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Abstract. In this paper, a scaling law relating the mesh size to the Reynolds num-
ber was proposed to ensure consistent results for large eddy simulation (LES) as the
Reynolds number was varied. The grid size scaling law was developed by analyz-
ing the lengthscale of the turbulent motion by using DNS data from the literature. The
wall-resolving LES was then applied to a plane channel flow to validate the scaling law.
The scaling law was tested at different Reynolds numbers (Reτ = 395, 590 and 1000),
and showed good results compared to direct numerical simulation (DNS) in terms of
mean flow and various turbulent statistics. The velocity spectra analysis shows the
evidence of the Kolmogorov –5/3 inertial subrange and verifies that the current LES
can resolve the bulk of the turbulent kinetic energy by satisfying the grid scaling law.
Meanwhile, the near-wall turbulent flow structures can also be well captured. Rea-
sonably accurate predictions can thus be obtained for flows at even higher Reynolds
numbers with significantly lower computational costs compared to DNS by applying
the mesh scaling law.
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1 Introduction

Turbulence plays a dominant role in most engineering and natural flows. A turbulent
flow is unsteady, chaotic and unpredictable, with the exact physical nature remaining
mysterious. Thanks to the rapidly increasing computing power, Computational Fluid
Dynamics (CFD) now offers a promising approach for calculating the relevant prop-
erties of turbulent flows. Direct numerical simulation (DNS) is one important method
for the study of turbulent flows, which directly solves the Navier-Stokes equations (NS-
equations) for all scales of motion. However, this approach is computationally too ex-
pensive, and is usually restricted to flows with relatively low Reynolds numbers. For
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numerical simulations with higher Reynolds numbers, turbulence is usually modelled.
Reynolds averaged Navier–Stokes (RANS) models solve the Reynolds equations (mean-
flow equations) to determine the mean velocity field by modelling the entire Reynolds
stresses. RANS models have been used for various problems with turbulent flow in-
volved, due to their ease of implementation and low computational cost. Large eddy sim-
ulation (LES) is another important approach, where the governing equations are solved
for a filtered velocity field – representing the larger/grid scale flow motions. Meanwhile,
the influence of the smaller/sub-grid scale (SGS) motions is represented by a model in-
cluded in the filtered NS-equations. Thus, extensive calculations are avoided to explicitly
solve the smaller-scale motions. Compared to RANS, LES has the advantage of describ-
ing the unsteady, grid-scale turbulent structures though it is computationally more ex-
pensive. Hence, it is a good choice to apply LES for solving the unsteady motion in
turbulent flows to a certain extent of accuracy.

The earliest and simplest LES model was proposed by Smagorinsky [1], where the
sub-grid scale (SGS) turbulent stress tensor is related to the resolved strain-rate ten-
sor by a scalar eddy viscosity with a linear algebraic equation. Based on the linear
eddy-viscosity assumption in the Smagorinsky model, more models are proposed by
other researchers, including dynamic models [2–4], dynamic mixed models [5, 6], struc-
ture function models [7, 8], wall adapting local eddy viscosity model (WALE) [9], etc.
More recently, the anisotropic minimum-dissipation (AMD) model has been proposed
by Rozema et al. [10] and evaluated in OpenFOAM by Zahiri and Roohi [11, 12], which
considers the effect of various directions in computing sub-grid stress and is capable of
operating in transitional flows. In the above models, either constant model coefficient or
dynamic model coefficient is adopted–an operation called test filtering is commonly used
to evaluate the dynamic coefficient. Transport-equation model is another important LES
approach, where transportation equations for the SGS terms are formulated, accounting
for the historic and non-local effect of SGS kinetic energy due to production, dissipation
and diffusion. Representative works on the transport-equation LES model are given by
Deardorff [13], Schumann [14], Yoshizawa and Horiuti [15], Ghosal et al. [16], Fureby
et al. [17], Krajnović and Davidson [18], Gallerano et al. [19]. The SGS turbulent stress
tensor is explicitly modelled in the above introduced models, while Boris et al. [20] advo-
cated to solve the filtered NS-equations without using an explicit SGS model and to use
the inherent dissipation from the discretization scheme as an implicit SGS model. This
approach is known as MILES (Monotone Integrated Large Eddy Simulation). Other rep-
resentative LES calculations with this approach can be found in the studies by Tamura
and Kuwahara [21], Knight et al. [22], Urbin and Knight [23]. The reader may refer to
Meneveau and Katz [24], Pope [25], Yang [26] for more details about LES modelling,
where the performance of various models is evaluated and discussed.

Although substantial efforts have been made to develop various SGS models in the
last few decades, they all have limitations–a model which works very well for one type
of problem may turn out to be unsuitable for another type of problem. In addition, the
accurate simulation of near-wall flow regions is essential in many practical engineering
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configurations, while it would become very expensive to perform a wall-resolved LES
for turbulent flows with high Reynolds numbers [25]. Comprehensive reviews on wall
layer modelling were provided by Piomelli and Balaras [27] and Piomelli [28], where it
was pointed out that ”no universally accepted model has appeared”. Hence, it remains a
challenge to resolve the near-wall regions accurately in LES nowadays. Consistent results
can be achieved for DNS at various Reynolds numbers if the mesh size is comparable
to the famous Kolmogorov lengthscale (η∼Re−3/4), where Re is the Reynolds number
defined by the bulk flow velocity). However, it is difficult to find out the appropriate
mesh configurations in LES to get consistent results that scale reasonably with Reynolds
number. This usually becomes very tedious when simulations need to be conducted for
various Reynolds numbers, as the results of the LES are sensitive to the mesh size even
for a fixed Reynolds number [29]. In this paper, a scaling law relating the mesh size to
the Reynolds number was proposed to ensure consistent results for LES as the Reynolds
number was varied, where the scaling law was further verified in the plane channel flow
simulation.

2 Governing equations and numerical methods

In this section, the governing equations for LES, the SGS modelling, as well as the nu-
merical schemes are introduced. In the present work, simulations are performed with an
open source CFD tool, OpenFOAM, which provides a large variety of solvers, discretiza-
tion schemes and turbulence models, as well as the flexibility of developing new libraries
according to the users’ need. The self-developed code in OpenFOAM also possesses the
capability of processing the data in parallel using the message passing interface (MPI)
mechanism.

2.1 Governing equations and LES turbulence modelling

The incompressible flow of Newtonian fluids is governed by the continuity equation
(2.1a) and Navier-Stokes equations (2.1b) shown as follows (in Cartesian tensor notation),

∂Ui

∂xi
=0, (2.1a)

∂Uj

∂t
+

∂UiUj

∂xi
=ν

∂2Uj

∂xi∂xi
− 1

ρ

∂p
∂xj

, (2.1b)

where Ui (or U in vector notation) and p denote the fluid velocity and pressure, respec-
tively, and ρ and ν represent the fluid density and kinematic viscosity, respectively. The
above equations can be solved using a very fine mesh for all scales of motions, i.e., us-
ing direct numerical simulation (DNS). However, the computational cost of DNS is too
high, and it is thus inapplicable for practical high-Reynolds-number flows. Most of the
computational effort in DNS is on the small dissipative motions, whereas the energy and
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anisotropy are contained predominantly in the larger scales of motion [25]. Hence in
LES, the dynamics of the larger-scale motions are computed explicitly, the influence of
the smaller scales being represented by simple models. To achieve that, the velocity U
is decomposed into the sum of a filtered/resolved component U (representing the grid-
scale motions) and a subgrid-scale (SGS) component u by a spatial filtering operation.
The filtered conservation equations can thus be obtained from Eq. (2.1) as follows,

∂Ūi

∂xi
=0, (2.2a)

∂Ūj

∂t
+

∂ŪiŪj

∂xi
=ν

∂2Ūj

∂xi∂xi
− 1

ρ

∂ p̃
∂xj
−

∂τD
ij

∂xi
, (2.2b)

where the SGS stress tensor is defined as τij = τji =UiUj−ŪiŪj. The SGS kinetic energy
and the deviatoric SGS stress tensor are defined as

ksgs =
1
2

τii and τD
ij =τij−

1
3

τkkδij =τij−
2
3

ksgsδij.

The SGS kinetic energy is subsumed into a modified filtered pressure p̃= p̄+ 2
3 ρksgs [25].

Turbulence (closure) modelling for τD
ij is required to close the above system of equa-

tions, and various LES models are available nowadays. As was mentioned previously,
there is not a universally accepted LES model that has been proven to be applicable for
all practical flows; and more complicated models do not necessarily guarantee better per-
formance [27, 28]. More importantly, a sufficiently fine mesh is still required to capture
most of the turbulent kinetic energy in current wall-resolved LES and the LES model
only takes care of the sub-grid-scale turbulent motion. Hence, we have chosen the most
fundamental and widely used LES model for current study, i.e., the Smagorinsky model.
The SGS stress tensor τD

ij is related to the filtered rate-of-strain tensor,

S̄ij =
1
2

(
∂Ūi

∂xj
+

∂Ūj

∂xi

)
,

through the eddy viscosity (νt), i.e.,

τD
ij =−2vtS̄ij =−vt

(
∂Ūi

∂xj
+

∂Ūj

∂xi

)
.

The eddy viscosity is calculated as vt = C2
s ∆2S̄, where Cs is a dimensionless constant,

∆ is the filter (grid) size and S̄ =
√

2S̄ijS̄ij is defined as the characteristic filtered rate-
of-strain. Lilly [30] derived Cs≈ 0.17 from homogeneous isotropic turbulence, while it
was found to be too dissipative. It has been shown that Cs ≈ 0.1 behaves reasonably
well in turbulent channel flow [8, 31, 32] and this value is used in current study. The
standard Smagorinsky model tends to overestimate the wall shear stress due to non-zero
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eddy viscosity at the wall. To achieve satisfactory simulation accuracy with the standard
Smagorinsky model, we need to apply very fine mesh in the near wall viscous region to
reduce the eddy viscosity, which will increase the computational time significantly. The
Van-Driest-type damping function [33] is used for the filter width to ensure negligible
eddy viscosity near a wall, as has been widely applied in many other studies, including
Moin and Kim [32], Piomelli [34], Lenormand [35] and others. The damping function is
supposed to suppress the turbulence modelling in the near-wall region by reducing the
filter width, so that most of the turbulent kinetic energy and Reynolds stresses are carried
by the grid-scale motions and the near-wall region is resolved in a manner similar to that
of direct numerical simulation (DNS). Hence, a sufficiently fine mesh is still required to
capture most of the turbulent activities in current wall-resolved LES. With the SGS stress
tensor (τD

ij ) modelled, the momentum equation (2.2b) can be further written as follows in
both tensor notation and vector notation,

∂Ūj

∂t
+

∂ŪiŪj

∂xi
− ∂

∂xi

(
νe f f

∂Ūj

∂xi

)
− ∂

∂xi

(
νe f f

∂Ūi

∂xj

)
+

1
ρ

∂ p̃
∂xj

=Gδxj,

∂Ū
∂t

+∇·(ŪŪ)−∇·
(
νe f f∇Ū

)
−∇·

[
νe f f (∇Ū)

T
]
+

1
ρ
∇ p̃=Gi,

(2.3)

where the effective viscosity is defined as νe f f =ν+νt. For experiments, a very long phys-
ical channel is required to allow the flow to become fully turbulent. However, for nu-
merical simulations, a long channel is not realistic due to the huge computational costs.
Hence, a constant pressure gradient (normalized by ρ and denoted as G in Eq. (2.3)) is
added in the longitudinal direction (x-direction) and periodic boundary conditions are
applied for the channel inlet and outlet. Similarly, periodic boundary conditions are also
applied along the spanwise direction (z-direction) for the left and right domain bound-
aries. Lastly, the no-slip condition is applied along the top and bottom walls (correspond-
ing to the wall-normal y-direction). In this way, the flow is driven by the prescribed
pressure gradient and becomes fully turbulent given a sufficiently long simulation time.

2.2 Numerical schemes

In OpenFOAM, the governing equations are solved with the finite volume method (FVM).
In the present study, a second-order implicit backward scheme is applied for the tem-
poral discretization ( ∂Ū

∂t ). Standard finite volume discretization of Gaussian integration
(Gauss scheme) is applied for the gradient terms (∇Ū and ∇ p̃). Second-order Gauss
central-differential scheme is applied for the discretization of divergence terms, includ-
ing the velocity advection term (∇·(ŪŪ)) and another diffusive term (∇·[νe f f (∇Ū)

T
]).

Gauss scheme is applied for the Laplacian term (∇·(νe f f∇Ū)), where the surface nor-
mal gradient (n·∇Ū) is discretized with second order accuracy. Lastly, second-order
central-differential interpolation scheme was used to interpolate values from cell cen-
tres to face centres. The discretized equations are solved iteratively with the Pressure-
Implicit with Splitting of Operators (PISO) algorithm, which is a popular numerical
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scheme for pressure-velocity coupled equations. Large linear equation systems (in the
form of Ax=b) are derived when the governing equations are discretized on all compu-
tation cells. A is a sparse matrix containing the coefficients of the spatial discretization.
Vector x stores the values of velocity or pressure, the dimension of which is the total
number of computation cells. Vector b stores the explicitly calculated flow data and the
boundary information. The linear equation system for the velocity is solved by Gauss-
Seidel smooth solver and Geometric-algebraic multi-grid (GAMG) solver is applied to
the linear equation system for the pressure. The implementation of the above numerical
schemes in OpenFOAM requires lengthy descriptions, and interested readers may refer
to Appendix A for more details.

3 A mesh size scaling law with Reynolds number

In the current study, we attempt to apply the LES to a plane channel flow with the near-
wall region well-resolved and to obtain consistent results over a range of Reynolds num-
bers (Reτ=395,590,1000). Hence, a mesh size scaling law with Reynolds number becomes
essential. For the current simulations for a channel flow, a uniform mesh is applied along
the streamwise (x−) and spanwise (z−) direction–both are homogeneous, while hyper-
bolic distribution of nodes is adopted in the wall normal (y−) direction for generating a
very fine mesh near the wall and a coarser mesh in the vicinity of the channel centreline.
Hence, the mesh interval along the x− and z− directions can be determined as

∆x=Lx/(Nx−1) and ∆z=Lz/(Nz−1),

where Lx and Lz are the streamwise length and spanwise width of the computation do-
main; and Nx and Nz are the number of grid points on the respective edges. The node
distribution in the wall normal direction is symmetric about the channel centreline and
follows the hyperbolic function shown as follows:

sinhb=
Ly(

Ny−1
)

∆yw
b, (solve numerically for b>0),

Si =
Ly

2

[
1+

tanh( i−1
Ny−1 b− 1

2 b)

tanh b
2

]
,
(
1≤ i≤Ny

)
,

∆yi =Si+1−Si,
(
1≤ i≤Ny−1

)
,

(3.1)

where ∆yw is the mesh interval in the wall-normal direction at the wall and i denotes the
index of the nodes. It can be verified that ∆y1=∆yNy−1=∆yw as shown in the following:
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∆y1=
Ly

2

[
1+

tanh
(

b
Ny−1−

b
2

)
tanh b

2

]
≈

Ly

2

1+
tanh(− b

2 )+
b

Ny−1 tanh′(− b
2 )

tanh
b
2


=

Ly

2

[
∆yw sinhb

Ly

1−tanh2( b
2 )

tanh b
2

]
=∆ywcosh2

(
b
2

)[
1−tanh2

(
b
2

)]
=∆yw,

∆yNy−1=Ly−
Ly

2

[
1+

tanh
(

b
2−

b
Ny−1

)
tanh b

2

]
≈

Ly

2

[
1−

tanh( b
2 )−

b
Ny−1 tanh′( b

2 )
tanh b

2

]
=

Ly

2

[
∆yw sinhb

Ly

1−tanh2( b
2 )

tanh b
2

]
=∆yw.

Assuming that Ny is an odd number, we can find out the node interval size in the wall
normal direction at the channel centreline as follows:

∆yc =S Ny+1
2
−S Ny−1

2
=

Ly

2
−

Ly

2

1+
tanh

(
− b

Ny−1

)
tanh b

2

= Ly tanh
(

b
Ny−1

)
2tanh b

2

.

In practice, we have Ny >100, ∆y+w∼O(0.1) and thus

Ly(
Ny−1

)
∆yw

=
2Reτ(

Ny−1
)

∆y+w
∼O(10),

b>4. Considering that the difference between sinh(4) and cosh(4) is less than 0.07%, the
following approximation can be made with a very small discrepancy

tanh
(

b
Ny−1

)
≈ b

Ny−1
,

Ly(
Ny−1

)
∆yw

b=sinhb≈coshb≈0.5eb.

Hence, we can estimate ∆yc with good accuracy as follows:

∆yc≈
Ly

2tanh b
2

b
Ny−1

=
Ly

2tanh b
2

∆yw sinhb
Ly

=∆yw
1+coshb

2
≈ eb

4
∆yw.

If we have specified the ratio between the wall mesh size and the channel centreline mesh
size, i.e., ∆yc

∆yw
, the value of b can be obtained as b≈ ln(4 ∆yc

∆yw
). The number of nodes in the

wall-normal direction can thus be determined as

Ny−1≈
Ly

2∆yc
ln
(

4
∆yc

∆yw

)
.
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We have thus determined the explicit relation between the mesh interval and number of
nodes required in all three dimensions, as shown in Eq. (3.2):

Nx−1=Lx/∆x,
Nz−1=Lz/∆z,

Ny−1=
Ly

2∆yc
ln
(

4
∆yc

∆yw

)
.

(3.2)

The actual mesh size would vary greatly as the Reynolds number changes. However, the
variation is much smaller if we measure the interval size using viscous scales (wall or
inner units). The viscous scales are obtained as follows:

uτ =
√

τw/ρ=
√

δG,
δν =ν/uτ,
Reτ =uτδ/ν=δ/δν,

where δ is the half-channel height, τw is the wall shear stress, uτ is the friction velocity,
δν is the viscous length scale and G is the prescribed streamwise pressure gradient in
Eq. (2.3). Eq. (3.2) can thus be written as follows:

Nx−1=
Lx

δ

Reτ

∆x+
,

Nz−1=
Lz

δ

Reτ

∆z+
,

Ny−1=
Reτ

∆y+c
ln
(

4
∆y+c
∆y+w

)
.

(3.3)

If ∆x+, ∆z+, ∆y+w , ∆y+c are all constants, the total number of grid points Nxyz = Nx NyNz

scales with the friction Reynolds number as Nxyz∼Re3
τ. According to the empirical law

of Reτ≈0.09Re0.88 for a channel flow [25], we have Nxyz∼Re2.64. Such a scaling exponent
of 2.64 is even larger than that for DNS (Nxyz∼Re9/4), which is apparently unrealistic
for LES. By integrating the model energy spectrum function, Pope [25] proposed that
90% of the turbulent kinetic energy is contained by the motions of lengthscales larger
than 0.16L11, where L11 is an integral lengthscale obtained by integrating the longitudi-
nal autocorrelation function. He further showed that L11 tends to be linearly related to
another lengthscale L (L11 ≈ 0.43L) in turbulent flows with sufficiently high Reynolds
number. The lengthscale L characterizes the large eddies in turbulent flows and is de-
fined as L= k1.5/ε, where k is the turbulent kinetic energy and ε is the dissipation rate.
Thanks to the rapid development of computing power, abundant DNS data is available
for investigating the relation between L and the Reynolds number nowadays. In this
current study, the DNS results from Moser et al. [36] and Lee and Moser [37] are used
for analysis. The variation of L in the wall-normal direction is plotted in Fig. 1(a), where
inner units are adopted since the current LES aims for reasonably good resolution of the
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(a) (b)

(c)

Figure 1: Variation of the lengthscale (L+) characterizing the large eddies in turbulent flows. (a) shows the
variation of L+ with y+ at different Reynolds numbers, (b) shows the variation of L+ with Reτ at different
wall-normal distances and (c) shows the variation of the power coefficient C with y+. The DNS results are from
Moser et al. [36] and Lee and Moser [37].

near-wall region. It can be found that the variation of L with Reynolds number is much
smaller in the near-wall region (y+< 100) compared to that near the channel centreline
(y+/Reτ > 0.5). The variation of L+ is further compared at different values of y+ in
Fig. 1(b). It may be seen that the lengthscale L+ does not vary much near the wall and
the dependence on Reynolds number only becomes significant for y+>50. L+ grows as
the Reynolds number increases, but at a rate that is slower than that for a linear growth. It
is thus reasonable to represent the relationship between L+ and Reτ as a power function
L+∼ReC

τ , where C<1 is the power coefficient.
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The power coefficient C can be derived by fitting the curves in Fig. 1(b) with a power
trendline and the results are shown in Fig. 1(c). It is found that the power coefficient
C starts from a very small value near the wall and increases towards the channel cen-
treline. Hence, the characteristic lengthscale L+ increases with Reynolds number more
rapidly nearer to the channel centreline. As discussed previously, 90% of the turbulent
kinetic energy can be captured if the motions with lengthscales larger than 0.16×0.43L+

are resolved. We can thus conclude that a roughly fixed percentage (say 90%) of the tur-
bulent kinetic energy can be resolved by LES if the mesh size varies linearly with L+ as
the Reynolds number changes. Since L+ is almost independent of Reynolds number in
the viscous sublayer (C≈0 for y+<5), the same grid spacing needs to be maintained in
the near-wall region in the wall normal direction, i.e., a constant ∆y+w for all Reynolds
numbers. On the other hand, the mesh spacing dependency on the Reynolds number is
more significant away from the wall (y+ > 5) and we have ∆y+c , ∆x+, ∆z+∼ L+∼ReC

τ .
Apparently, it is not realistic or necessary to vary ∆y+c , ∆x+, ∆z+ with the distance from
the wall, since ∆y+c represents the mesh size in the wall-normal direction at the channel
centreline, and ∆x+, ∆z+ are uniform throughout the channel. For a fixed value of C,
∆y+c , ∆x+, ∆z+∼ReC

τ actually represents a weighted relation for the whole channel ac-
cording to the effect of different regions. Considering that all turbulent channel flows
show a log-law region, we choose the values of C within that region. Hence, the selection
of C is arbitrary between 0.2 and 0.35, corresponding to the values of C for 40<y+<150,
which is a common log-law region for flows with Reτ≥395. A smaller C value indicates
a weaker mesh size dependency on Reynolds number, suggesting a finer mesh config-
uration and more turbulent kinetic energy resolved. A larger C value corresponds to a
coarser mesh configuration and less turbulent kinetic energy resolved. For this current
study, we have adopted C=0.3 as a good compromise and the scaling of ∆x+, ∆z+, ∆y+c
with Reτ can thus be prescribed as

∆x+= ax Re0.3
τ , ∆z+= az Re0.3

τ and ∆y+c = ay Re0.3
τ ,

where ax, az and ay are constant coefficients. The relation between the number of nodes
and the Reynolds number can thus be determined as follows:

Nx−1=
Lx

δ

Re0.7
τ

ax
,

Nz−1=
Lz

δ

Re0.7
τ

az
,

Ny−1=
Re0.7

τ

ay

[
ln
(

4ay

∆y+w

)
+0.3lnReτ

]
.

(3.4)

The effect of 0.3lnReτ in Eq. (3.4) is not important for the Reynolds numbers in the present
paper, which is subsumed by the much larger term ln( 4ay

∆y+w
). Hence, we are able to de-

rive the scaling relation between the number of grid nodes and the Reynolds number
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as Nxyz∼Re2.1
τ ∼Re1.85. This is consistent to the estimation by Chapman [38] for LES in

aerodynamic applications, where Nxyz scales with Re1.8. For the current study, the com-
putational domain size is fixed as Lx = 2πδ and Lz = πδ for all numerical simulations
at different Reynolds numbers, where δ is the half-channel height. Lozano-Duran and
Jimenez [39] have shown that further increasing the domain size does not show signifi-
cant advantage for Reynolds numbers up to Reτ =4200.

4 Simulation and discussion

In this section, the mesh-size scaling law introduced in the preceding section is validated
with LES of channel flow at different Reynolds numbers. The simulation results are dis-
cussed and verified against published data.

4.1 Mesh configuration

In most DNS studies of channel flow [36,37,39,40] the mesh resolution in the wall-parallel
directions is ∆x+≈10 (streamwise) and ∆z+≈6 (spanwise), which does not show obvious
dependence on the Reynolds number. However, large variations are noted for the mesh
spacing in the wall-normal direction among different studies, where ∆y+w varies from 0.01
to 0.5 and ∆y+c varies from 3.4 to 12.5. Though the mesh requirement is not as strict as
DNS, a relatively fine mesh is still required in LES to resolve the near-wall region with
a reasonable accuracy. In this section, the mesh size is varied at Reτ = 395 to determine
how the LES results would be affected. In the current LES study, the mesh spacing is kept
in the same order of magnitude as that used in DNS studies though the overall mesh is
coarser. The SGS turbulence modelling used in LES is expected to resolve the flow field
on a coarser mesh with reasonable accuracy and to reduce the computational cost signif-
icantly. ∆y+w = 0.2 is applied for all LES studies in this paper to yield sufficiently good
near-wall resolution since the viscous sublayer does not vary much with the Reynolds
number and needs to be resolved in nearly the same manner as DNS. Such a wall bound-
ary resolution is better than the suggested value (0.5≤∆y+w≤2) in wall-resolved LES [29],
and is quite close to that in some DNS studies. In that case, the damping function is
applied to prevent excessive turbulent modelling near the wall, which was explained in
Section 2.1. The SGS turbulence modelling used in LES is expected to resolve the flow
field on a coarser mesh with reasonable accuracy and to reduce the computational cost
significantly compared to DNS. Meanwhile, the time step size is selected to be sufficiently
small so that the average CFL number is below 0.2 and the maximum CFL number is be-
low 0.6. The complete parameters of the mesh configuration can be referred to in Table 1.
The simulation time of the three LES cases was at least Tuτ/δ=80 for the flow to become
stable, which is much longer than the time used in most DNS studies (Tuτ/δ≈10). The
simulation running time is around 1 week (48 CPU cores) at Reτ =395, 1 month (72 CPU
cores) at Reτ =590 and 4 months (120 CPU cores) at Reτ =1000.
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Table 1: Mesh configurations at Reτ =395.

Name ∆x+ ∆z+ ∆y+c Nx Nz Ny
Re395F 19.1 15.5 18.2 131 81 131
Re395 16.5 12.4 15.3 151 101 151

Re395M 14.6 10.3 13.1 171 121 171

Table 2: Parameters at all Reynolds numbers in the present study. The bulk Reynolds number is defined as
Re=(2δUb)/ν and the bulk velocity Ub is calculated as the quotient of the mean volume flow rate and the
channel cross section area.

Name Reτ Re ∆x+ ∆z+ ∆y+c Nx Nz Ny Tuτ/δ κ B
Re395 394.97 13950 16.5 12.4 15.3 151 101 151 200 0.399 5.19
Re590 589.92 21990 14.6 14.3 17.3 201 131 201 140 0.396 4.97
Re1000 1000.00 40090 21.7 16.5 20.1 291 191 301 80 0.397 5.01

The mean streamwise velocity profiles determined by LES with the above mesh con-
figurations are plotted and compared with the DNS result from Moser et al. [36] in Fig. 2.
It can be found that the velocity profile deviates from the DNS data a lot if the LES
model is turned off with the mesh configuration ”Re395”. On the other hand, the re-
sults from LES match fairly well with those from DNS throughout the whole channel
for all three LES cases. In general, more accurate results are obtained with a finer mesh
(more computation nodes) in LES. The deviation from DNS results is apparently larger
in the case ”Re395F” with fewer computational nodes and larger mesh spacings, espe-
cially in the channel centreline region (y+ > 0.3Reτ). Nevertheless, the improvement of
case ”Re395M” compared to case ”Re395” is already marginal, which implies that a 54%
increase in the mesh nodes hardly improves the simulation results. Hence, the mesh
configuration ”Re395” shows a good balance between numerical accuracy and computa-
tional cost at Reτ = 395; and it may thus be used to determine the mesh configurations
at even higher Reynolds numbers with the help of the mesh size scaling law introduced
in the preceding section. The values of ax, az and ay can be determined from the mesh
configuration at Reτ = 395 as follows, as well as the scaling relation between mesh size
and Reynolds number: 

∆x+= ax Re0.3
τ ≈2.7Re0.3

τ ,

∆z+= az Re0.3
τ ≈2.1Re0.3

τ ,

∆y+c = ay Re0.3
τ ≈2.5Re0.3

τ .

(4.1)

Simulations were conducted for higher Reynolds numbers at Reτ =590 and 1000, where
the mesh size and number are determined with the scaling law introduced in Section 3.
The coefficients have been calculated in Eq. (4.1) with the mesh configuration at Reτ=395.
The values of ax, az and ay are maintained at approximately 2.7, 2.1 and 2.5, respectively,
for the mesh configurations at Reτ =590 and 1000. The complete mesh parameters in the
current study are summarized in Table 2, and the comparison with the theoretical values
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Figure 2: Mean streamwise velocity profile for Reτ =395 with different mesh configurations. The DNS result is
from Moser et al. [36].

Figure 3: Comparison of the theoretical mesh size given by Eq. (4.1) and the actual mesh size in Table 2.
Uniform mesh size is used in x and z directions, the y direction shows the mesh size at the channel centre.

given by Eq. (4.1) is shown in Fig. 3. It can be seen that the adopted mesh size follows the
scaling relation very well.
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4.2 Mean velocity

The mean streamwise velocity profiles are plotted in Fig. 4 for the data sets listed in
Table 2. By fulfilling the mesh size scaling law, it can be found that consistent results are
obtained as the Reynolds number (Reτ) increases from 395 to 1000–good agreement with
the DNS result throughout the whole channel. This verifies that the mesh size scaling
relation introduced in Section 3 is capable of ensuring consistent results as the Reynolds
number varies. Fig. 4 also shows that the velocity profiles at different Reynolds numbers
collapse well onto a common trend line in the log law region, whose extent increases with
Reτ. The log-law relation is written as follows,

U+=
1
κ

lny++B, (4.2)

where κ is the von Kármán constant and B is another constant. The values of κ and B were
determined for all cases in Table 2 by fitting the mean velocity data from 50<y+<0.3Reτ

with R2=0.999, where R2 is the coefficient of determination (R2=1 stands for a perfect fit).
The values of κ and B show good consistency among various Reynolds numbers and are
very close to those in the DNS studies [36,37], κ=0.399 and B=5.02 (Reτ=395), κ=0.400
and B=5.05 (Reτ=590), κ=0.397 and B=4.86 (Reτ=1000). Meanwhile, the present values
agree well with those suggested by Pope [25], which are 0.41 and 5.2 respectively; and
those reported in the experiment by Schultz and Flack [41], κ=0.40 and B=5.0. Overall,
the current LES gives a good prediction of the mean velocity profile for a channel flow
and the grid size scaling law ensures consistent results as the Reynolds number varies.
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Figure 4: Comparison of the mean streamwise velocity profiles between LES and DNS at different Reynolds
numbers. The DNS results at Reτ =395 and 590 are from Moser et al. [36], and those at Reτ =1000 are from
Lee and Moser [37].
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4.3 Shear stress and Reynolds stress

In a fully developed channel flow driven by a constant pressure gradient, the total shear
stress (τ) follows a linear profile in the wall-normal (y) direction, which in both laminar
and turbulent flows. The linear shear stress profile is given by Eq. (4.3)

τ(y)=τw

(
1− y

δ

)
, (4.3)

where τw = τ (y= 0) is the wall shear stress. For a turbulent flow, the total shear stress
(τ) is the sum of the viscous shear stress (ρν∂〈U〉/∂y) and the Reynolds shear stress
(−ρ〈uv〉), where the terms with the angle brackets 〈 〉 denote the time-mean values. In
LES studies, an additional term (−〈τD

xy〉) is included in the total shear stress due to the
SGS turbulence modelling. The composition of the total shear stress in the current LES
can be derived by taking the time-mean of the x-momentum equation from Eq. (2.2b) as
follows.

ρ
∂

∂y

[
ν

∂〈Ū〉
∂y
−〈ūv̄〉−

〈
τD

xy

〉]
=

∂〈 p̃〉
∂x

.

Since the mean pressure gradient along the x-direction is a prescribed constant, we have
the total shear stress for LES shown in Eq. (4.4)

τ=ρν
∂〈Ū〉

∂y
−ρ〈ūv̄〉−ρ

〈
τD

xy

〉
, (4.4)

where ū, v̄ represent the fluctuation of the filtered velocity (e.g., ū = Ū−〈Ū〉) and the
SGS stress tensor τD

ij is calculated from the LES modelling (see Section 2.1 for details).
In addition to the viscous shear stress and the grid-scale Reynolds shear stress, the total
shear stress comprises another modelled stress, i.e.,−ρ〈τD

xy〉. Profiles of the shear stresses
are plotted in Figs. 5(a), (c) and (e), where linear variation of the total shear stress is ob-
tained for all Reynolds numbers in the current study. It is apparent that the viscous shear
stress dominates in the near-wall region but becomes negligibly small compared with the
Reynolds shear stress as the distance from the wall increases. The peak of the grid-scale
Reynolds shear stress increases with the Reynolds number, and so is the modelled shear
stress. The modelled shear stress is mostly confined within a small region near the wall,
for which its change is rapid, especially near the peak. It can be found that the small
region is roughly between the range of 3< y+<10 if the shear stresses are plotted using
the wall viscous units. The rapid variation is because τD

ij largely depends on the local
velocity gradient and the grid size, which show large variations in the near wall region.

The other non-zero components of the Reynolds stress tensor (i.e., 〈ū2〉, 〈v̄2〉 and 〈w̄2〉,
where ρ is omitted for simplification) are shown in Figs. 5(b), (d) and (f), together with the
comparison with DNS data. In generally, the above Reynolds normal stresses obtained
by LES are lower than the DNS data. The current LES has predicted almost equal peaks
for 〈ū2〉 compared to the published DNS data, and smaller peaks are captured by the
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current LES for the other two components. Meanwhile, the locations of the peak values
for LES are very close to those for DNS. The mismatch with DNS data is expected and is
also reported in LES studies on channel flow by Lenormand et al. [35], Chatzikyriakou
et al. [42], Kermani et al. [43] and others. The underestimation of the Reynolds stresses is
not surprising, since LES is performed on a coarser mesh and the filtered velocity cannot
contain as many fluctuations as the fully-resolved velocity in DNS. In addition, veloc-
ity fluctuations are further inhibited by the SGS turbulence modelling through the eddy
viscosity vt, which increases the effective flow viscosity and friction. Despite the above-
mentioned discrepancy with the DNS data, the overall trend of the curves is the same as
that in DNS at the same flow condition. More importantly, the variation of the curve with
Reynolds number is consistent with that in DNS. Following the mesh scaling law, we can
thus give reasonably good prediction to a flow with even higher Reynolds number at
significantly lower computational cost.

4.4 Turbulent kinetic energy

The turbulent kinetic energy (TKE) in large eddy simulation consists of two parts, i.e.,
the grid-scale TKE and subgrid-scale TKE. The GS-TKE is calculated directly from the
filtered/resolved flow field, while the SGS-TKE can only be modelled. The calculation of
GS-TKE is the same as the TKE in DNS, i.e., kgs = 〈ūiūi〉/2. In the Smagorinsky model,
the assumption is made that the transfer rate of energy (−τD

ij S̄ij) to the sub-grid motions
is balanced by SGS dissipation (εsgs), which can thus be modelled as follows:

εsgs =τD
ij S̄ij =−νtS̄2=−C2

s ∆2S̄3. (4.5)

The relation between the SGS dissipation and the SGS-TKE can be further modelled as

εsgs =−
Cε

∆
k3/2

sgs ,

which is commonly used in the model transport equation of SGS-TKE [15, 16, 19, 30].
Hence, the SGS-TKE can be determined as follows:

ksgs =
(
− ∆

Cε
εsgs

) 2
3

=C
4
3
s C−

2
3

ε ∆2S̄2, (4.6)

where Cs ≈ 0.1 as discussed in Section 2.1, and Cε ≈ 1 as suggested by Lilly [30] and
Yoshizawa and Horiuti [15], which have been adopted in current study. The variations
of the GS-TKE and the SGS-TKE are shown in Figs. 6(a)-(c), as well as the comparison
with DNS data. Comparison of the GS-TKE and the SGS-TKE clearly shows that current
LES can resolve most of the turbulent kinetic energy in the grid scale. It can be found
that the GS-TKE obtained by LES is generally smaller than the TKE in DNS and the peak
locations are quite close for the two types of simulations. This is consistent with the
results in Section 4.3, considering that the GS-TKE is calculated as

kgs =
1
2
(〈ū2〉+〈v̄2〉+〈w̄2〉).
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The total TKE (GS+SGS) in LES matches with the TKE in DNS fairly well for all Reynolds
numbers in the current study, especially in the near-wall region (y+<10), where the total
TKE is almost accurately predicted with the current LES configurations. In addition,
the variation of the turbulent kinetic energy with Reynolds number is consistent with
that for DNS, which verifies that the grid size scaling law is helpful for determining the
appropriate mesh configuration so that roughly the same amount of turbulent kinetic
energy can be resolved at different Reynolds numbers.

In the LES formulation, the TKE transport equation, which governs the evolution of
the GS-TKE, is given by Eq. (4.7). Detailed derivation of the equation can be referred to
in Appendix B

∂kgs

∂t
+〈Ūi〉

∂kgs

∂xi

=−
〈
ūiūj

〉 ∂
〈
Ūj
〉

∂xi︸ ︷︷ ︸
production (P)

−1
2

∂
〈
ūiūjūj

〉
∂xi︸ ︷︷ ︸

turbulent transport

+ν
∂2kgs

∂xi∂xi︸ ︷︷ ︸
viscous diffusion

−ν

〈
∂ūj

∂xi

∂ūj

∂xi

〉
︸ ︷︷ ︸

dissipation (ε)

−1
ρ

∂〈ūi p̃′〉
∂xi︸ ︷︷ ︸

pressure transport

−
〈

ūj
∂τD

ij

∂xi

〉
. (4.7)

The above formulation is different from the TKE transport equation in DNS, which can
be found in Pope [25] and Lee and Moser [37]. In addition to the five named terms, we
have one more term originating from the SGS stress tensor (τD

ij ), which can be further
decomposed into two terms as follows:

−
〈

ūj
∂τD

ij

∂xi

〉
=−

∂
〈

ūjτ
D
ij

〉
∂xi

−
(
−
〈

τD
ij s̄ij

〉)
,

where −〈τD
ij s̄ij〉 is the fluctuational contribution of the entire mean kinetic energy trans-

ferred to the sub-grid-scale motions(
−
〈

τD
ij S̄ij

〉
=−

〈
τD

ij

〉〈
S̄ij
〉
−
〈

τD
ij s̄ij

〉)
.

Hence, it represents the kinetic energy loss from the grid-scale motion to the sub-
grid-scale motion due to the grid-scale fluctuational flow motion. The other term,
−∂〈ūjτ

D
ij 〉/∂xi, has the same form as the transport terms in Eq. (4.7), which may thus

be understood as the SGS stress transport. The balance of the TKE budget is calculated
by summing up all the terms on the right-hand side of Eq. (4.7), which should theoret-
ically be equal to zero under statistically stationary flow conditions. The balance of the
TKE budget is plotted in Fig. 6(d), where the notation ”w” denotes balance curves with
the additional term in Eq. (4.7), while ”w/o” indicates the curves without the additional
term. Schiavo et al. [44] have also investigated the TKE budget in LES for a channel flow,
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Figure 6: Turbulent kinetic energy and balance of TKE budget. (a), (b) and (c) show the variation of the
turbulent kinetic energy (including GS-TKE, SGS-TKE and the summation) at different Reynolds numbers,
as well as the comparison with DNS result. (d) shows the balance of the TKE budget in LES formulation.
The DNS results at Reτ =395 and 590 are from Moser et al. [36] and those at Reτ =1000 are from Lee and
Moser [37].

but did not consider the last term in Eq. (4.7). The variation of the balance curves ob-
tained by them is of the same order of magnitude (∼0.05u4

τ/v) as the curves without the
additional term in Fig. 6(d). The balance curves are significantly improved when the ad-
ditional term is taken into account. The maximum value of the balance is approximately
0.01u4

τ/v and occurs near y+=10, which is largely independent of the Reynolds number.
The slightly numerical imbalance is induced by the limited resolution of the mesh as well
as the rapid variation of the grid size and the velocity gradient near the wall. Further-
more, we may find that consistent results for the TKE budget balance can be obtained at
different Reynolds numbers by satisfying the grid size scaling law.
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4.5 Velocity spectra

Streamwise (x−) one-dimensional spectral densities of the velocity fluctuations (Euu(κx),
Evv(κx) and Eww(κx)) are shown in Figs. 7-9, where κx represents the wavenumber in
the streamwise direction. The current LES results are compared against the DNS results
from literature [36, 37] at Reτ = 395, 590 and 1000; the velocity spectra are measured at
two distances from the wall, i.e., y+ = 20 and 40. It can be found from the comparison
that the LES results match the DNS results fairly well in the low-wavenumber region and
deviate in the high-wavenumber region. This is consistent with expectations, since the
dynamics of the larger-scale motions (corresponding to smaller κx) are computed explic-
itly in LES and the influence of the smaller scales (corresponding to larger κx) is taken
care of by the turbulent model. Hence, the LES is not able to compute the spectral den-
sity accurately at high wavenumbers (small motion scales). Moreover, the mesh in LES
is coarser than that in DNS, and the maximum resolved wavenumber is thus lower in
LES. As a result, the LES results show a drop of the spectral density at large wavenum-
bers compared to the DNS results, for all three velocity components. Evidently, current
LES can capture the Kolmogorov −5/3 spectrum in the inertial subrange for all veloc-
ity components, which also shows good universality among different Reynolds numbers
and y locations. Further inspection of the velocity spectra shows that the LES results

(a) Reτ =395, y+=20 (b) Reτ =590, y+=20 (c) Reτ =1000, y+=20

(d) Reτ =395, y+=40 (e) Reτ =590, y+=40 (f) Reτ =1000, y+=40

Figure 7: Streamwise (x−) one-dimensional velocity spectrum (Euu(κx)) at indicated y locations. The DNS
results at Reτ =395 and 590 are from Moser et al. [36] and those at Reτ =1000 are from Lee and Moser [37],
so are the results presented in Fig. 8 and Fig. 9.
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(a) Reτ =395, y+=20 (b) Reτ =590, y+=20 (c) Reτ =1000, y+=20

(d) Reτ =395, y+=40 (e) Reτ =590, y+=40 (f) Reτ =1000, y+=40

Figure 8: Streamwise (x−) one-dimensional velocity spectrum (Evv(κx)) at indicated y locations.

can match the DNS results up to a higher wavenumber at smaller y location (y+ = 20
versus 40). This means that the region nearer to the wall is better resolved, which is in-
tended in current wall-resolved LES and agrees well with the turbulent statistics in the
preceding sections. Notably, the spectral density decreases rapidly as the wavenumber
increases, which shows that the bulk of the turbulent kinetic energy is contained in the
low-wavenumber (large-scale) motions. This is also consistent to the analysis of the tur-
bulent kinetic energy in Section 4.4. Last but not least, the good match of the LES results
and the DNS results at different Reynolds numbers verifies that the mesh configuration
determined by the grid size scaling law can capture the velocity spectra reasonably well
as the Reynolds number varies.

4.6 Flow structures

Streaks are very important flow structures and show up frequently in wall-bounded tur-
bulent shear flows, which represent elongated regions with low instantaneous stream-
wise velocity. On the other hand, the fluid between the streaks moves relatively faster.
Streaks have been visualized in the near-wall region in both experiments and numeri-
cal simulations [40, 45–47]. Near the wall, the streaks are randomly distributed with a
spacing of approximately 80 to 120 wall units (δv), which is independent of the Reynolds
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(a) Reτ =395, y+=20 (b) Reτ =590, y+=20 (c) Reτ =1000, y+=20

(d) Reτ =395, y+=40 (e) Reτ =590, y+=40 (f) Reτ =1000, y+=40

Figure 9: Streamwise (x−) one-dimensional velocity spectrum (Eww(κx)) at indicated y locations.

number [25]. The streak patterns are visualized in Figs. 10(a)-(c), where the instantaneous
velocity contours are plotted in the wall-parallel planes at y+= 15. It can be found that
the distribution of streaks agrees well with that reported in literature, which exhibits a
spacing of around 100 wall units (δv) and shows no dependency on the Reynolds num-
ber. In the near-wall region, streamwise vortices (rolls) are identified as the dominant
vortical structures for a turbulent flow [48,49]. Such streamwise vortices lift up the slow-
moving fluid near the wall on one side (left or right side of the vortex core), while bring-
ing down the fast-moving fluid away from the wall on the other side, which contributes
to the streaks in the wall-parallel planes. Head and Bandyopadhyay [50] suggested that
the streamwise vortices further stretch away from the wall to form horseshoe (hairpin)
vortices. The near-wall vortical structures are visualized by λ2 iso-surfaces at Reτ = 395
in Fig. 10(d). The streamwise vortices near the wall can be identified clearly, including
the upward stretching at the downstream and the appearance of horseshoe vortices (in-
dicated by the dashed curves). We can thus conclude that the current LES is capable of
capturing the important turbulent flow structures reasonably well. Moreover, consistent
flow topology can be obtained as the mesh size scaling law is satisfied.
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(a) (b)

(c) (d)

Figure 10: Near-wall streaks and vortical structures. (a), (b) and (c) show the streak patterns at y+=15 for
Reτ=395, 590 and 1000, respectively. Dark regions represent low speed regions, whereas bright regions represent
high speed regions. (d) shows the near-wall vortical structures at Reτ = 395, vortex strands are visualized by
iso-surfaces of λ2 =−0.0025, normalized by inner units.

5 Conclusions

In this paper, large eddy simulation (LES) is applied to a turbulent plane channel flow,
where a grid size scaling law is developed to determine the appropriate mesh configu-
ration as the Reynolds number is varied. An optimal mesh configuration is firstly de-
termined at a relatively low Reynolds number (Reτ = 395), which shows good balance
between computational accuracy and cost. The mesh configurations at higher Reynolds
numbers can thus be determined with the mesh size scaling law. Simulations have been
conducted at various Reynolds numbers (Reτ = 395, 590 and 1000) to validate the grid
size scaling law with extensive comparison against published results. The current LES
is able to predict the mean velocity profile accurately for all Reynolds numbers under
investigation. The von Káarmán constant obtained in the current study agrees well with
that reported in the literature. Good linear variation of the total shear stress with dis-
tance from the channel wall is obtained in the current study, which is an important dis-
tinguishing feature for a plane channel flow. In addition, the grid-scale Reynolds stress
tensor is calculated with reasonably good accuracy. By taking both the grid-scale and
subgrid-scale turbulent kinetic energy (TKE) into consideration, the overall TKE matches
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surprisingly well with that from DNS studies in the near-wall region. Good balance of
the TKE budget is also obtained by formulating the grid-scale TKE transport equation
in LES. The velocity spectra obtained from LES are consistent with that from DNS, espe-
cially in the low-wavenumber region. Meanwhile, the Kolmogorov −5/3 power law is
evident in the spectra. This suggests that the bulk of the turbulent kinetic energy can be
resolved directly, which is intended in current LES. Lastly, the near-wall streaks and vor-
tical structures can be well captured. Hence, we can conclude that reasonably accurate
results can be obtained with the current LES. More importantly, extensive validation has
shown that the variation of the results with Reynolds number is consistent with that for
DNS if the grid size scaling law is satisfied. We can thus obtain reasonably good predic-
tions for flows at even higher Reynolds numbers with significantly lower computational
costs compared to DNS. Last but not the least, the current LES may also be applied to
other wall bounded turbulent shear flows, such as pipe flows, boundary layer flows and
channel flows with modified geometries and boundary conditions. The reason is because
sufficiently good near-wall resolution is used in the current wall-resolved LES, and the
near-wall viscous region is resolved in nearly the same manner as DNS. In addition, the
selection of the power coefficient in the grid size scaling law corresponds to the value
in the range of 40 < y+ < 150 (see the discussion in Section 3), where the variation of
physical quantities is relatively less dependent on the boundary. On the other hand, val-
idation and grid size testing are still essential at low Reynolds numbers to find out the
appropriate mesh configuration, before the mesh size scaling law can be applied. Similar
mesh size scaling law and LES model have been applied in the study of turbulent flow
drag reduction by the superhydrophobic surface [51], which has more complex boundary
conditions than plane channel flows.

Appendix A: Numerical schemes in OpenFOAM

In this section, the original NS equation for incompressible flows (without turbulence
modelling) is considered to illustrate the numerical schemes in OpenFOAM. Simple
schemes are selected for the purpose of demonstration, which might be different from
the schemes used in the present study.

Discretization

Integrating the NS equation

(
∂U
∂t

+∇·(UU)−∇·(ν∇U)+∇p=0
)
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over the cell volume V centered at the point P yields and applying the Gauss theorem (S
stands for cell face area) result in the following:

∂UP

∂t
+

1
V ∑

f
U f φ f−

1
V ∑

f
ν
(
n f ·∇U f

)
S f +

1
V ∑

f
p f n f S f =0,

where φ=U·nS f is defined as the surface flux, U f and p f are the cell face values.
The terms in the above equations are discretized or interpolated as follows (Euler

backward scheme used for simplicity)(
1

∆t
+∑

f

(
φ f a f P−νa′ f P

))
Un+1

P +∑
f

(
φ f a f N−νa′ f N

)
Un+1

f N

+∑
f

(
a′′ f P pn+1

P +a′′ f N pn+1
f N

)
n f =

1
∆t

Un
P.

The letters (a,a′,a′′) represent the discretization/interpolation coefficients containing the
mesh geometry information and boundary conditions, the values of which depend on
the schemes. N stands for the neighboring cell centre. The reader may refer to the Open-
FOAM documentation for more details about different discretization schemes.

Defining vectors

x1=


U1
U2
...

UM−1
UM

, x2=


V1
V2
...

VM−1
VM

, x3=


W1
W2

...
WM−1
WM

, x4=


p1
p2
...

pM−1
pM

,

where M is the total number of computational cells. The above discretization of the x-
momentum equation for all computational cells can be written as follows:(

1
∆t

I+B
)

xn+1
1 =

1
∆t

xn
1−Cxxn+1

4 .

Similarly, the y-momentum equation and the z-momentum equation can be derived for
x2 and x3.

Pressure Poisson equation

Velocity (x1, x2 and x3) and pressure (x4) are coupled in the above linear system of equa-
tions, which is usually not solved directly. In the PISO algorithm, the linear system of
equations is split into an implicit predictor step and multiple explicit corrector steps. A
pressure Poisson equation is formed for the corrector step in the PISO algorithm(

1
∆t

+∑
f

(
φ f a f P−νa′ f P

))
Un+1

P +∑
f

(
φ f a f N−νa′ f N

)
Un+1

f N =
1

∆t
Un

P−∇pn+1
P
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is exact and can be rearranged as follows:

Un+1
P =

1
( 1

∆t +∑
f

(
φ f a f P−νa′ f P

)
)

(
1

∆t
Un

P−∑
f

(
φ f a f N−υa′ f N

)
Un+1

f N −∇pn+1
P

)
,

Un+1
P =

1
AP

(
1

∆t
Un

P−∑
f

APNUn+1
f N −∇pn+1

P

)
,

with
AP =

1
∆t

+∑
f

(
φ f a f P−νa′ f P

)
are the diagonal entries of the matrix(

1
∆t

I+B
)

and APN =φ f a f N−υa′ f N

are the off-diagonal entries.
Defining vector

hn+1
P =

1
∆t

Un
P−∑

f
APNUn+1

f N (source term minus off-diagonal terms),

we can further define another vector

un+1
P,HbyA =

hn+1
P
AP

=
Un

P
∆tAP

−
∑
f

APNUn+1
f N

AP

and construct a 3×M matrix

Kn+1
HbyA =

[
un+1

P,HbyA

]
P=1,2,3,···,M

.

Hence, we have

Un+1
P =un+1

P,HbyA−
1

AP
∇pn+1

P .

The values of Un+1, un+1
HbyA and ∇pn+1 are interpolated from cell centres to cell faces and

Un+1
P, f =un+1

P, f ,HbyA−
1

AP, f
∇pn+1

P, f

is derived.
According to the continuity equation,

∇·Un+1
P =0,
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we thus have:

∑
f

Un+1
P, f ·n f S f =∑

f

(
un+1

P, f ,HbyA−
1

AP, f
∇pn+1

P, f

)
·n f S f =0,

∑
f

1
AP, f
∇pn+1

P, f ·n f S f =∑
f

un+1
P, f ,HbyA ·n f S f .

If we ignore the difference between AP and AP, f , the above equation is the discretized
form of

1
AP

∫
V
∇2 pn+1

P dV=
∫

V
∇·un+1

P,HbyAdV.

Hence, the pressure Poisson equation is derived as follows:

1
AP
∇2 pn+1

P =∇·un+1
P,HbyA.

pn+1
P can be solved from the above pressure Poisson equation. Hence,

1
AP

∫
S

n f ·∇pn+1
f dS=

∫
S

n f ·un+1
P, f ,HbyAdS,

1
AP

∑
f

S f

(
g f P pn+1

P +g f N pn+1
f N

)
=∑

f
n f ·un+1

P, f ,HbyAS f ,

1
AP

(
∑

f
S f g f P

)
pn+1

P +
1

AP
∑

f
S f g f N pn+1

f N =∑
f

φn+1
P, f ,HbyA.

The above discretization (the letter g represents discretization coefficients) for all compu-
tational cells can be written as follows

Gxn+1
4 =

[
∑

f
φ f ,HbyA

]n+1

.

PISO algorithm

Predictor

APUr
P+∑

f
APNUr

f N =
1

∆t
Un

P−∇pn
P
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is solved with the Gauss-Seidel smooth solver. In the form of a linear matrix system
(Ax=b), 

(
1

∆t
I+B

)
xr

1=
1

∆t
xn

1−Cxxn
4 ,(

1
∆t

I+B
)

xr
2=

1
∆t

xn
2−Cyxn

4 ,(
1

∆t
I+B

)
xr

3=
1

∆t
xn

3−Czxn
4 .

Corrector

The intermediate velocity and pressure are denoted by U∗ and p∗, respectively.
Let U∗=Ur. The following quantities are derived:

u∗P,HbyA =
Un

P
∆tAP

−
∑
f

APNU∗f N

AP
and φ∗P, f ,HbyA =u∗P, f ,HbyA ·n f S f .

The pressure Poisson equation is solved for p∗ with the GAMG solver:

1
AP

(
∑

f
S f g f P

)
p∗P+

1
AP

∑
f

S f g f N p∗f N =∑
f

φ∗P, f ,HbyA.

In the form of a linear matrix system (Ax=b),

Gx∗4 =

[
∑

f
φ f ,HbyA

]∗
.

U∗ is updated using

U∗P =u∗P,HbyA−
1

AP
∇p∗P.

The above two steps are repeated until convergence is achieved, then

Un+1=U∗, pn+1= p∗.

The PISO algorithm can be summarized with the figure below.

Appendix B: Grid-scale TKE transport equation in LES

Mean momentum equation:

∂
〈
Ūj
〉

∂t
+

∂〈Ūi〉
〈
Ūj
〉

∂xi
=υ

∂2〈Ūj
〉

∂xi∂xi
− 1

ρ

∂〈 p̃〉
∂xj
−

∂
〈
ūiūj

〉
∂xi

−
∂
〈

τD
ij

〉
∂xi

,

∂
〈
Ūj
〉

∂t
+

∂〈Ūi〉
〈
Ūj
〉

∂xi
=υ

∂2〈Ūj
〉

∂xi∂xi
− 1

ρ

∂〈 p̃〉
∂xj
−

∂
〈
ūiūj

〉
∂xi

+
∂
〈
2υtS̄ij

〉
∂xi

.
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Figure 11: Flow chart for the PISO algorithm.

Fluctuating momentum equation:

∂ūj

∂t
+

∂ūi
〈
Ūj
〉

∂xi
+

∂〈Ūi〉ūj

∂xi
+

∂ūiūj

∂xi

=υ
∂2ūj

∂xi∂xi
− 1

ρ

∂ p̃′

∂xj
+

∂
〈
ūiūj

〉
∂xi

+
∂τD

ij

∂xi
−

∂
〈

τD
ij

〉
∂xi

.

Multiplying the fluctuating momentum equation by ūj

ūj
∂ūj

∂t
+ūj

∂ūi
〈
Ūj
〉

∂xi
+ūj

∂〈Ūi〉ūj

∂xi
+ūj

∂ūiūj

∂xi

=νūj
∂2ūj

∂xi∂xi
− 1

ρ
ūj

∂ p̃′

∂xj
+ūj

∂
〈
ūiūj

〉
∂xi

+ūj
∂τD

ij

∂xi
−ūj

∂
〈

τD
ij

〉
∂xi

.
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Take the mean of the above equation to derive the grid-scale turbulent kinetic energy
(kgs = 〈ūiūi〉/2) equation:

∂kgs

∂t
+〈Ūi〉

∂kgs

∂xi

=−
〈
ūiūj

〉 ∂
〈
Ūj
〉

∂xi︸ ︷︷ ︸
production (P)

−1
2

∂
〈
ūiūjūj

〉
∂xi︸ ︷︷ ︸

turbulent transport

+ν
∂2kgs

∂xi∂xi︸ ︷︷ ︸
viscous diffusion

−ν

〈
∂ūj

∂xi

∂ūj

∂xi

〉
︸ ︷︷ ︸

dissipation (ε)

−1
ρ

∂〈ūi p̃′〉
∂xi︸ ︷︷ ︸

pressure transport

−
〈

ūj
∂τD

ij

∂xi

〉
.
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[7] O. MÉTAIS, AND M. LESIEUR, Spectral large-eddy simulation of isotropic and stably stratified
turbulence, J. Fluid Mech., 239 (1992), pp. 157–194.

[8] M. LESIEUR, AND O. METAIS, New trends in large-eddy simulations of turbulence, Ann. Rev.
Fluid Mech., 28(1) (1996), pp. 45–82.

[9] F. NICOUD, AND F. DUCROS, Subgrid-scale stress modelling based on the square of the velocity
gradient tensor, Flow Turbul. Combus., 62(3) (1999), pp. 183–200.

[10] W. ROZEMA ET AL., Minimum-dissipation models for large-eddy simulation, Phys. Fluids, 27(8)
(2015), 085107.

[11] A. P. ZAHIRI, AND E. ROOHI, Anisotropic minimum-dissipation (AMD) subgrid-scale model
implemented in OpenFOAM: verification and assessment in single-phase and multi-phase flows,
Comput. Fluids, 180 (2019), pp. 190–205.

[12] A. P. ZAHIRI, AND E. ROOHI, Assessment of anisotropic minimum-dissipation (AMD) subgrid-
scale model: Gently-curved backward-facing step flow, Int. J. Modern Phys. C, 32(05) (2021),
2150068.

[13] J. DEARDORFF, The use of subgrid transport equations in a three-dimensional model of atmospheric
turbulence, J. Fluids Eng., 95(3) (1973), pp. 429–438.

[14] U. SCHUMANN, Subgrid scale model for finite difference simulations of turbulent flows in plane
channels and annuli, J. Comput. Phys., 18(4) (1975), pp. 376–404.



J. Yao and C. J. Teo / Adv. Appl. Math. Mech., 14 (2022), pp. 1535-1566 1565

[15] A. YOSHIZAWA, AND K. HORIUTI, A statistically-derived subgrid-scale kinetic energy model
for the large-eddy simulation of turbulent flows, Journal of the Physical Society of Japan, 54(8)
(1985), pp. 2834–2839.

[16] S. GHOSAL ET AL., A dynamic localization model for large-eddy simulation of turbulent flows, J.
Fluid Mech., 286 (1995), pp. 229–255.

[17] C. FUREBY, ET AL., Differential subgrid stress models in large eddy simulations, Phys. Fluids,
9(11) (1997), pp. 3578–3580.

[18] S. KRAJNOVIĆ, AND L. DAVIDSON, A mixed one-equation subgrid model for large-eddy simula-
tion, Int. J. Heat Fluid Flow, 23(4) (2002), pp. 413–425.

[19] F. GALLERANO, E. PASERO, AND G. CANNATA, A dynamic two-equation sub grid scale model,
Continuum Mech. Thermodyn., 17(2) (2005), pp. 101–123.

[20] J. P. BORIS, On Large Eddy Simulation Using Subgrid Turbulence Models Comment 1, in
Whither Turbulence? Turbulence at the Crossroads, 1990, Springer, pp. 344–353.

[21] T. TAMURA, AND K. KUWAHARA, Numerical analysis on aerodynamic characteristics of an in-
clined square cylinder, 20th Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1989.

[22] D. KNIGHT, ET AL., Compressible large eddy simulation using unstructured grids, 36th AIAA
Aerospace Sciences Meeting and Exhibit, 1998.

[23] G. URBIN, AND D. KNIGHT, Large-eddy simulation of a supersonic boundary layer using an un-
structured grid, AIAA J., 39(7) (2001), pp. 1288–1295.

[24] C. MENEVEAU, AND J. KATZ, Scale-invariance and turbulence models for large-eddy simulation,
Ann. Rev. Fluid Mech., 32(1) (2000), pp. 1–32.

[25] S. B. POPE, Turbulent Flows, Cambridge University Press, (2000).
[26] Y. ZHIYIN, Large-eddy simulation: Past, present and the future, Chinese J. Aeron., 28(1) (2015),

pp. 11–24.
[27] U. PIOMELLI, AND E. BALARAS, Wall-layer models for large-eddy simulations, Ann. Rev. Fluid

Mech., 34(1) (2002), pp. 349–374.
[28] U. PIOMELLI, Wall-layer models for large-eddy simulations, Prog. Aerospace Sci., 44(6) (2008),

pp. 437–446.
[29] S. REZAEIRAVESH, AND M. LIEFVENDAHL, Effect of grid resolution on large eddy simulation of

wall-bounded turbulence, Phys. Fluids, 30(5) (2018), 055106.
[30] K. LILLY, The Representation of Small-Scale Turbulence in Numerical Simulation Experi-

ments, 1966.
[31] J. W. DEARDORFF, A numerical study of three-dimensional turbulent channel flow at large

Reynolds numbers, J. Fluid Mech., 41(2) (1970), pp. 453–480.
[32] P. MOIN, AND J. KIM, Numerical investigation of turbulent channel flow, J. Fluid Mech., 118

(1982), pp. 341–377.
[33] E. R. VAN DRIEST, On turbulent flow near a wall, J. Aeronautical Sci., 23(11) (1956), pp. 1007–

1011.
[34] U. PIOMELLI, High Reynolds number calculations using the dynamic subgrid-scale stress model,

Phys. Fluids A Fluid Dyn., 5(6) (1993), pp. 1484–1490.
[35] E. LENORMAND, ET AL., Subgrid-scale models for large-eddy simulations of compressible wall

bounded flows, AIAA J., 38(8) (2000), pp. 1340–1350.
[36] R. D. MOSER, J. KIM, AND N. N. MANSOUR, Direct numerical simulation of turbulent channel

flow up to Reτ =590, Phys. Fluids, 11(4) (1999), pp. 943–945.
[37] M. LEE, AND R. D. MOSER, Direct numerical simulation of turbulent channel flow up to Reτ =

5200, J. Fluid Mech., 774 (2015), pp. 395–415.
[38] D. R. CHAPMAN, Computational aerodynamics development and outlook, AIAA J., 17(12) (1979),



1566 J. Yao and C. J. Teo / Adv. Appl. Math. Mech., 14 (2022), pp. 1535-1566

pp. 1293–1313.
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[43] E. LAR KERMANI, E. ROOHI, AND F. PORTÉE-AGEL, Evaluating the modulated gradient model

in large eddy simulation of channel flow with OpenFOAM, J. Turbul., 19(7) (2018), pp. 600–620.
[44] L. A. SCHIAVO, W. R. WOLF, AND J. L. F. AZEVEDO, Turbulent kinetic energy budgets in wall

bounded flows with pressure gradients and separation, Phys. Fluids, 29(11) (2017), 115108.
[45] S. J. KLINE, ET AL., The structure of turbulent boundary layers, J. Fluid Mech., 30(4) (1967), pp.

741–773.
[46] H. S. KIM, S. KLINE, AND W. REYNOLDS, The production of turbulence near a smooth wall in a

turbulent boundary layer, Journal of Fluid Mech., 50(1) (1971), pp. 133–160.
[47] C. SMITH, AND S. METZLER, The characteristics of low-speed streaks in the near-wall region of a

turbulent boundary layer, J. Fluid Mech., 129 (1983), pp. 27–54.
[48] H. P. BAKEWELL JR, AND J. L. LUMLEY, Viscous sublayer and adjacent wall region in turbulent

pipe flow, The Phys. Fluids, 10(9) (1967), pp. 1880–1889.
[49] R. BLACKWELDER, AND J. HARITONIDIS, Scaling of the bursting frequency in turbulent bound-

ary layers, J. Fluid Mech., 132 (1983), pp. 87–103.
[50] M. HEAD, AND P. BANDYOPADHYAY, New aspects of turbulent boundary-layer structure, J.

Fluid Mech., 107 (1981), pp. 297–338.
[51] J. YAO, AND C. TEO, Effect of the liquid–gas interface curvature for a superhydrophobic surface

with longitudinal grooves in turbulent flows, Phys. Fluids, 33(7) (2021), 075116.


