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Abstract. In this paper, the Discrete Least Squares Meshless (DLSM) method is de-
veloped to determine crack-tip fields. In DLSM, the problem domain and its bound-
ary are discretized by unrelated field nodes used to introduce the shape functions
by the moving least-squares (MLS) interpolant. This method aims to minimize the
sum of squared residuals of the governing differential equations at any nodal point.
Since high-continuity shape functions are used, some necessary treatments, including
the visibility criterion, diffraction, and transparency approaches, are employed in the
DLSM to introduce strong discontinuities such as cracks. The stress extrapolation and
J-integral methods are used to calculate stress intensity factors. Three classic numer-
ical examples using three approaches to defining discontinuities in the irregular dis-
tribution of nodal points are considered to investigate the effectiveness of the DLSM
method. The numerical tests indicated that the proposed method effectively employed
the approaches to defining discontinuities to deal with discontinuous boundaries. It
was also demonstrated that the diffraction approach obtained higher accuracy than the
other techniques.
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1 Introduction

Structural defects such as micro-cracks always have an adverse effect on their service
life. Therefore, it is essential to investigate crack-tip fields to determine the safety factors
and predict the service life of mechanical structures. Recent years have seen substantial
growth in the use of fracture mechanics in structural analysis and design. Crack problems
can be analyzed as elliptic partial differential equations (PDEs) whereby crack-tip stress
singularities can be explained, which is determined by the stress intensity factor (SIF).

Analytical solutions can be used to solve crack problems with regular, non-complex
boundaries in infinite planes. However, numerical methods must be applied to solve
various fracture mechanics problems with complex geometric configurations and load-
ing conditions. The finite element method (FEM) is employed as usual to solve frac-
ture mechanics problems. The domain meshing-based methods, e.g., FEM, have some
shortcomings in calculating fracture mechanic parameters, including failure to accurately
identify near-crack-tip singularities [1] and limited ability to model the crack growth.
The FEM requires mesh modification and updating to simulate the crack growth, a time-
consuming and costly process. The boundary element method (BEM) [2] was applied
to solve crack problems, as it is a time-efficient, sufficiently accurate method that only
requires boundary discretization. The extended finite element method (XFEM) [3] is an
improved version of the FEM that is appropriately designed for fracture mechanics prob-
lems [4]. The XFEM has certain advantages over the conventional FEM; for example,
it can model cracks with arbitrary geometric shapes independently of the FEM meshes,
and it requires minimal re-meshing in solving crack growth problems. Although some
methods, e.g., node release, are introduced to overcome the existing problems [5,6], some
challenges still exist.

The problems detailed above and other shortcomings such as strain/stress discon-
tinuity on element surfaces and the need for some additional operations for smoothing
the results have motivated researchers to try other numerical methods [1]. Thus, several
meshless methods are introduced to overcome these problems. Meshless methods are
developed under two branches of formulations: weak form and strong form. The prob-
lem domain is discretized using nodal points in both methods. However, weak-form
meshless methods require background meshes to obtain Gauss points for integration de-
spite the higher relative accuracy of the results. In some cases, these meshless methods
incur a higher computational cost than mesh-based methods, where integration prob-
lems at complex boundaries still persist. Strong-form meshless methods, on the other
hand, directly solve PDEs and reduce the computational cost. However, they have cer-
tain disadvantages, such as instability, low accuracy of the results, difficulty in applying
boundary conditions, and asymmetric coefficient matrix.

The application of smooth interpolants in meshless methods has led to the desired re-
sults, rendering them advantageous over the FEM. Besides, they have outperformed the
FEM in solving problems with moving boundaries, large deformation, and crack propa-
gation. Despite these advantages, meshless methods also have some disadvantages, in-
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cluding the use of complex, high-continuity shape functions, difficulty in the fulfillment
of boundary conditions, and the required corrections in the simulation of discontinuities.
However, different techniques have been proposed in meshless methods to implement
discontinuities. Among them, four approaches are generally proposed to introduce dis-
continuity in meshless methods [7]. The first scheme is based on the modification of
weight functions; visibility criterion, diffraction, and transparency approaches [8, 9] fall
into this category. The second scheme includes modification of the intrinsic basis [10]
to consider special functions. The third scheme consists of enriched methods based on
MLS shape functions [10]. In the fourth scheme, the enriched partition of unity method
(PUM) [11, 12] is used to deal with discontinuities. Moreover, some research [13, 14] has
recently applied the augmented Lagrangian method to model crack problems containing
material discontinuities as strong and weak discontinuities. Each of these techniques has
its own complexities.

The visibility criterion, diffraction, and transparency approaches are the most pop-
ular meshless methods for modeling discontinuities [15]. Belytschko et al. [16] devel-
oped the visibility criterion to incorporate crack problems into meshless methods. Organ
et al. [9] applied the diffraction approach, i.e., an extension of the visibility criterion,
for nonconvex boundaries such as a crack in the element-free Galerkin (EFG) method.
They proposed the transparency approach as superseded by the diffraction approach
in three-dimensional (3D) problems. Other meshless methods attempted to modify the
weight function using the three techniques detailed above or in combination with other
techniques for simulating crack problems. Muravin and Turkel [17] proposed the spi-
ral weight method, which was an improvement to the diffraction approach to come up
with a more accurate solution to arbitrary crack problems. Pirali et al. [18] simulated
crack discontinuities in the EFG method using a combined node searching algorithm
called combined visibility and surrounding triangles (CVT). In this approach, the nodes
located on the crack faces employed the visibility criterion. The surrounding triangles
method generated by quadrature points was applied to the influence domain of mas-
ter nodes near the crack faces. Khezri et al. [19] presented a coupling of the finite strip
method (FSM) and the reproducing kernel particle method (RKPM) to analyze the two-
dimensional (2D) elastic problem domain containing cracks using the visibility criterion
for defining discontinuities. In [20], the EFG method was enriched with two-level nesting
triangular sub-domains (NSEMM). In this study, strong discontinuities are defined using
the diffraction approach, and an enriched MLS interpolant was employed to construct
the near-crack-tip shape functions. The generalized finite difference method (GFDM)
was applied by Lei et al. [21] to solve static plane crack problems using a scheme based
on the visibility criterion. In this scheme, in the vicinity of the crack tip, the nodes ex-
cluded from the support domain in the visibility criterion approach were replaced in the
visible area. Yao et al. [22] simulated nonconvex boundaries with a focus on the crack in
the continuous smoothed particle hydrodynamics (CSPH) method using the diffraction
approach.

Recently, the least-squares method (LSM) has been widely applied to solve PDEs. Af-
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shar and Arzani [23] proposed a novel LSM-derived method called the discrete least-
squares meshless (DLSM) method to provide a solution to Poisson’s equation. This
method has been successfully adopted to solve elliptic PDEs [24], as well as fluid mechan-
ics [25–28] and elasticity [29–34] problems, alone or in conjunction with other numerical
methods. In this approach, the solution domain is discretized by nodes employed for
constructing the shape functions using the MLS interpolant. This is a truly meshless
method since it does not require any background cells for problem-solving. This method
minimizes the least-squares functional defined as the weighted sum of squared residu-
als of the governing equations and its natural and essential boundary conditions at any
nodal point. It employed the LSM to discretize the governing equations and interpolation
functions since it exhibits high accuracy even in solving problems with irregular nodal
distributions. The proposed method has some other advantages, including high stability,
ease of application, ease of increasing or decreasing the number of nodal points, no need
for any background mesh, and symmetric, banded coefficient matrix.

In this paper, the DLSM method is developed to study crack tip fields for 2D elas-
tostatic problems in isotropic materials. For this purpose, the MLS method is initially
used for constructing the shape functions, and the DLSM method is then formulated.
This is followed by introducing certain treatments on the domain of influence for strong
discontinuity problems based on the visibility criterion, diffraction, and transparency ap-
proaches. Afterward, linear elastic fracture mechanics (LEFM) problems, as well as the
stress extrapolation and J-integral methods, are reviewed for determining SIFs. Three
numerical examples are given to investigate the accuracy and efficiency of the proposed
method. Finally, some concluding remarks are presented.

2 Approximation by Moving Least Squares (MLS) interpolation

Several studies have been carried out to approximate nodal parameters and construct
shape functions, and various techniques have been developed to be applied in mesh-
less methods. The MLS method [35] is among the best techniques used for constructing
meshless shape functions due to its completeness, robustness, and continuity [36]. In the
MLS technique, the unknown field value u(x) is approximated by:

u(x)=
k

∑
i=1

pi(x)ai(x)=pT(x)a(x), (2.1)

where k is the number of polynomials in the basis vector, pT(x) is a polynomial basis
generated by Pascal’s pyramid for the second-order basis in the 2D domain, which can
be specified as pT(x) = [1,x,y,x2,xy,y2]. Besides, a(x) is the coefficient vector in the x-
coordinate, which can be determined by minimizing the weight function as follows:

J(x)=
n

∑
j=1

wj(x)
[
pT(xj)a(x)−uh(xj)

]2

, (2.2)
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where n represents the number of nodal points in the support domain, uh(xj) denotes the
nodal parameter of the approximated function at the jth node, and wj(x) is the weight
function at point x. Meshless methods employ several weight functions to construct MLS
shape functions. In this paper, a 2D cubic-spline weight function is adopted as:

wj(x)=


2
3
−4r̄2+4r̄3, r̄≤ 1

2
,

4
3
−4r̄+4r̄2− 4

3
r̄3,

1
2
≤ r̄≤1,

0, r̄>1,

(2.3)

where r̄= rj/rSDj, rj =
∣∣x−xj

∣∣ and rSDj is the support domain size at jth node defined as
rSDj =γrDk, in which rDk is the distance of the jth node from the kth nearest point, and
γ≥1 is a constant value obtained by trial and error. By minimizing the functional J(x) in
Eq. (2.2) relative to the vector of coefficients a(x), the approximated nodal value can be
written as follows:

u(x)=pT(x)R−1(x)N(x)uh(x), (2.4)

where

R(x)=
n

∑
j=1

wj(x)pT(xj)p(xj), (2.5a)

N(x)= [w1(x)p(x1),w2(x)p(x2),··· ,wn(x)p(xn)]. (2.5b)

Eq. (2.4) can be rewritten in the standard form as:

u(x)=
n

∑
i=1

MT
i (x)ui(x)=MT(x)uh(x), (2.6)

where MT(x) indicates the MLS shape functions at point x defined as follows:

MT(x)=pT(x)R−1(x)N(x). (2.7)

3 Formulation of the Discrete Least-Squares Meshless (DLSM)
method

The DLSM method used the strong-form solution scheme in establishing a discrete sys-
tem of equations to solve linear elastic problems. For a general 2D body, as shown in
Fig. 1, consider the following governing PDEs of linear elastostatic problems:

µ∇2u+(λ+µ)
∂

∂x

(
∂u
∂x

+
∂v
∂y

)
+ fx =0

µ∇2v+(λ+µ)
∂

∂y

(
∂u
∂x

+
∂v
∂y

)
+ fy =0

in Ω, (3.1)
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Figure 1: Domain discretization in the DLSM method by nodal points.

with the following boundary conditions:

u=u∗, v=v∗ on Γ1, (3.2a)
σxnx+τxyny = t∗x, σyny+τxyny = t∗y on Γ2, (3.2b)

where ∇2 is the 2D Laplacian operator with ∇2 =(∂2/∂x2)+(∂2/∂y2); Ω is the solution
domain containing an isotropic elastic material; Γ1 and Γ2 are the essential and natural
boundaries, respectively; nx and ny are the outward unit normal vectors to the bound-
ary; the components u∗, v∗ and t∗x, t∗y are prescribed displacements and tractions on the
boundaries Γ1 and Γ2, respectively. The shear modulus µ and Lame’s first parameter λ
are defined as:

µ=
E

2(1+v)
, λ=

Ev
(1−2v)(1+v)

, (3.3)

where v and E are Poisson’s ratio and Young’s modulus, respectively. Expanding Eq. (3.1)
yields: 

(λ+2µ)
∂2u
∂x2 +µ

∂2u
∂y2 +(λ+µ)

∂2v
∂x∂y

+ fx =0

(λ+2µ)
∂2v
∂y2 +µ

∂2v
∂x2 +(λ+µ)

∂2u
∂x∂y

+ fy =0
in Ω, (3.4)

Eq. (3.1) can be written in the matrix notation of the differential equation as follows:

L(ϕ)+F=0 in Ω, (3.5)
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where F denotes the external forces applied to the solution domain, ϕ is the vector of
unknowns, and the second-order differential operator L(·) is defined as follows:

F=[− f x− f y]T, ϕ=[uv]T, (3.6a)
L(·)=L1(·)xx+L2(·)yy+L3(·)xy, (3.6b)

where L1, L2 and L3 are defined as:

L1=

[
λ+2µ 0

0 µ

]
, L2=

[
µ 0
0 λ+2µ

]
, L3=

[
0 λ+µ

λ+µ 0

]
. (3.7)

Additionally, the matrix form of the boundary conditions of Eqs. (3.2a) and (3.2b) can be
written as follows:

ϕ−ϕ∗=0 on Γ1, (3.8a)
D(ϕ)−t∗=0 on Γ2, (3.8b)

where ϕ∗ and t∗ are the components of the prescribed displacements and tractions on the
boundaries Γ1 and Γ2, respectively. D(ϕ) denotes a first-order differential operator that
represents the natural boundary conditions obtained by:

D(·)=D1(·)x+D2(·)y, (3.9)

with D1 and D2 are defined as follow:

D1=

[
(λ+2µ)nx µny

λny µnx

]
, D2=

[
µny µnx
λnx (λ+2µ)ny

]
. (3.10)

The operation of the DLSM method for solving the governing equations for all the nodes
starts with the definition of residuals at a typical point k as follows:

RΩ(xk)=L(ϕ(xk))+F(xk)=
N

∑
j=1

L
(
Mj(xk)

)
ϕj+F(xk) in Ω, k=1≈M, (3.11a)

R1(xk)= ϕ−ϕ∗(xk)=
N

∑
j=1

Mj(xk)ϕj−ϕ∗(xk) on Γ1, k=1≈M1, (3.11b)

R2(xk)=D(ϕ(xk))−t∗(xk)=
N

∑
j=1

D
(
Mj(xk)

)
ϕj−t∗(xk) on Γ2, k=1≈M2, (3.11c)

where N is the total number of nodes, M1 and M2 are the number of nodal points on the
Γ1 and Γ2 boundaries, respectively; M is the number of nodal points in the domain; RΩ,
R1 and R2 are the residuals on the domain, essential and natural boundaries, respectively.
The least-squares functional of residuals for the whole domain can be defined as:

I=
M

∑
k=1

(
R2

Ω(xk)
)
+α1

M1

∑
k=1

(
R2

1(xk)
)
+α2

M2

∑
k=1

(
R2

2(xk)
)
. (3.12)
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The penalty coefficients α1 and α2 are used as a convenient alternative approach to im-
posing and satisfying the essential and natural boundary conditions, respectively. The
penalty value should be large enough to keep the coefficient matrix symmetric. Although
a certain algorithm was proposed to estimate the penalty coefficients [32], the appropri-
ate value for this coefficient is usually determined by trial and error. In this study, these
coefficients are assumed to be α1 = 108 and α2 = 104. By substituting Eqs. (3.11a)-(3.11c)
into Eq. (3.12), the functional I is obtained as follows:

I=
M

∑
k=1

N

∑
j=1

[
L
(
Mj(xk)

)
ϕj+F(xk)

]2

+α1

M1

∑
k=1

N

∑
j=1

[
Mj(xk)ϕj−ϕ∗(xk)

]2

+α2

M2

∑
k=1

N

∑
j=1

[
D
(
Mj(xk)

)
ϕj−t∗(xk)

]2

. (3.13)

The minimization of the functional equation (3.13) with respect to unknown parameters
ϕ leads to a system of equations follows:

Kϕ=F, (3.14)

with

Kij =
M

∑
k=1

[L(Mi(xk))]
TL
(
Mj(xk)

)
+α1

M1

∑
k=1

[Mi(xk)]
TMj(xk)

+α2

M2

∑
k=1

[D(Mi(xk))]
TD
(
Mj(xk)

)
, (3.15a)

Fi =
M

∑
k=1

[L(Mi(xk))]
TF(xk)+α1

M1

∑
k=1

[Mi(xk)]
T ϕ∗(xk)+α2

M2

∑
k=1

[D(Mi(xk))]
Tt∗(xk), (3.15b)

where Mi is the MLS shape function of node i. The final stiffness matrix K in Eq. (3.14)
is in the symmetric banded form. Therefore, an efficient iterative method can be used to
provide solutions to the system of equations. The solution to Eq. (3.14) yields the value
of unknown nodal parameters.

4 Definition of strong discontinuities

Belytschko et al. [16] noted that for numerical modeling of cracks, the dependent vari-
ables such as displacements must be discontinuous at all points on the crack surface,
similar to nonconvex boundaries. Accordingly, the conventional DLSM method must
undergo certain modifications as it employs highly smooth shape functions. In this pa-
per, the visibility criterion, diffraction, and transparency approaches are employed to
modify the influence domain and weight function of nodal points near the crack surface,
especially at the crack tip.
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4.1 Discontinuous weight function by the visibility criterion

The visibility criterion [16] is the simplest and most straightforward method for defining
discontinuities in the meshless method introduced to simulate strong discontinuities in
the EFG method. The method has implemented discontinuities in the support domain;
thus, the weight function will also be discontinuous.

In this method, the line of discontinuity is considered to be opaque like a wall. Con-
sider node I in Fig. 2 as a light source with a light range rSD. The influence domain of node
I will be ΩI if the discontinuity is not defined. By definition, the crack is a discontinuity in
the body, and the emitted ray from the point I intersects the wall (the discontinuity line).
Therefore, the points previously located in influence domain I behind the wall to be in the
shadow will be consequently excluded from the support domain of node I. Fig. 2 shows
the modified support domain ΩVIS

I of node I in the vicinity of the crack tip. Despite the
simplicity and accuracy of the visibility criterion to define discontinuities such as cracks,
this approach has some limitations in dealing with nonconvex boundaries [7].

Figure 2: (a) the gray points are removed from the support domain of node I in the vicinity of the crack tip in
the visibility criterion approach; (b) the performance of the visibility criterion at the crack tip.

4.2 Modification of the weight function by the diffraction approach

Organ et al. [9] described the diffraction approach, an improved version of the visibil-
ity criterion approach for constructing the shape function in the crack tip region. This
approach is inspired by the diffraction of light in objects. In this approach, similar to
the visibility criterion, the discontinuity line is considered to be opaque. However, the
rays emitted from node I are diffracted at the crack tip, so some of the points removed
in the visibility criterion using the diffraction approach can fall within the influence do-
main of node I. The diffraction weight parameters highly differ from the equations used
to construct the support domain and weight functions [7].

According to Fig. 3, when the light ray emitted from node I to point x-intercepts with
the discontinuity line, the weight function is modified using the weight parameter as
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Figure 3: a) Modification of the influence domain in the diffraction approach; b) the weight parameters of the
diffraction approach.

follows:

rI(x)=
(

r1+r2(x)
r(x)

)ξ

r(x), (4.1)

where r2(x) = |XI−XC|, r1 = |XC−X0| and r(x) = |XI−X0|. As a result, by choosing a
larger index ξ in Eq. (4.1), the modified weight function decreases sharply at the opposite
side of the crack. Therefore, the value of the weight function behind the crack is somehow
discontinuous compared to the crack front. The exponent ξ is used to reduce the size of
the support domain behind the crack. Suitable choices for ξ values 1 and 2 were proposed
in [9]. In the present study, the best results are obtained by ξ = 2. Fig. 3(a) shows the
original ΩI and modified ΩDIFF

I diffraction domain of node I.

4.3 Treatment of the weight function in the transparency approach

In the transparency approach [9], the crack line is defined by a function with varying
degrees of transparency. In this case, the discontinuity line at the crack tip is assumed
completely transparent. By moving away from the crack tip along the discontinuity line,
the degree of transparency is reduced. Consider the point of intersection of the XI−
X0 line with the discontinuity line in Fig. 4, the longitudinal parameter of the weight
function in the transparency approach can be modified as follows [15]:

rI(x)= r(x)+ρI

(
rC(x)

r̄C

)ξ

, ξ≥2, (4.2)

where r(x) = |XI−X0|; ρIdenotes the dilatation parameter of node I, and rC(x) is the
size of the line segment between the crack tip and the intersection point. As shown in
Fig. 4, r̄C represents the intersection distance, where the segment of the discontinuity
line is considered opaque. The exponent ξ is a free value proposed in [9] assumed to be
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Figure 4: a) Original ΩI and modified ΩTRS
I support domain by the transparency approach; b) the performance

of the transparency approach near the crack tip.

ξ≥2, which is considered to be ξ =3in this study. In this approach, due to a small angle
between the line XI−XC and the discontinuity line for nodes directly adjacent to the
discontinuity, the weight function has a steep gradient along the line ahead of the notch
tip. To overcome this problem, all nodal points must have a minimum distance from the
crack surface. According to research [9], this distance must be considered larger than γh,
where h is the average nodal spacing and 0<γ<1, in which γ=0.25 is usually assumed.
It was easier to apply transparency to 3D problems than to the diffraction approach [7].
The treatment of the support domain of node I in the transparency approach is shown by
ΩTRS

I in Fig. 4(a).

5 Determination of SIFs in LEFM

In this study, linear elastic fracture mechanics (LEFM) approaches are used to examine
linearly elastic materials. In the LEFM, the stress field contains crack-tip singularity de-
spite the small external loads. Irwin [37] proposed the Stress Intensity Factor (SIF), K, to
describe the stress and displacement fields in the crack tip region [38]. This concept is
based on the decomposition of the crack configuration into three different types of de-
formation: opening mode, shearing mode, and tearing mode, respectively referred to as
Mode-I, Mode-II, and Mode-III of fracture deformations, respectively. The stress fields
near the crack tip for a general case of mixed mode (Mode-I/II) loading along a single
direction are given in matrix form as [39]:

σ=

(
1√
2πr

)
fI,I I

θ K, (5.1)
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where

σ=

 σ1
σ2
σ12

, (5.2a)

fI,I I
θ =



cos
(

θ

2

)(
1−sin

(
θ

2

)
sin
(

3θ

2

))
−sin

(
θ

2

)(
2+cos

(
θ

2

)
cos
(

3θ

2

))
cos
(

θ

2

)(
1+sin

(
θ

2

)
sin
(

3θ

2

))
sin
(

θ

2

)
cos
(

θ

2

)
cos
(

3θ

2

)
cos
(

θ

2

)
sin
(

θ

2

)
cos
(

3θ

2

)
cos
(

θ

2

)(
1−sin

(
θ

2

)
sin
(

3θ

2

))


, (5.2b)

K=

[
KI
KI I

]
, (5.2c)

where KI and KI I are the SIF values. The radial distance r from the crack tip to the selected
point, the angle θ between r and the discontinuity line ahead of the crack, and the local
coordinate system x

′
1, x

′
2 are shown in Fig. 5.

Figure 5: The polar system at the crack tip in a homogeneous material.

The (SIF) K is the most important parameter for analyzing fracture problems and
cracked structures. The local and global schemes have been proposed in numerical meth-
ods for evaluating the SIFs. The local scheme is based on the displacements or stresses in
the crack tip region, such as stress or displacement extrapolation. The global scheme is
based on measuring energy release rates such as Interaction Integral and J-integral [40].
In this study, the stress extrapolation and the J-integral methods are employed to evalu-
ate Mode-I SIF.

5.1 Stress Extrapolation Method (SEM)

The stress at any nodal point can be measured by simulating the cracked body after em-
ploying the approaches to defining discontinuities in the DLSM method. Therefore, KI
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and KI I can be calculated by stress components of any point using Eq. (5.1). The relation-
ship between the stress near the crack tip and KI is defined as:

KI =σ(r,θ)
√

2πr. (5.3)

The above term is valid as r approaches zero and can be adjusted to compute the Mode-
I SIF. However, this condition is inappropriate since the result is unreliable after r has
approached zero in numerical methods [21]. In this method, a tangent extrapolation
of the curve of KI values obtained from stress at many points with a distance r from
the crack tip is used to calculate KI . In this study, to obtain more accurate results, the
distance r from the crack tip to the selected points used to calculate the SIFs ranges from
a/15 to a/4, where a is the half length of the center crack and the crack length for the
edge-cracked plate.

5.2 J-integral method

The J-integral provides a generalization of the relationship between the SIFs and the
energy release rate, which is defined as:

J=
∫

Γ

[
W(ε ij)dx2−Ti

∂Ui

∂x1
dS
]

, (5.4)

where Γ a contour in a counterclockwise direction around the crack tip,

W(ε ij)=
∫ ε

0
σijdε ij

is strain energy density, where σij and ε ij represent stress and strain tensors, respectively.
Besides, dS is the length increment along the contour Γ and Ui is the displacement vector
component. Ti is the traction vector component at any point on the Γ given as:

Ti =σijnj, (5.5)

where nj is the outward unit normal vector to contour Γ. This integral is path-independent,
equal to the nonlinear energy release rate and uniquely characterizes stresses and strains
at the crack tip. Using the concept of energy release rate, the relationship between J, KI ,
and KI I SIFs is defined as follows [41]:

J=
1
Ē
(
K2

I +K2
I I
)

, (5.6)

where Ē=E/(1−v2) for plane strain, Ē=E for plane stress, and E is Young’s modulus.
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6 Numerical examples

In this section, the accuracy and efficiency of the DLSM method are assessed by em-
ploying different approaches to defining discontinuities, namely, the visibility criterion,
diffraction, and transparency approaches, to analyze fracture problems. For this pur-
pose, three numerical examples of 2D problems are investigated using an irregular mesh
of nodes. Furthermore, isotropic linear elastic materials and plane stress conditions are
assumed in all problems. In the numerical example, the problem domain was discretized
by three different irregular nodal distributions. In this study, the global error and conver-
gence rate are defined by the error norm as follows:

eK =

√
∑n

i=1
(
Kexct

i −Knum
i

)√
∑n

i=1
(
Kexct

i

) , (6.1)

where eK is the error norm for the SIFs, Kexct
i is the available analytical solution for the

SIFs, and Knum
i is the SIFs obtained from the numerical solution of the DLSM method,

and n is the number of nodal points used for calculating the error norm.

6.1 An edge crack problem

The first numerical example presents an edge-cracked plate under a distributed constant
load. The uniform tensile loading applied σ=1Pa and L=16cm, W=8cm, and a=3.2cm
are the geometrical configurations of the cracked plate, as shown in Fig. 6. The material
model is linear elastic with the following properties: The Young’s modulus is E=1000Pa,
and the Poisson ratio is v=0.3.

The problem is simulated using three different irregular nodal distributions, with
623, 1084, and 2088 nodes listed as coarse, mild, and fine distributions, respectively, for
domain discretization. The analytical Mode-I SIF KI for the edge-cracked plate is defined
as:

KI = f
( a

W

)
σ
√

πa, (6.2)

where σ is the applied tractions, a is the crack length, and geometry function f
( a

W

)
is a

dimensionless value given by [42]:

f
( a

W

)
=1.12−0.231

( a
W

)
+10.55

( a
W

)2
−21.72

( a
W

)3
+30.39

( a
W

)4
, (6.3)

where a and W are the crack length and the width of the loaded plate, respectively. The J-
integral and SEM approaches are adopted to determine the SIF KI . Table 1 compares the
KI results of the numerical J-integral on the circular integration path of radius R=0.4cm
and SEM for different approaches to defining discontinuities with three nodal distribu-
tions with the exact solution. The results indicated the high accuracy and efficiency of the
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Figure 6: An edge crack problem under a distributed constant load.

DLSM method in simulating this fracture problem. Besides, Table 1 demonstrates that
the diffraction approach has relatively outperformed other approaches, and the higher
accuracy of the SIFs can be obtained by the J-integral approach.

Although the J-integral method is path independent, according to the existing ap-
proximations, five circular paths with various radii are considered to investigate the ra-
dius size effect on determining the KI values from the J-integral method. Table 2 shows
the error of the J-integral SIF values for the three approaches to defining discontinuities in
fine nodal distributions. Comparing the results demonstrated that the paths with larger
radii have lower accuracy. Despite the slight difference in error between the three studied
methods, the highest accuracy was obtained using the diffraction approach.

The stress σ22 in front of the notch tip along the crack line is presented in Fig. 7. The

Table 1: The comparison of different methods of calculating the SIFs in terms of the global error for different
approaches to defining discontinuities with three nodal distributions in edge crack problem.

Approach SIF Method
623 nodes 1084 nodes 2088 nodes

KI(pa·cm1/2) Error(%) KI(pa·cm1/2) Error(%) KI(pa·cm1/2) Error(%) Exact

Visibility criterion SEM J-integral
4.9376 8.204 5.1889 3.533 5.4416 1.164

503790
5.0603 5.925 5.2920 1.616 5.4134 0.640

Diffraction SEM J-integral
5.0151 6.764 5.2096 3.148 5.4360 1.060

503790
5.1163 4.884 5.3015 1.439 5.4101 0.579

Transparency SEM J-integral
4.9929 7.177 5.2019 3.291 5.4382 1.101

503790
5.1002 5.182 5.2980 1.505 5.4115 0.604
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Table 2: The comparison of different approaches to defining discontinuities in terms of the KI error for various
paths.

J (Path 1) J (Path 2) J (Path 3) J (Path 4) J (Path 5)
Approach R=0.2cm R=0.4cm R=0.8cm R=1.2cm R=1.6cm

Error% Error% Error% Error% Error%
Visibility criterion 1.593 0.640 0.668 1.586 3.366

Diffraction 0.060 0.579 0.141 1.069 2.855
Transparency 0.774 0.604 0.176 1.078 2.113

contour plot of the stress components of the diffraction approach computed by fine nodal
distributions and the enlarged region in the vicinity of the crack tip is presented in Fig. 8.
It shows the stress concentration at the tip of the crack.

The convergence rate of the present method obtained by the SEM error values is de-
picted in Fig. 9, demonstrating its stability and convergence characteristics for employing
the different approaches to defining discontinuities. The comparison of the results indi-
cates the effectiveness of the accuracy of numerical methods in increasing the number of
nodes used to discretize the domain. However, considering the slope of the convergence
lines shown in Fig. 9, the visibility criterion is relatively more sensitive to this change.

Figure 7: The normal stress σ22 along the discontinuity line (x2=0); Exact (EXACT), visibility criterion (VIS),
diffraction approach (DIFF) and transparency approach (TRS).

6.2 A central crack problem under uniform traction

In this example, a plate with a center crack of length 2a=1.6cm, and dimensions of 2W=
4cm, and L=8cm, under uniform traction of σ=3Pa in the x2 direction is considered as
shown in Fig. 10. The elasticity parameters of the plate are E=30KPa and v=0.25. The
example is simulated under plane stress conditions.

The analytical solution for the SIF in this problem is given by Eq. (6.2) with the fol-
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Figure 8: Contour plot of σ22 for an edge crack problem by the diffraction approach.

Figure 9: Convergence rate of the three approaches to defining discontinuities (first example); visibility criterion
(VIS), diffraction approach (DIF), and transparency approach (TRS).

lowing geometry correction factor [43]:

f
( a

W

)
=

√
sec
( πa

2W

)[
1−0.025

( a
W

)2
+0.06

( a
W

)4
]

, (6.4)

where a and W are half of the crack length and half of the infinite plate width, respec-
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Figure 10: Geometric model of a central crack problem under uniform traction.

Figure 11: A discrete model of a center-cracked plate produced by irregularly distributed nodes.
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Table 3: Normalized KI SIFs for different approaches to defining discontinuities with three nodal distributions
in the center crack problem.

Approach 628 nodes 1289 nodes 2648 nodes
KI /Kexact Error% KI /Kexact Error% KI /Kexact Error%

Visibility criterion 0.9394 6.059 0.9796 2.039 1.0118 1.179
Diffraction 0.9536 4.644 0.9813 1.866 1.0094 0.941

Transparency 0.9480 5.196 0.9809 1.908 1.0105 1.047

tively. The problem is simulated using 628,1289 and 2648 irregularly distributed nodes
with increased node densities in the vicinity of the crack tip, as shown in Fig. 11.

The contour plot of σ22 stress obtained by the DLSM method using 2648 irregularly
distributed nodes for different approaches to defining discontinuities and the enlarged
region is depicted in Fig. 12. As can be seen, all three methods can capture the stress
singularity at the crack tip well.

The numerical results of the normalized KI SIF values obtained by the J-integral
method on the circular contour of radius R=0.2cm and the error values for three weight
function modification techniques are presented in Table 3. All these error values are
small, implying the high accuracy of this meshless method. Moreover, as was the case in
the previous example, the global error is reduced in fine nodal distribution. According to
this table, it can be concluded again that the diffraction approach has outperformed the
visibility criterion and transparency approaches. Fig. 13 shows a good convergence rate
obtained by three approaches to defining discontinuities in the DLSM method.

Furthermore, in this example, five circular contours around the crack tip are intended
for the integration path to calculate the SIF using the J-integral method to investigate the

Figure 12: Contour plot of σ22 for a center-cracked plate by 2648 nodal distributions. a) visibility criterion; b)
diffraction approach; c) transparency approach.
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Table 4: The error values of the KI SIFs for the three approaches to defining discontinuities on paths with
different radii.

J (Path 1) J (Path 2) J (Path 3) J (Path 4) J (Path 5)
Approach R=0.1cm R=0.2cm R=0.4cm R=0.6cm R=0.8cm

Error% Error% Error% Error% Error%
Visibility criterion 4.604 1.179 1.016 1.682 2.931

Diffraction 4.415 0.941 0.331 1.167 2.220
Transparency 4.431 1.047 0.382 1.213 2.354

sensitivity to the integration path. Table 4 presents the KI error values calculated by the
J-integral method on different paths in the fine nodal point distribution. As can be seen,
the two middle paths, the paths with radius R = 0.2cm and R = 0.4cm have the lowest
error rate, while on the path very close to the crack tip, the error values increase at once,
and the least error was recorded using the diffraction approach.

6.3 A slant crack problem

The third example investigates the problem of a square plate with a center slant crack
under uniform tension of σ=1Pa in the x1 direction, as shown in Fig. 14. The geometrical
parameters W=3cm, a=0.6cm, β=45◦ (see Fig. 14), and the properties of the material E=
200Gpa, v=0.3 are considered for the numerical simulation of this example. Three nodal
distributions with 3615, 1831, and 791 nodes are explored for numerical computation by
the DLSM method. The mild nodal distribution is shown in Fig. 15. Furthermore, this
problem is modeled by the FEM scheme as one of the most popular numerical simulation
schemes by modeling this domain in the ABAQUS software package with 23047 quad

Figure 13: Convergence rate of three approaches to defining discontinuities (second example); visibility criterion
(VIS), diffraction approach (DIF), and transparency approach (TRS).
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Figure 14: A center slant crack problem under uniform tension.

Figure 15: Discretization of a center slant-cracked plate.

meshes.
The contour plot of the stress σ11 for the DLSM method using the diffraction approach

with fine nodal distributions and the FEM are depicted in Fig. 16. The stress densities due
to the singularity fields near the crack tip are clearly visible in these images. A compari-
son of the σ11 results obtained from the DLSM method in front of the crack tip along the
direction θ = 0◦, x1 = x2 for the different approaches to defining discontinuities in three
nodal distributions and those obtained by the FEM with an ultra-fine mesh is demon-
strated in Fig. 17. The numerical σ11 curves of the DLSM are well overlapped with these
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Figure 16: Contour plot of σ11 for the center slant-cracked plate; a) the FEM scheme by the ABAQUS software
with fine meshes; b) the DLSM method by the diffraction approach with the discretization of 3615 nodes.

FEM results for the center slant crack problem with β = 45◦, which again verifies the
accuracy and effectiveness of the DLSM method for crack problems. However, the com-
parison of the curves shows a relatively better overlapping of the diffraction approach
with the results obtained from the FEM than the other two approaches. Besides, signifi-
cant changes in the accuracy rate are observed by reducing the number of nodal points.

7 Conclusions

Firstly, the DLSM method was applied in this paper to solve the crack problems in
isotropic materials. Three numerical examples were simulated to investigate the accu-
racy and effectiveness of the proposed method using different nodal distributions. The
problems were discretized irregularly by increasing the number of nodal points in the
vicinity of the crack tip due to the stress singularity at this field. Because of using high-
continuity shape functions in this method, some modifications were required in the influ-
ence domain near the crack surface. The visibility criterion, diffraction, and transparency
approaches were employed in this study to define discontinuities in weight functions.
The path-independent J-integral and stress extrapolation methods were applied to deter-
mine the SIFs, with the J-integral presenting a higher degree of accuracy. It was shown
that the diffraction approach had outperformed the transparency and visibility criterion
approaches in dealing with discontinuous boundaries. It was also demonstrated that the
visibility criterion was relatively more sensitive to the reduced number of nodal points
than the other approaches. Although the visibility criterion approach can be easily used
to simulate discontinuities, this sensitivity can be mainly attributed to reducing the num-
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Figure 17: The normal stress σ11 along the discontinuity line for β=45◦ and θ=0◦, a) 791 nodes, b) 1831 nodes,
c) 3615 nodes; FEM (FEM), visibility criterion (VIS), diffraction approach (DIFF) and transparency approach
(TRS).

ber of nodes in the influence domain of the master node near the crack tip.
Several circular paths were considered as integration paths to study the effects of

the existing approximations on the SIF values obtained from the J-integral method. Al-
though the effects of the radius of the integration path on the error values cannot be
exactly determined, it can be generally and cautiously stated that intermediate paths had
shown higher accuracy.

The comparison of the results and the errors and the high convergence rate in the
studied numerical examples pointed to the effectiveness and efficiency of the DLSM
method in using different approaches to defining discontinuities for solving the fracture
mechanics problems.
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