e-04  2.0747  294.0849s
|lu™ —U™| Order CPU time
1.0937e-02 \ 33.259s
3.4311e-03  2.0148 79.5743s
1.3842e-03  2.0341  191.0329s
6.4958e-04  2.0747  411.2702s

O = G = s = o] =

FEM

B=B|=5|—o= > [Bl-R]-5|—oi=

Table 4.9: L?-errors with a1 = 09, a=13and 7 = ﬁ.
TGM H h | ||u" —up] Order CPU time
3+ | 1.0313e-02 \ 26.4137s
1 & | 3.2276e-03 2.0189  58.783ls
é 2—15 1.2983e-03  2.0406  138.8660s
& | 6.0632e-04 20880 329.5642s
FEM h | |lu®=U"| Order CPU time
$ | 1.0313e-02 \ 32.7488s
% 3.2276e-03  2.0189 88.3652s
21—5 1.2983e-03  2.0406  212.0486s
3—16 6.0632e-04  2.0880  455.5375s
Table 4.10: L>-errors with oy = 0.6, a=1.6 and 7 = ﬁ.
TGM H |[u™ —up]| Order CPU time
% 1.0269e-02 \ 32.2237s
i 3.2331e-03  2.0086 65.1752s
% 1.3162e-03  2.0138  152.7707s
% 6.2824e-04  2.0282  291.8133s
FEM |lu™ —U™| Order CPU time

1.0269e-02 \ 36.1044s
3.2331e-03  2.0086 86.7139s
1.3162e-03  2.0138  208.6208s
6.2824e-04  2.0282  463.0938s

S| =BG~ o= > [E]=]= 5|~ o] =

Tables 4.8-4.10 shows that the spatial convergence rates in L?-norm of FEM and Algorith-
m 3.1 are both equivalent to 2. The convergence results are both consistent with the results
O(h™1), but Algorithm 3.1 takes much less computational time.

In Tables 4.11-4.14 with fixed mesh h = H? = 1—§1, it is observed that both the finite
element method and Algorithm 3.1 generate min{2 — «1,3 — a} temporal convergence order,
and the computing time required for Algorithm 3.1 is much less than FEM. Therefore, the
TGM is indeed a very effective algorithm for solving nonlinear time fracitonal equation.

Fig. 4.2 shows the exact solution, FEM solution, and TGM solution for Example 4.2 when

a1 =06, =14, and h = H? = %,T = ﬁ. It is apparent that the numerical solutions of

FEM and TGM are both in good agreement with the exact solution.
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Table 4.11: L%-errors and temporal convergence rate with oy = 0.25 and o = 1.75 for FEM and

Algorithm 3.1.

7 | |lw"=U"| Order CPU time |[u™—U;|| Order CPU time
1_16 1.2417e-02 \ 120.7335s  1.2417e-02 \ 80.0768s
1_18 1.0744e-02  1.2287  134.1846s  1.0744e-02  1.2287 97.7199s
% 9.4352e-03  1.2331  146.1238s  9.4352e-03  1.2331 98.0350s
% 8.3861e-03  1.2366  160.3282s  8.3861e-03 1.2366  110.3966s

Table 4.12: L%-errors and temporal convergence rate with oy = 0.75 and o = 1.25 for FEM and

Algorithm 3.1.

7 | |lW"=U"| Order CPU time |ju™ —U;|| Order CPU time
%6 4.4781e-03 \ 150.4282s  4.4781e-03 \ 81.3188s
1_18 3.8291e-03  1.3292  169.5714s  3.8291e-03  1.3292 90.9513s
% 3.3282e-03  1.3308  171.9142s  3.3282e-03  1.3308  100.6286s
% 2.9312e-03  1.3325 186.3463s  2.9312e-03  1.3325  110.4703s

Table 4.13: L2-errors and temporal convergence rate with a; = 0.8 and «

= 1.2 for FEM and Algo-

rithm 3.1.
T | lu®=U"|| Order CPU time |u" —Uy| Order CPU time
1—16 5.0510e-03 \ 154.846s 4.8963e-03 \ 77.3909s
%8 4.3576e-03  1.2538  183.5584s  4.1164e-03  1.2538 84.6573s
% 3.8179e-03  1.2549  154.6465s  3.5223e-03  1.2549 94.2824s
% 3.3871e-03  1.2561  216.7968s  3.0574e-03  1.2561 106.484s

Table 4.14: L2-errors and temporal convergence rate with oy = 0.2 and a = 1.8 for FEM and Algo-

rithm 3.1.
7 | |lw"=U"| Order CPU time |ju™—U;|| Order CPU time
%6 1.5347e-02 \ 163.2933s  1.5347e-02 \ 74.7262s
1_18 1.3367e-02  1.1724  172.1797s  1.3367e-02  1.1724 81.2139s
% 1.1809e-02  1.1767  189.5842s  1.1809e-02  1.1767  100.4537s
% 1.0552e-02  1.1803  217.4856s  1.0552e-02 1.1803  104.0739s

(TN ;
€0

)
\\\N‘ °

e

(a) u

/I/I/ ;10 b“’ “ ' “\‘}‘
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(c) Up

Fig. 4.2. The picture of exact solution, FEM solution, TGM solution when o1 = 0.6, = 1.4, and

11 1
H=3h=5T= 55

5. Conclusion

With detailed theoretical analysis and numerical experiments, we construct TGM for 2D

nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations. It is easy
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to extend our estimates and algorithm to other nonlinear fractional equations. Future research
will be performed to consider the more complicated two-grid algorithms, and propose a new
stability estimate and convergence for L1-CN scheme with nonsmooth data [9,13], when the
C3]0, T assumption does not hold for problem (2.3).
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