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Abstract

In this paper, we introduce a new iterative method based on the hybrid viscosity ap-
proximation method for finding a common element of the set of solutions of a general
system of variational inequalities, an equilibrium problem, and the set of common fixed
points of a countable family of nonexpansive mappings in a Hilbert space. We prove a
strong convergence theorem of the proposed iterative scheme under some suitable condi-
tions on the parameters. Furthermore, we apply our main result for W-mappings. Finally,
we give two numerical results to show the consistency and accuracy of the scheme.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm | - || and let C be a
nonempty closed convex subset of H. A mapping T of C into itself is called nonexpansive if
[Tz —Ty| < ||z —yl| for all z,y € C. We use Fiz(T) to denote the set of fixed points T, i.e.,
Fix(T)={x € C:Tx =z}. Also, f : C — Cis a contraction if || f(z) — f(y)|| < ||z — y| for
all x,y € C and some constant x € [0,1). In this case, f is said to be a k-contraction.

Consider an equilibrium problem (EP) which is to find a point « € C satisfying the property:

¢(z,y) >0 foralyeC, (1.1)

where ¢ : C x C' — R is a bifunction of C. We use EP(¢) to denote the set of solutions of EP
(1.1), that is, EP(¢) = {x € C': (1.1) holds}. The EP (1.1) includes, as special cases, numerous
problems in physics, optimization and economics. Some authors (e.g., [12-14,17-20, 22-24])
have proposed some useful methods for solving the EP (1.1). Set ¢(z,y) = (Az,y — ) for all
x,y € C, where A : C' — H is a nonlinear mapping. Then, z* € EP(¢) if and only if

(Az*,y— 2"y >0 forally € C, (1.2)
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that is, 2* is a solution of the variational inequality. The (1.2) is well known as the classical
variational inequality. The set of solutions of (1.2) is denoted by VI(A4, C).
In 2008, Ceng et al. [5] considered the following problem of finding (z*, y*) € C x C satisfying

{<VAy*+x*—y*7$—I*> 20 forallze€C, (1.3)

(uBx* +y* —az*,x —y*) >0 forall x € C,

which is called a general system of variational inequalities, where A,B : C — H are two
nonlinear mappings, ¥ > 0 and g > 0 are two fixed constants. Precisely, they introduced the
following iterative algorithm:

r1 =Uuc O,
Yn = PC(xn - ,UJBIH);
Tntl = QpU + Bnn + ’YnSPC(yn - )\Ayn)a

where {a,,}, {8,} and {7,} are real sequences, S is a nonexpansive mapping on C, P¢ is the
metric projection of H onto C' and obtained strong convergence theorem.

The implicit midpoint rules for solving fixed point problems of nonexpansive mappings are
a powerful numerical method for solving ordinary differential equations. So, many authors have
studied them; see [2,7,10,16,21] and the references therein. In 2015, Xu et al. [21] applied the
viscosity technique to the implicit midpoint rule for nonexpansive mappings and proposed the
following viscosity implicit midpoint rule:

Tp + Tng1
2
where {a,} is a real sequence. They proved the sequence {z,} converges strongly to a fixed

point of T" which is the unique solution of a certain variational inequality.
Also, Ke and Ma [10] studied the following generalized viscosity implicit rules:

Tnt1 = Qnf(Tn) + (1 — ap)T (thxn + (1 — ty)Tnt1), n >0, (1.4)

Tnt+1 = Olnf(xn) + (1 - an)T( )7 n >0,

where {a,} and {t,} are real sequences. They showed the sequence {z,} converges strongly to
a fixed point of T" which is the unique solution of a certain variational inequality.
Recently, Cai et al. [4] introduced the following modified viscosity implicit rules

r1 € C,

Up = tnTn + (1 — tn)Yn,

zn = Po(I — pB)up,

Yn = Po(l — M)z,

Tnt1 = Po(an f(zn) + Buan + (1 = Bu)] — anpF)Tyn), n>1,

where F' is a Lipschitzian and strongly monotone map, {«,}, {8,} and {¢,} are real sequences,
Pc is the metric projection of H onto C. Under some suitable assumptions imposed on the
parameters, they obtained some strong convergence theorems.

In this paper, motivated by the above results, we propose a new composite iterative scheme
for finding a common element of the set of solutions of a general system of variational in-
equalities, an equilibrium problem and the set of common fixed points of a countable family of

nonexpansive mappings in Hilbert spaces. Then, we prove a strong convergence theorem and
apply our main result for W-mappings. Finally, we give two numerical examples for supporting
our main result.
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2. Preliminaries

Let H be a real Hilbert space. We use — and — to denote the weak and strong convergence
in H, respectively. The following identity holds:

law + Byl1* =al|z|* + Bllyll* — aBllz — ylI?,

for all z,y € H and o, € [0,1] such that a + 8 = 1. Let C be a nonempty closed convex
subset of H. Then, for any « € H, there exists a unique nearest point in C, denoted by Po(x),
such that

|z — Po(x)]] < |z -yl forallyeC.

Pc is called the metric projection of H onto C. It is known that Pc is nonexpansive and
satisfies

(& — . Po(@) — Po())]| > | Pe(@) — Po()? for all .y € H. (2.1)
Further, for x € H and z € C, we have
z2=Pc(z) < {(x—2,2—y)>0 foralyeC.
Definition 2.1 ([4]). A mapping T : H — H is called firmly nonexpansive if for any x,y € H,
Tz — Ty||* < (Tx - Ty,z - y).

Lemma 2.1 ([3]). Let C be a nonempty closed convex subset of H and ¢ : C x C = R be a
bifunction satisfying the following conditions:

Ay) ¢(x,z) =0 for all x € C;
As) ¢ is monotone, i.e., ¢(x,y) + ¢(y,x) <0 for all z,y € C;

(A1)
(A2)
(Ag) for each x,y,z € C, limy o p(tz + (1 — t)x,y) < ¢(z,y);
(Ayq)

Ay) for each x € C,y — ¢(x,y) is conver and weakly lower semicontinuous.

Letr > 0 and x € H. Then, there exists z € C such that
1
d(z,y)+ =y —2z,2—x)> 0, forallyecC.
r

Lemma 2.2 ([6]). Assume ¢ : C x C — R satisfies the conditions (A1)-(As). For r > 0,
define a mapping Q. : H — C by

1
Qrx:={z€C:¢(z,y) + ;(y —z,z—x) >0 forallye CY, (2.2)
for all x € H. Then, the following hold:
(i) Q. is single-valued;

(ii) @ is firmly nonexpansive;

(iii) Fiz(Qr) = EP(¢);
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(iv) EP(®) is closed and convez.

Definition 2.2 ([4]). A nonlinear operator A whose domain D(A) C H and the range R(A) C
H is said to be a— inverse strongly monotone (for short, a—ism) if there exists a > 0 such that

(x —y, Ax — Ay) > o|| Az — Ay||*  for all x,y € D(A).

Lemma 2.3 ([8]). Let C be a closed convex subset of H and T : C — C be a nonexpansive
mapping with Fix(T) # 0. If {x,} is a sequence in C such that x, — x and (I — T)x, — 0,
then (I —T)x = 0.

Lemma 2.4 ([1]). Assume {ayn} is a sequence of nonnegative real numbers such that

An+41 S (1 - 'Yn)an + YnUn + Mn,y

where {yn} is a sequence in [0,1], {pn} is a sequence of nonnegative real numbers, and {v,}
is a sequence in R such that Y .~ vy, = oo,limsup, , v, < 0 and Yo" 1, < oo. Then
lim,, yoo ay, = 0.

Lemma 2.5 ([5]). For given x*,y* € C,(z*,y*) is a solution of problem (1.3) if and only if
x* is a fized point of the mapping G : C — C' defined by

G(z) = Po(Pc(z — uBx) — vAPc(z — pBx))  for all x € C,
where y* = Po(a* — uBx*).
Lemma 2.6 ([1]). Let C be a nonempty closed bounded subset of H. Suppose
S sup{||Tng1z — Toz| - 2 € €} < .
n=1

Then, for each y € C, {T,y} converges strongly to some point of C. Moreover, let T be a
mapping of C into itself defined by Ty = lim, oo Tny for all y € C. Then lim,,_,~ sup{||Tz —
Thz||:z€ C}=0.

3. Main Results

Theorem 3.1. Let C be a closed convex subset of H, ¢ : C x C — R be a bifunction satisfying
the conditions (A1) — (A4) of Lemma 2.1, A, B : C — H be a-ism and B-ism, respectively, {T,,}
be an infinite family of nonexpansive self-mappings on C and f be a k-contraction on C for
some k € [0,1). Set T' := N2, Fix(T,) N Fiz(G) N EP(¢p), where G is a mapping defined by
Lemma 2.5 and assume T' # (). Suppose {an}, {tn} and {r,} are real sequences satisfying the
following conditions:

(B1) {an} C(0,1), limy oo an =0, D07 | i1 — o] < 00 and Y07 | oy, = 00;
(B2) {rn} C (a,00) for some a >0 and 220:1 [Ppg1 — o] < 005

(Bs) {tn} C (b,1] for some b >0 and >~ [tnt1 — tn] < co.
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Let {x,} be a sequence generated by

Up = tnxn + (1 - tn)ynu
1

(Vn,y) + —(Y = Un,Un —un) 20 forall yeC,
Tn

20 = Pe(I = pB)vn, (3.1)

yn = Po(I — vA)z,,

Tp+1 = O‘nf(zn) + (1 - an)Tnynv n Z 05

where the initial guess zo € C is arbitrary, v € (0,2a) and p € (0,283). Suppose y ., sup{||Tp+1
z2—=Tpz|: 2z € K} < oo for any bounded subset K of C. Let T be a mapping of C into itself
defined by Tz = lim,,_,oc Tz for all z € C and Fiz(T) = (\,—, Fiz(T,). Then, the sequence
{z,} converges strongly to q € T, where ¢ = Prf(q), which solves the variational inequality
(VI):

(I-f)g,qg—x) <0 forallzeTl. (3.2)

To prove Theorem 3.1 we first establish some lemmas.

Lemma 3.1. Let C C H, A: C — H be an a-ism and v € (0,2a). Then I —vA is nonexpan-
sive.

Proof. For z,y € C, we have
(I = vA)z — (I = vAW|P* = [z -y — v(Az — Ay)||?
= |lz —yl* - 2v(w —y, Av — Ay) + 1*| Az — Ay||?
<z —yll* - 2av|| Az — Ay||* + 17| Az — Ayl
= [lz = ylI* + v(v - 20)|| Az — Ayl|? (3.3)
< lz =yl 0

Lemma 3.2. Let {z,} be a sequence in H and {r,} C (a,00) for some a > 0. Suppose

Up = Qr,Tn and tupy1 = Qr, Tny1. Then

lunt1 — unll < l2nt1 — 2all + 1 - :Zl tuntr — zpga -
Proof. By definition of Q,, we have
o(un,y) + %(y — Up, Up — Tp) >0 forall y e C, (3.4)
and
d(Unt1,y) + rn1+1 (Y — Upt1,Unt1 — Tpy1) >0 forallyeC. (3.5)

Set y = upy1 in (3.4) and y = u,, in (3.5). Then by adding these two inequalities and using
(A2), we have
Unp — Tn . Un+41 _$n+1> >0

- )

<un+1 — Unp,
n Tn+1
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and hence

Tn

<Un+1 — Up, Up — Un+1 + Uy — Ty — (un+1 - $n+1)> > 0.

Tn+1
This implies

T
||Un+1 - un||2 §<Un+1 — Un,Tn+1 — Tn + (1 - - )(unJrl - $n+1)>
Tn+1
r
ntr = wnl{llznt1 = zoll + 11 = —=[ttns1 — Tnpa |}
Tn+1
Therefore
r
lunt1 — unll < [|Tns1 — zall + 1 — - [[un+1 = Togrl]- 0
Tn+1

Lemma 3.3. Let C be a closed convex subset of H, {xn}, {yn}, {un} and {v,} be sequences
in C defined by

Up = tnZn + (1 — t3)Yn,
Un = anun;

Yn = G’Un,

where 0 <b<t, <1land0<a<r, foralln € N and G defined by Lemma 2.5. Suppose the
sequences {x,} and {v,} are bounded. Then

||yn+1 - ynH < ||xn+1 - an + (|tn+1 - tnl + |Tn+l - Tn|)M7
where M = sup { %||vn, — unl|, 7 [|#n — ynll : n € N}.
Proof. From Lemma 3.2, we have

[vnt1 — vnll = ||an+1un+1 = Qr, un|
Tn

< ||un+l - un” + |1 - |||Un+1 - Un+1||

n+1
Tn+1 —

r
= lvn+1 — tntal]-
Tn+1

< Juns1 — unl| + |

Therefore
[Ynt1 =yl
— 1Pe(I = vAYPo (I — puB)oss — Po(l — vA)YPo(I — uB)u,|
< llvnga = vnl|

Tn+1 — T

< ||un+1 - un” + | = |||Un+1 - Un+1||
1

= ||tn+133n+1 + (1 - tn+1)yn+1 —tnTn — (1 - tn)yn”

Tn4+1 — Tn
| |||Un+1 - Un+1||
Tn+1
= ||tn+1 (xn-i-l —Tp) + (tng1 — tn)Tn + (1 - fn+1)(yn+1 - yn) - (tn-i-l - fn)ynH
T -
+ [T vng1 — |
Tn+1

< tongallTntr — zoll + (U= tor ) [Yn+1 — Ynll + [tnr1 — talllzn — yull

Tn4+1 — Tn
| ————llvn+1 — un41ll,
Tn+1
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which implies

Yn+1 — ynll
|tn+1 — tn| |T'n,+1 - Tn|
< N2ngr — 2l + ——— 120 — ynll + lvn1 — wnya ||
tnt1 Tn+1tn+1 (3.6)
t —t T -
< Nomps = wll + L 00y o =l
b ab
< ||$n+1 - xn” + (ltn-i-l - tn| + |rn+1 - rnl)M O

Lemma 3.4. Let C, f and {T,} be defined by Theorem 3.1 satisfying F := N2 Fix(T,) # (.
Suppose {xn} and {y,} are two sequences in C and p € F. Define

Tnt1 = A f(xn) + (1 — an)Thyn, n >0, (3.7)
where {ay,} is a sequence in (0,1) and ||yn — p|| < ||zn — p|| for alln € N. Then
(i) {xn} is bounded;
(ii) Setting M’ = sup {|| f(xn)|, |Tnyn| : n € N}, we get
[Zn41 = Tnt2|| < ankllzn — Tppall + 2M o — a1

+ (1 = an)(|Tayn — Tosrynll + lyn — ynt1ll); (3.8)

(ili) For alln € N, we have

[#ng1 —pl* < (1= (1 = &)own)?||an — plI* + 207 ]|z — p|l|| f () — Pl
+ ol |l f(p) = plI* + 200 (1 = o) (f (P) — P, Trtyn — D).

Proof. We prove the statements in order as the following:
Proof of (7). From (3.7), we get

[2nt1 = pll < llan(f(zn) —p) + (1 = an)(Toyn — )|

< an(|[f(zn) = FOI + 1f () = plD) + (1 = an)llyn — pll
< anhillen —pll + anll f(p) — pll + (1 — an)lzn — p

< (1= (1 =r)an)llzn = pll + anllf(p) - pll

< max{||zn — pl. ||f( ) p||}

By induction, we obtain ||z, — p|| < max{||zo — p|[, %} for all n > 1. Hence {z,} is
bounded, so are {f(z,)} and {T,yn}-
Proof of (ii). From (3.7), we have
”fEnJrl - $n+2||
= [lanf(@n) + (1 = an)Toyn — ans1f(@ns1) = (1 = ang1) Tng 1Y |
= llan(f(zn) = f(@nt1)) + (an — ang1) f(Tni1)
+ (1 - an)(Tnyn - Tn+1yn+1) + (an+1 - an)Tn+1yn+1||

IN

ankl|zn — Tpi || + 2M'[an — ang1]| + (1 = an) (| Tnyn — Tns1yall
+ 1 Tnyn — Toyn+1l)

ankl|wn = Tl + 2M Jan — app1] + (1 = an) (1 Toyn — Tns1ynl
+ lyn = Ynt1 ),

IN
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for all n € N.
Proof of (¢i7). By using (3.7), we obtain
21 = pII* = llan(f(zn) = p) + (1 = an)(Toyn — p)|I?
= oy [[(f(zn) = F(0)) + (f(0) = P)II* + (1 = @) (| Ty — plI?
+ 200 (1 — an)(f(zn) = p, Tuyn — p)
< o (K||lzn — | + ||f(P) plI*) + (1 = en)?llzn — pl?
+205(f(wn) = £(p), f(p) — P)
+ 2an(1 = an)(f(zn) = f(p), Tayn — p)
+ 200 (1 = an)(f(P) = P, Tnyn — D)
< (apr® + (1 - an)2)||;vn plI* + 205 kllzn — Il f(p) — pll
+apllf(p) = plI* + 20m(1 = an)sil|zn — p|?
+2an(1 = an)(f(p) = P Tnyn — )
< (1= (1= r)an)?|lzn — pl* + 2056z — pll.f(p) = p]
+apllf(p) = plI* + 20m(1 = an)(f(p) = P, Tayn — 1)

= (1= (1= W)l — bl + (1 = )T (aall £2) ~ I

+ 2ankllzn = pll|f(p) = pll + 2(1 = an){f(P) = P, Tnyn — P))]- O

Lemma 3.5. Let all the assumptions of Theorem 3.1 hold and lim,, o ||Tn1+1 — @n|| = 0. Then
lim, 00 ||Yyn — vnl] = 0.

Proof. Suppose z* € T and y* = Po(z* — pBz*). So from (3.1), we obtain
un — 2| = ltnzn + (1 = tn)yn — 2" < tallon — 27| + (L = tn)llyn — 27 (3.9)
Noticing vy, = Qr, upn and Q. x* = z*, we get
v = 2*|| < llun — 27| (3.10)
Then from (3.9), we have
lyn — 2|l = [|Gvn — 27| = [|Gun — Go™|| < [Jun — 27|
Stnllon — 2" + (1 = tn)llyn — 2.

Hence ||yn — z*|| < ||zn, — 2*||. Therefore by using Lemma 3.4 (i), we obtain {x,} is bounded
and by (3.9), we have ||u, — z*|| < ||zn, — 2*||. So from (3.10), we get |lv, — z*| < [Jzn — 2.
Hence by (3.3), we have
Iz —y*II* = | Pe(I = uB)vn — Po(I — pB)a*||?
< 1T = pB)von = (I - pB)z*||*
< Jlon = 27| = u(28 — p)|| Bvn — Ba* |
< lzn — 2*|1* = w(28 — p)|| Bon — Ba*||*.

(3.11)



A Hybrid Viscosity Approximation Method 161
In a similar way, we get
lyn = 2*[|* < llzn = y*|* = v(2a — )| Az — Ay™||*. (3.12)
Substituting (3.11) into (3.12), we obtain
lyn = 2*|* <llwn — 2*||* = p(28 — p)l|Bvp — Ba*||* = v(2a — v)|| Az — Ay*[I*. (3.13)
It follows from (3.13) that

lZnt1 = 2*||* = fan(f(zn) — &%) + (1 = an)(Tayn — )|
< ol f(zn) = f(27) + f(a7) = 2"
+ (1= an)|[ Toyn — 2"
< anh®l|lzn — 2% + an | f(27) — 2|
+ (1= an)llyn — "1 + 200 (f (2n) = f(2"), f(2") = 2%)
< ank®llan — 2" + an|| (@) — 2*||?
+ 2ankllen — 27| f(27) — 27|
+ (1= an)(llen = 2*|* = u(28 — w)|| Bun, — Ba™|?
— v(20 = v)|[ Az — Ay*||*)
< (1= (1= m)an)llzn — 2™ + an|| f(2*) — 2|
+ 2ank|zn — 2| f(27) — 2" + (1 — an)
(=128 = p)l| Bup — Bx*||* = v(20 — v)[| Az, — Ay*[|?), (3.14)
which implies
(1= an)(u(28 — )| Bvn — B || + (20 = v)|| Az — Ay*|?)
< lwn = 2*|* = ansr — 2"[|° + an M2
< (lwn = 2"l = llent1 = 2" D(ll2n = 27 + [|2n41 — 27[]) + n Mo
<l = znpa[(lzn = 2% + l2ng1 — 27[]) + an Mo,

where My = sup{||f(z*) — 2*||® + 2&|jz, — 2*||||f(z*) — 2*|| : n € N}. From (B;) and

lim, o0 ||®n4+1 — xn || = 0, we have
lim ||Bv, — Bz*||=0 and lim ||Az, — Ay™|| =0. (3.15)
n—00 n—o0

On the other hand by (2.1), we get

o = 2| = |[Pe(I = vA)z, — Pe(I = vA)y" |
< (I = vA)z = (I = vAW yu — )

1 i .
U =vA)zn = (T = vA)y" [ + |lyn — 27|

= llzn = yn + 2" —y* — v(Azn — Ay")|].
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This implies
lyn = 1% < llza = ¥ = ll2n — yn + 2" —y* = v(A2, — Ay")|?
= [lzn = 41> = [llzn — yn + 2" = 4" + 12| A2, — Ay*|?
—2w(zy —yn +2* —y*, Az, — Ay™)]
<Nz =117 = 2 — yn + 2" = y*||?
+ 20|z — yn + 2% — y*||||Azn — Ay*|. (3.16)
Again by (2.1), we obtain

lzn = y*|I* = |Pc(I = uB)vn — Pe(I — pB)a*||?
< <(I - NB)Un - (I - /J,B)J,'*,Zn - y*>
1 * *
= 5T = uB)vn = (I = pB)a”||* + [|zn — |
— v — 20 + y* — 2* — u(Bv, — Bxz*)|?],
which implies
Iz =y
< on = a*|* = [lvn = 20 +y* — 2" — p(Bu, — Ba™)||?
= oo = 2| = [lon — 20 +y* — 2|2
—2u(vy — zn +y* — %, Bv, — Bx*) + y?||Bv, — Bx*|?]
< lwn = 2% = llvn = 20 +y" — 2™||?
+ 2u||vn — zn +y* — 2% ||Bv, — Bz"|. (3.17)
It follows from (3.16) and (3.17) that

lyn = 2*|1* < llon = 2*[* = llvn — 20 +y* — 2"
—llzn = yn + 2" = y*|I?
+ 2pflvn — 20 +y* — 27| [|[Buy — Ba™||
+2zn — yn + 2 — Y| ||Azn — Ay*]|. (3.18)
Substituting (3.18) into (3.14), we have

l2ns1 = 2|7 = llom (f (@n) — 27) + (1 = an) (Toyn — 27)]?

anll f(zn) = f(2) + f@™) = 2| + (1 = an) | Toyn — 2*||?

ank?|lzn = 2*||* + anl| f (%) — 2"
+ (1= an)llyn — 2" + 200 (f (2n) = f(2"), f(27) — 2%)

ant?|an — 2" + o f(27) = 2| + 20msl|wn — 2| f(27) — 27|
+ (1= an)(lzn = 2| = llvn = 20 + 5" = 2" = |20 = yn + 2" — y"|1?
+ 2pllvn — zn +y* — 27[|[| Bvn — Ba”|
+ 2]z = yn + 2" — 7| Az — Ay7|))

lon = 2*|1* + (1 = an)(=llvn = 20 +y" = 27|* = ll2n = yn + 2" =y
+ 20, M3 + 2p||vy, — 2 + y* — ¥|||| Bv, — Bx™||
T 20l — g + 2 — 7l Az — Ay

IN A

IN

IN
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where M3 = sup{||f(z*) — z*||?, 2k||lzn, — 2*|||| f(z*) — 2*|| : n € N}. This implies
(1= an)llvn = 2o +y" = 2" + (1 = an)llzn = yn + 2" = y|?
< lzn = 21 = N2nsr = 2712 + 2pllvn — 20 + " = 27 ||| Bup — Ba™|
+2v)lz — yn + 2% — Y ||| Azn — AYT|| + 200, M3
< entr = zal(lzn — 2" + lzns — 27
+2ul|vy — 2 +y* — 2*|||| Bu, — Ba™||
+ 20|20 — Yn + 2F — y*||||Azn — Ay*|| + 200, M.
From (B1), limy, e ||@nt1 — x| = 0 and (3.15), we get
nh_)rrgo lvn, —2n +y" —2| =0 and nh_)rrgo |z, — yn + 2" —y*|| = 0. (3.19)

By (3.19) and
”'Un - yn” < ”'Un —zZnty" - CL'*H + ”Zn —Yn + 2" — y*Hv

we obtain lim,, o ||vn, — ynl| = 0. H

Proof of Theorem 3.1

Since Prf is a contraction on I', there exists a unique element ¢ € I' such that ¢ = Pr f(q);
equivalently, ¢ is the unique solution of VI (3.2). Now, we proceed with the following steps:

Step 1. We claim lim,, o ||@n41 — Zn|| = 0. Suppose z* € T and y* = Po(z* — uBx™*). As
in the proof of Lemma 3.5, {z,} is bounded, so are {un}, {vn}, {f(zn)} and {T,y,}. Set

1 1
My = sup < [[f (@)l 1 Tnynlls = llon = unll, Zllan = yal s € Np-.
ab b
Hence, substituting (3.6) into (3.8), we have

”fEnJrl - $n+2||

< ankllzn — Tpgr || + 2Mi|an — apg1| + (1 — ap) (sup{[|Tnz — Thy12| - 2 € K}
+ [#ns1 = zn |l + ([t — tal + |rng1 — ral) Ma),
< (=1 =rR)an)llzn = Tnsall + M1 2lom — anga] + [tnsr = tn| + [Tns1 = mn)
+ sup{||Tnz — Thny12]| : 2 € K},
where K = {y,, : n € N}. So, from Lemma 2.4, we obtain lim,_,« ||€n+1 — »|| = 0.
Step 2. We claim lim,,_,  [|#5, — v, || = 0. From Lemma 2.2, we have
[on — 2% = [|Qr,tn — Qr,2*[|* < (un — 2™, v, — 2¥)
1

= 5 (lun = 2"|* + llvn = 2"[I* = on = un|[*).

This implies

lon = 21 < Jlun = 2*[I* = [lun — val|*. (3.20)
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So, we derive from (3.20) that

[Znt1 = 212 = Jan(f(za) — ") + (1 = an)(Tayn — )|

< onllf(@n) — 2|7 + (1 — an)[Jon — 2*||?

< apllf(zn) = 2P + (1= an)(un = 2*[* = lun = va]?)
< apllf(zn) = 2P + flun — 27 = Jlun — va |,
Hence
tn = vall” < llup = 2*[|* = |@ns1 — 2|1 + anll f(2n) — 2*|?
<lzn = a*[1* = g1 — 21 + anll f(2n) — 2*|?
<Nwnpr = zal(l2n = 2| + |2ns1 — 2*[]) + nll f(20) — 272
Therefore from Step 1, we obtain lim, o [|[un — v,|| = 0. So, by using Lemma 3.5, we get
limy, 00 ||ttn — yn|| = 0. From (3.1), we have ||un, — yn|| = tn||2n — yn||. Hence
lun = ynll _ llun — ynl
_ — < )
o — gl = Lzl =
Therefore lim,,_, o [|Zrn, — yn|| = 0. So, from Lemma 3.5, we get
nh_)rrgo |z — vn|| = 0. (3.21)

Also, from (3.1), we have

lim ||zp41 — Toynll = nlggo anllf(2n) = Tuynll = 0.

n—r oo
Hence
nll)rrgo |2 — Thyn|l = 0. (3.22)
Since
||Un - Tnvn” < ||Tnvn - nynH + ”Tnyn - fEnH + ”fEn - vn”
< lvn = ynll + 1 Tayn — znll + ll2n — vall,
from Lemma 3.5, (3.21) and (3.22), we obtain lim, o ||[vn — Thvn|| = 0. Therefore from

[vn = Topll < [|[Tovn — Ton |l + [[vn — Toval|
< sup{||Tnz — Tz|| : z € K'} + [|[vn, — Toonl|,
where K’ = {v,, : n € N} and Lemma 2.6, we have

nhﬁngo lvn, — Tvy,|| = 0. (3.23)

Step 3. We claim limsup,, .. {(I — )¢, ¢ — Thyn) < 0. To show this, choose a subsequence

{vn,} of {v,} such that

limsup((I' = f)q,q = va) = lim (I = f)g,q = vn,)-

n—oo 21— 00
Since {vp, } is bounded, without loss of generality, we assume v,, — z. We show z € I'. From
(3.23) and Lemma 2.3, we get z € Fiz(T). Now, we show z € EP(¢). Since v, = Qp, Un, We
obtain

1
o(vn,y) + r—(y — Up, U — Uy >0 for all y € C.

n
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From (Asz), we get %(y — Up, Up — Up) > ¢(y,v,) for all y € C. Replacing n by n;, we have
1

— (Y — Unyy Un; — Un,) > Gy, vy,) forall y e C.
T,

Since vy, — z and lim;_o0 ||Vn; — Un,|| = 0, it follows from (A4) and (Bs) that ¢(y,z) < 0 for
ally € C. Set yy =ty+ (1 —t)z forallt € (0,1] and y € C. Then y; € C and hence ¢(yz, z) < 0.

From (A;) and (Az), we obtain

0=, yt) <to(ye,y) + (1 = 1)d(ye, 2) < tP(yr,y)-

Therefore ¢(y:,y) > 0. Letting ¢t — 0, we get ¢(z,y) > 0 for all y € C. This implies z € EP(¢).
Moreover, we know

=0.

lim ”vm - Gvni ” = lim anz — Yn,

11— 00 11— 00
From Lemma 2.3, we have z € Fixz(G). So z € T'. From ¢ = Prf(q), we get
limsup((1 = f)¢,¢ = Tayn) = lim (I = f)g,q = T, yn.)

n—00

= hm <(I - f)Q7 q— Tnzvm>
71— 00

= hm <(I - f)Q7 q— Uﬂi>
71— 00

= lim ((I = f)g,q — 2) <0.
71— 00

Step 4. We claim {x,} converges strongly to ¢q. By using lemma 3.4 (4i%), we have

(el f(a) — all?

+ 2ankllzn — qlllf(q) — all +2(1 — an)(f (@) — 4, Toyn — @))]-

lzns1 = gll* < (1= (1= £)an) 2n — gl|* + on(1 = K)]

Hence

1
s = all* <=3 len = all* + 7 — (el f(0) = g]®

+ 2ankllzn — qlllf(q) —all +2(1 — an)(f (@) — 4, Toyn — @)l (3.24)

where v, = a,(1 — k), we may apply Lemma 2.4 to (3.24) to obtain that ||z, — ¢|| — 0, that
is, &y — ¢ in norm.

Corollary 3.1. Let all the assumptions of Theorem 3.1 hold except the bifunction ¢ = 0 and
I = N2, Fix(T,) N Fiz(G) [instead of T := NS4 Fix(T,) N Fix(G) N EP($)]. Then, the

n=1

sequences {x,} defined by
Up = tn@n + (1 — t0)Yn,
2n = Po(I — uB)uy,
yn = Po(I — vA)z,,
Tnt1 = onf(zn) + (1 = an)Toyn, n =0,
where the initial guess xo € C is arbitrary, converges strongly to q € T, where ¢ = Prf(q),

which solves the variational inequality (3.2).

Remark 3.1. Corollary 3.1 is a generalization of [4, Theorem 3.1] in the sense that the old
theorem establishes just for a single nonexpansive mapping, but Corollary 3.1 establishes for a
sequence of nonexpansive mappings.
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4. Applications

Let {T,,}52, be a sequence of nonexpansive self-mappings on C and {A,}52; a sequence of
nonnegative numbers in [0, 1]. For any n > 1, define a mapping W,, of C' into itself as follows:

Un,n-i—l = Ia
Un,n = )\nTnUn,n+1 + (1 - )\H)I7

Une = MTuUp 1 + (1 = M),
Unjie1 = M1 Th—1Un i + (1 — A1),

Un2 = XU, 3+ (1 — X)I,
W, = n,1 = >\1T1Un72 + (1 — /\1)[

Such a mapping W,, is called the W —mapping generated by 11,715, -+ , T, and A1, Aa, -+, An;
see [11].

Lemma 4.1 ([15]). Let C be a nonempty closed conver subset of a strictly convexr Banach
space X, {T,}22, a sequence of nonexpansive self-mappings on C such that N3, Fix(T,) # 0
and { A\, }52; a sequence of positive numbers in [0,b] for some b € (0,1). Then, for every z € C
and k > 1, the limit lim,, oo Uy, kT exists.

Using Lemma 4.1, one can define mapping W : C' — C as follows:

Wz = lim Wyz = lim U, 1z, (4.2)
n—o0

n—00

for every z € C. Such a W is called the W—mapping generated by {T},}°2, and {\,}72 ;.

Throughout this section, we assume {\,, }22; is a sequence of positive numbers in [0, b] for some
be(0,1).

Lemma 4.2 ([15]). Let C be a nonempty closed convex subset of a strictly convexr Banach
space X, {T,}22, a sequence of nonexpansive self-mappings on C such that (,—, Fix(T,) # 0
and {M\,}5%, a sequence of positive numbers in [0,b] for some b € (0,1). Then, Fiz(W) =
Moo, Fiz(T,).

Theorem 4.1. Let C be a closed convex subset of H, ¢ : C x C — R be a bifunction satisfying
the conditions (A1) — (A4) of Lemma 2.1, A, B : C — H be a-ism and (-ism, respectively and
f a k-contraction on C for some k € [0,1). Set " := N2, Fiz(T,,) N Fiz(G)NEP(¢), where G
is a mapping defined by Lemma 2.5 and assume I' # 0. Suppose {an}, {tn} and {r,} are real
sequences satisfying the following conditions:

(B1) {an} C(0,1), limpyyoo an =0, D07 | |ant1 — an| < 00, and Y7 |, = 00;
(B2) {rn} C (a,00) for some a >0 and 220:1 [Prp1 — o] < 005

(B3) {tn} C (¢, 1] for some b >0 and > 7~ [tnt1 — tn] < co.
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Let {x,} be a sequence generated by

Up = tn@pn + (1 — t0)Yn,
1
d(vn,y) + T—(y — Upy Uy —Up) >0 forall yeC,

n

Zn = PC(I - /J'B)U"7
yn = Po(I — vA)z,,
Tp+1 = O‘nf(xn) + (1 - an)Wnyn; n Z Oa

where the initial guess xo € C is arbitrary, v € (0,2a) and p € (0,28). Then, the sequence
{z,} converges strongly to q € T, where ¢ = Prf(q), which solves the variational inequality
(3.2).

Proof. From (4.2) and Lemma 4.2, we have N0, Fiz(W,) = NS, Fix(T,) = Fiz(W).
So by Theorem 3.1, it is suffices to show > 7, sup{||Wy412 — Wyz|| : 2 € K} < oo for any
bounded subset K of C. Let K be a bounded subset of C' and z € K. From (4.1), since T; and
U,,; are nonexpansive, we obtain

||Wn+12 — WnZH = ||/\1T1Un+1722 — /\1T1Un722||
< M| Ung1,22 — Un 22||
= M| A T2Un1,32 — Ao ToUp 32|

< MA2||Unt1,32 — Up 32|

IN

IN

A1A2 v An”[]nJrl,nJrlZ - Un,nJrlZH

< MJTxn < mom,
i=1
where M > 0 is a constant such that M = sup{||Unt1.n+12 — Unnt12|| : 2 € K}. Since
0 <b< 1, we have

Zsup{HWnHz—anH :zEK}SMZb"<oo. O

n=1 n=1

5. Numerical Test

In this section, first we give a numerical example which satisfies all assumptions in Theorem
3.1 in order to illustrate the convergence of the sequence generated by the iterative process
defined by (3.1). Next, we give another numerical example for (3.1) to compare its behavior
with iterative method (1.4) of Ke and Ma [10].

Example 5.1. Let H = [? be a real Hilbert space with the inner product (z,y) = Y a'y’
and the norm ||z|| = \/(z,z) where x = (z',22,23,...) and y = (y',4?%,¢%, ...) are two real
sequences. Let C' = {x : ||z|| < 10}. Define ¢(x,y) = —4||z||* + 3(z,y) + ||y||?>. First, we verify
that ¢ satisfies the conditions (A1) — (A4) as follows:

(A1) ¢(x,x) = —4]|x||® + 3||z]|*> + ||z||* = 0 for all z € I
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(A2) ¢(x,y) + d(y,x) = — ||z — y||*> <0 for all 2,y € (%
(A3) For all z,y,z € 1%
limsup ¢(tz + (1 = t)a,y) =limsup(—4||(tz + (1 = )2)|* + (tz + (1 = )z, y) + [y[*)

t—0t+ t—0+
=¢(z,y).
(Ay) For all z € 12, ®(y) = ¢(z,y) = —4||z|]* + 3{z,y) + [|y||* is a lower semicontinuous and
convex function.

From Lemma 2.2, @, is single-valued for all » > 0. Now, we deduce a formula for Q,(z)
where z = {z'}. For any y = {y*} and r > 0, we have

¢(27y)+%<y—z,z—x> >0

Z —|—Z ((3r +1)2" — 2t y—l—Zx 4T+1)Z(zi)220,

where 2z = {2'}. Set G(y%) = r(y")? + ((3r + 1)2" —a)y’ + 22" — (4r + 1)(2%)%. Then G(y*) is a
quadratic function of y¢ with coefficients a = r,b = (3r+1)z'—z* and ¢ = (2%)(2") — (4r+1)(2%)2.
So its discriminate A = b* — 4ac is

A=|(r+1)z—z|*

Since G(y*) > 0 for all y* € R, this is true if and only if A < 0. That is, [(5r +1)z° — 2']?
Therefore, 2 = %;_1, which yields Q. (z) = 5735. So, from Lemma 2.2, we get EP(¢) =
Letan:%, rn:ﬁ,tn——,ande— = for all n € N. Suppose f(r) = £, Az =
3—ism , Bx = £ is 2—ism, v = 1, and p = 2. Hence I' = Ny, Fix(T,,)NEP(¢) N Fix(G) =

Then, from Theorem 3.1, the sequence {x,}, generated iteratively by

<0,
{0}.
%
{0

1 1
Up = E:En 2yn7
_ B 4n — 1
Un = anu’ﬂ - 977/ _ 1
zn = Po(I — uB)v, = Pc(lvn) = lvn, (5.1)

yn = Poc(I —vA)z, = Po(=2zp) = —v

1 n»y
L 1)y6n 8 Ll
Tn = —2x, — 5 )— = 7 —Tn a5 Yn
17 10 o’ n 10n mz 7

converges strongly to 0 € I', where 0 = Pr(f)(0).

In the following, we provide numerical results for two suitable initial point.
Now, we will compare the effectiveness of our algorithm with the algorithm (1.4) by a
numerical example. In fact, Ke and Ma [10] proved the following strong convergence theorem.

Theorem 5.1. Let C be a closed convex subset of H, T be a nonexpansive self-mappings on
C with Fiz(T) # 0 and f be a k-contraction on C for some k € [0,1). Pick any xo € H, let
{zn} be a sequence generated by (1.4), where {ca,} and {t,} are real sequences satisfying the
following conditions:

(B1) {an} € (0,1), lim,, 00 v, = 0, fo:l |ant1 — an| < 0o and Z _ 1 Oy = 00;
(Bz) 0<E§tn§tn+1<1.

Then, the sequence {x,} converges strongly to q € Fixz(T) which solves the variational inequal-
1ty
((I—-f)g,q—x) <0 for all x € Fix(T).
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Example 5.2. Let all the assumptions of Example 5.1 hold except the mappings T,z = Tx = =
for all n € N. First, suppose the sequence {z,,} be generated by (3.1). Then, the scheme (3.1)

can be simplified as

Lont
Un = 5Tn T SYn;
2" oY
4n —1
Un = Qr,Un = g Un,
1
zn = Po(I — uB)v, = PC(g'Un) =
)
yn = Po(I — vA)z, = Pc(gzn) =
L yn
ot = gt U g

1

g’t}n, (52)
5
< Un,
18
1 n 2n—1
=7 Tn e Yn-
10n 2n Y

Therefore, the sequence {xz,} converges strongly to 0 by Theorem 3.1. Next, let the sequence

Table 5.1: Comparison between Algorithm (5.2) and Algorithm (5.3).

||zn — 0] for (5.3)

n ||xn — 0] for (5.2)
1 3.1623

2 0.4031

3 0.038494
4 0.0032857
5 0.00026411
26 1.7197¢=28
27 1.1694e¢=2°
28 7.9425¢ 73!
29 5.3885¢ 52
30 3.6519¢ 33

3.1623

1.4757

1.0035
0.77413
0.6365

0.16131
0.15644
0.15189
0.14762
0.14362

Numerical results for 1 = (1,1,1,1,1,1,1,1,1,1,0,0,- - )

Table 5.2: The values of the sequence {||z,||} for Algorithm (5.1).

n llzn — 0| llzn — 0|

1 1.2825 0.57735

2 0.16349 0.073596

3 0.011893 0.0053539
4 0.00060269 0.00027131
5 2.3412¢7° 1.0539¢~°
26 9.4505¢ 46 4.2542¢46
27 5.9668¢ 18 2.686¢ 18
28 3.629¢ 0 1.6336¢=°°
29 2.1291e~%2 9.5843¢ %3
30 1.2064e54 5.4308¢~%°

Numerical results for z1 = (1,1/2,1/3/,---

) and z1 = (1/2,1/4,1/8,--+)
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Fig. 5.1. The convergence of {xn} with different initial values 1.
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Algorithm (5.2)
4s5r Algorithm (5.3) | |

[Ix,-OIl

0 5 10 15 20 25 30
Number of iterations (n)

Fig. 5.2. Comparison between Algorithm (5.2) and Algorithm (5.3).

{z,} be generated by (1.4). Then, the scheme (1.4) can be simplified as
1 1.1 1
n = T _In 1-—)(z n “Ln .
1 = qgp @+ (1= 50) (5o F 3ns)

Therefore, the sequence {x, } converges strongly to 0 by Theorem 5.1.

Next, the numerical comparison of algorithms (5.2) and (5.3) is provided.

30

Tables 5.2-5.1 and Figs. 5.1-5.2 show that the sequence {x,} generated by the above algo-

rithms converges to 0.

Remark 5.1. The Table 5.1 shows that the convergent rate of iterative algorithm (3.1) is faster

than that of iterative algorithm (1.4) of Ke and Ma.

6. Conclusions

Regarding our main theorem, we introduced an iterative method to find a common element
of the set of solutions of a general system of variational inequalities, an equilibrium problem,
and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert
space, which is a generalization of the past method, introduced by Cai in [4] based on a single
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nonexpansive mapping. It is important to note that we reduced using projection in our method

to avoid the unsuitable error of projecting, which increases the rate of convergence.
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