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OPTIMAL CONTROL OF A QUASISTATIC

FRICTIONAL CONTACT PROBLEM WITH

HISTORY-DEPENDENT OPERATORS

YUJIE LI∗, XIAOLIANG CHENG AND XILU WANG

Abstract. In this paper, we are concerned with an optimal control problem of a quasistatic

frictional contact model with history-dependent operators. The contact boundary of the model is

divided into two parts where different contact conditions are specified. For the contact problem,
we first derive its weak formulation and prove the existence and uniqueness of the solution to the

weak formulation. Then we give a priori estimate of the unique solution and prove a continuous

dependence result for the solution map. Finally, an optimal control problem that contains bound-
ary and initial condition controls is proposed, and the existence of optimal solutions to the control

problem is established.
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1. Introduction

Contact models play a significant role in mechanical engineering and have long
been an important topic of research for scholars. The theory of variational in-
equalities [1, 2, 16, 17, 18] provides an effective way to study contact problems.
As the research progresses, the concept of history-dependent operators was first
introduced in [19]. These operators are used to model contact problems with long
memory. The recent references related to history-denpendent operators can be
found in [3, 11, 12, 13, 14, 20, 21, 29].

From the point of view of practical applications, it is great meaningful to study
optimal control problems in contact mechanics. The subject of optimal control of
variational inequalities was first studied in [23] and was developed by [24, 25, 26].
In [27], the existence of the solution to an optimal control problem is proved and the
convergence for the regularized control problem is studied. The reference [6] and
[7] prove the existence and approximation results of optimal solutions to a class of
quasilinear elliptic variational inequalities and a nonlinear elliptic inclusion, respec-
tively. In [28], the authors consider the numerical solutions for the optimal control
of a class of variational-hemivariational inequalities and deduce the convergence
result. As for evolutional case, the reference [14] studies an optimal control for a
class of subdifferential evolution inclusions involving history-dependent operators
and [4] focuses on the boundary optimal control of a dynamic frictional contact
problem. The works of these two papers give us a great inspiration.

In this paper, we study an optimal control problem of a quasistatic friction
contact problem involving history-dependent operators. The contact model was
proposed in [8], and the special feature of the model lies on its contact boundary,
which is divided into two parts with different contact conditions. The difference
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is that we consider boundary conditions related to the diaplacement field instead
of the velocity field. In [8], the existence and uniqueness of the solution to the
weak problem is proved and the error estimate for a discrete scheme is derived.
However, the work of this paper is a useful exploration of the problem from another
perspective. The main novelty is that we prove a continuous dependence result for
the solution map of a quasistatic problem. Compared with dynamic problems,
quasistatic problems [5, 10] are more difficult to derive a continuous dependence
result and there is little relevant literature. Moreover, we consider control variables
with regard to both boundary and initial conditions, and a cost functional that
combines observations within the domain, on the boundary and at the terminal
time. The techniques used in this work can also be applied to study some forms of
variational-hemivariational inequalities, that is, weak formulations of some contact
problems involving both convex and Clarke subdifferentials.

The rest of the paper is structured as follows. In Section 2 we recall some
basic notation and present several preliminary results. In Section 3 we introduce a
quasistatic contact problem with history-dependent operators. The existence and
uniqueness of the solution is given and a priori estimate for the solution is proved.
In Section 4, we deduce a continuous dependence result for the solution map based
on the evolution inclusion. In Section 5, we prove that an optimal control problem
has at least one solution, based on the continuous dependence result.

2. Notation and preliminaries

In this section, we recall some basic notation and known results that will be
used later in the paper. Let X be a real Banach space. Throughout the paper,
we denote by ‖ · ‖X and X∗ the norm in X and its dual space, respectively. The
notation Xw denotes X equipped with the weak topology. Furthermore, if X is a
real Hilbert space, we denote by (·, ·)X the inner product on X. We start with the
definitions of the (convex) subdifferential and subgradient.

Definition 2.1. Let f : X → R∪{+∞} be a convex function. Assume that u ∈ X
is such that f(u) 6=∞. Then, the subdifferential of f at u is the set

∂f(x) = {ξ ∈ X∗ | f(v)− f(u) ≥ 〈ξ, v − u〉X∗×X , ∀ v ∈ X}.

Each element ξ ∈ ∂f(u) is called a subgradient of f at u.

For a function ψ : X → R ∪ {+∞}, we use the notation D(ψ) for the effective
domain of ψ, i.e.

D(ψ) = {u ∈ X | ψ(u) 6=∞}.
The following lemma will be used in Section 3 to prove the unique weak solvability

of a contact problem, and its proof can be found in [24], page 35.

Lemma 2.2. Let X be a real Hilbert space and let ψ : X → R ∪ {+∞} be a
convex proper lower semicontinuous function. Then, for every f ∈ L2(0, T ;X) and
u0 ∈ D(ψ), there exists a unique function u ∈ H1(0, T ;X) which satisfies

u′(t) + ∂ψ(u(t)) 3 f(t) a.e. t ∈ (0, T ),

u(0) = u0.

Then we recall the following consequence of the Banach fixed point theorem ([3],
Lemma 3).



OPTIMAL CONTROL OF A QUASISTATIC CONTACT PROBLEM 31

Theorem 2.3. Let X be a Banach space and 0 < T < +∞. Let Λ : L2(0, T ;X)→
L2(0, T ;X) be an operator such that

‖(Λη1)(t)− (Λη2)(t)‖2X ≤ c
∫ t

0

‖η1(s)− η2(s)‖2Xds,

for all η1, η2 ∈ L2(0, T ;X), a.e. t ∈ (0, T ) with a constant c > 0. Then Λ has a
unique fixed point in L2(0, T ;X), i.e., there exists a unique η∗ ∈ L2(0, T ;X) such
that Λη∗ = η∗.

Next, we introduce a result related to upper semicontinuous multivalued func-
tions, which can be found in the appendix of [4].

Lemma 2.4. Let X be a topological space and Y be a Banach space. Assume that
G : X → 2Y is a multivalued mapping such that

(i) G has nonempty, closed and convex values in Y .
(ii) G is upper semicontinuous from X to Yw.

If xn : (0, T )→ X and yn : (0, T )→ Y are measurable functions such that xn(t)→
x(t) in X for a.e. t ∈ (0, T ), yn → y weakly in L1(0, T ;Y ) and yn(t) ∈ G(xn(t))
for a.e. t ∈ (0, T ). Then we have y(t) ∈ G(x(t)) for a.e. t ∈ (0, T ).

We conclude this section with a well-known Young’s inequality

ab ≤ εa2 + c(ε)b2,

for all a, b ∈ R, ε > 0, where c(ε) = 1/4ε. Hereafter, we denote by c(ε) a positive
constant dependent on ε and its value can differ from line to line.

3. A quasistatic frictional contact problem

In this section, we present a quasistatic frictional contact problem with a history-
dependent operator. The unique weak solvability for the problem will be proved.

Let Ω ⊂ Rd be a Lipschitz domain, d = 2, 3, occupied in its reference config-
uration by a viscoelastic body. The boundary ∂Ω is Lipschitz continuous. The
symbol Sd denotes the space of second order symmetric tensors on Rd. We use
u = (ui), σ = (σij) and ε(u) = (εij(u)) to denote the displacement vector, the
stress tensor, and the strain tensor, respectively. Here εij(u) = (ui,j + uj,i)/2,
where ui,j = ∂ui/∂xj . We denote by ν the unit outward normal vector. For a
vector field v defined on ∂Ω, its normal and tangential components are vν = v · ν
and vτ = v− vνν. The normal and tangential components of the stress field σ are
σν = (σν) · ν and στ = σν − σνν.

We adopt the summation convention on a repeated index. The canonical inner
products and norms on Rd and Sd are respectively given by

u · v = uivi, ‖v‖ = (v · v)1/2 for all u,v ∈ Rd,

σ : ε = σijεij , ‖ε‖ = (ε : ε)1/2 for all σ, ε ∈ Sd.

The boundary ∂Ω is split into three disjoint measurable parts Γ1, Γ2 and Γ3.
And Γ3 is further divided into two parts Γ3,1 and Γ3,2 where different contact
conditions will be specified. Assume that the measure of Γ1 is positive and the
body is clamped on it. Moreover, the measure of Γ3,1 and Γ3,2 cannot be zero at
the same time. When one of them is zero, the corresponding contact condition
below is suppressed from the problem. The volume forces of density f0 act in the
body Ω, and surface tractions of density f2 act on Γ2. We are interested in the
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evolutionary process of the mechanical state of the body on the time interval [0, T ]
with T > 0. The classical formulation of the contact problem is following.

Problem 3.1. Find a displacement field u : Ω × [0, T ] → Rd and a stress field
σ : Ω× [0, T ]→ Sd such that for all t ∈ [0, T ],

σ(t) = Aε(u′(t)) + Bε(u(t)) +

∫ t

0

R(t− s)ε(u(s))ds in Ω,(1)

Divσ(t) + f0(t) = 0 in Ω,(2)

u(t) = 0 on Γ1,(3)

σ(t)ν = f2(t) on Γ2,(4)

uν(t) ≤ 0, σν(t) ≤ 0, σν(t)uν(t) = 0, στ (t) = 0 on Γ3,1,(5)

− σν(t) = F on Γ3,2,(6)

‖στ (t)‖ ≤ µ|σν(t)|, −στ (t) = µ|σν(t)| uτ (t)

‖uτ (t)‖
if uτ (t) 6= 0 on Γ3,2,(7)

u(0) = u0 in Ω.(8)

For a brief description on the mechanical interpretations of the problem above,
the reader is referred to [8]. The difference is that we describe the unilateral con-
straints (5) and Coulomb’s law of dry friction (7) on the displacement field.

Subsequently, we introduce the following functional spaces.

V = {v ∈ H1(Ω;Rd) | v = 0 on Γ1},

H = L2(Ω;Rd),

Q = L2(Ω;Sd).
The inner product in V is defined by

(u,v)V = (Aε(u), ε(v))Q for u,v ∈ V.
Since the measure of Γ1 is positive, from the Korn inequality, we deduce from the
assumption H(A) introduced later that the space V is a real Hilbert space and the
norm ‖ · ‖V is equivalent with the usual Sobolev norm on H1(Ω;Rd). Specifically,

1√
‖A‖
‖u‖V ≤ ‖ε(u)‖Q ≤

1
√
mA
‖u‖V

In addition, we note that the embedding V ⊂ H is compact. Given 0 < T < +∞,
we introduce spaces V = L2(0, T ;V ), H = L2(0, T ;H). The set of admissible
displacement fields is

K = {v ∈ V | vν ≤ 0 a.e. on Γ3,1}.
Moreover, we define a space of fourth-order tensor fields,

Q∞ = {E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d},

and a convex and closed subset of L2(Γ3,2),

M = {µ ∈ L2(Γ3,2) | 0 < a ≤ µ(x) ≤ b, a.e. x ∈ Γ3,2}.
Now we introduce assumptions on the data of Problem 3.1.

H(A). The viscosity tensor A = (aijkl) : Ω× Sd → Sd is such that

(i) A ∈ Q∞;
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(ii) Aε · ε ≥ mA‖ε‖2 for all ε ∈ Sd a.e. in Ω with mA > 0.

H(B). The elasticity tensor B = (bijkl) : Ω× Sd → Sd is such that

(i) bijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;
(ii) Bε · ε ≥ mB‖ε‖2 for all ε ∈ Sd a.e. in Ω with mB > 0.

H(R). The relaxation tensor R : [0, T ]→ Q∞ is Lipschitz continuous with
constant LR > 0.

H(C). F : Γ3,2 → R and µ : Γ3,2 → R satisfy

(i) F ∈ L2(Γ3,2), F (x) ≥ 0 for a.e. x ∈ Γ3,2;
(ii) µ ∈M .

H(f). The densities of forces, surface tractions and initial displacement satisfy

f0 ∈ H, f2 ∈ L2(0, T ;L2(Γ2;Rd)),
u0 ∈ V, u0,ν(x) < 0 for a.e. x ∈ Γ3,1.

By a standard procedure, one can obtain the following weak problem of Problem
3.1.

Problem 3.2. Find u : [0, T ] → V such that u(0) = u0 and for a.e. t ∈ (0, T ),
u(t) ∈ K,

(u′(t),v − u(t))V +

(
Bε(u(t)) +

∫ t

0

R(t− s)ε(u(s))ds, ε(v − u(t))

)
Q

+

∫
Γ3,2

[F (vν − uν(t)) + µF (‖vτ‖ − ‖uτ (t)‖)]dΓ

≥ (f0(t),v − u(t))H + (f2(t),v − u(t))L2(Γ2;Rd), for all v ∈ K.

For the sake of simplicity, we introduce the following notations. Under the
assumptions of H(B), H(R) and H(f), according to Riesz representation theorem,
we can define the operator E : V → V by

((Eu)(t),v)V =

(
Bε(u(t)) +

∫ t

0

R(t− s)ε(u(s))ds, ε(v)

)
Q

,

for all u ∈ V, v ∈ V , a.e. t ∈ [0, T ], and the operator f : [0, T ]→ V by

(f(t),v)V = (f0(t),v)H + (f2(t),v)L2(Γ2;Rd),

for all v ∈ V , a.e. t ∈ [0, T ]. Moreover, we introduce functionals ϕ1 : V → R,
ϕ2 : V → R and ϕ3 : V → R ∪ {+∞} defined as follows

ϕ1(v) =

∫
Γ3,2

Fvν dΓ, v ∈ V,

ϕ2(v) =

∫
Γ3,2

µF‖vτ‖ dΓ, v ∈ V,

ϕ3(v) =

∫
Γ3,1

I(−∞,0](vν) dΓ, v ∈ V,
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where I(−∞,0] : R→ R∪{+∞} is the indicator function of interval (−∞, 0] defined
by

I(−∞,0](s) =

{
0 if s ∈ (−∞, 0],
+∞, otherwise.

Using the above notations, we can write the following equivalent form of Problem
3.2.

Problem 3.3. Find u : [0, T ]→ V such that u(0) = u0 and for a.e. t ∈ (0, T ),

(u′(t) + (Eu)(t),v − u(t))V + ϕ1(v)− ϕ1(u(t)) + ϕ2(v)− ϕ2(u(t))

+ ϕ3(v)− ϕ3(u(t)) ≥ (f(t),v − u(t))V for all v ∈ V.(9)

We have the following existence and uniqueness result.

Theorem 3.4. Under the assumptions H(A), H(B), H(R), H(C) and H(f), Prob-
lem 3.3 has a unique solution u ∈ H1(0, T ;V ).

Proof. The proof is carried out in three steps based on Lemma 2.2 and Theorem
2.3.

Step 1. Let η ∈ V and consider the following auxiliary problem. Find uη :
[0, T ]→ V such that uη(0) = u0 and for a.e. t ∈ (0, T ),(

u′η(t) + η(t),v − uη(t)
)
V

+ ϕ1(v)− ϕ1(uη(t)) + ϕ2(v)− ϕ2(uη(t))

+ ϕ3(v)− ϕ3(uη(t)) ≥ (f(t),v − uη(t))V for all v ∈ V.(10)

To study the inequality (10), we define a functional ψ : V → R by

(11) ψ(v) = ϕ1(v) + ϕ2(v) + ϕ3(v),

for all v ∈ V , and consider the following evolutionary inclusion. Find uη : [0, T ]→
V such that uη(0) = u0 and for a.e. t ∈ (0, T ),

(12) u′η(t) + ∂ψ(uη(t)) + η(t) 3 f(t).

From (11) and the definitions of ϕ1, ϕ2 and ϕ3, we find that ψ is a convex proper
lower semicontinuous function and u0 ∈ D(ψ). Moreover, it is clear that f−η ∈ V.
Then it follows from Lemma 2.2 that problem (12) has a unique solution uη ∈
H1(0, T ;V ).

Note that, from the definition of the convex subdifferential and (11), every solu-
tion to problem (12) is also a solution to problem (10). Now we prove the uniqueness
of the solution to problem (10).

Let u1,u2 ∈ H1(0, T ;V ) be solutions to problem (10). Here we skip the sub-
scripts η. Take u2(t) as the test function in the inequality for u1, take u1(t) as the
test function in the inequality for u2, and add the two resulting inequalities to get

(u′1(t)− u′2(t),u1(t)− u2(t))V ≤ 0,

for a.e. t ∈ (0, T ). Integrating the above inequality over the time interval [0, t],
noting u1(0) = u2(0) = u0, we have

1

2
‖u1(t)− u2(t)‖2V ≤ 0,

for all t ∈ [0, T ]. Thus, u1 = u2. So far, we have proved that problem (10) has a
unique solution.
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Step 2. According to the Riesz representation theorem, we can define Λη(t) ∈ V
by

(13) (Λη(t),v)V = ((Euη)(t),v)V ,

for all v ∈ V and t ∈ [0, T ], where uη ∈ H1(0, T ;V ) is the unique solution to
problem (10).

We first show that Λη ∈ H1(0, T ;V ). Let t1, t2 ∈ [0, T ], from (13), we have

(Λη(t1)− Λη(t2),v)V = (Bε(uη(t1))− Bε(uη(t2)), ε(v))Q

+

(∫ t1

0

R(t1 − s)ε(uη(s))ds−
∫ t2

0

R(t2 − s)ε(uη(s))ds, ε(v)

)
Q

≤‖Bε(uη(t1))− Bε(uη(t2))‖Q ‖ε(v)‖Q

+

∥∥∥∥∫ t1

0

R(t1 − s)ε(uη(s))ds−
∫ t2

0

R(t2 − s)ε(uη(s))ds

∥∥∥∥
Q

‖ε(v)‖Q ,(14)

for all v ∈ V . By assumptions H(B) and H(R), we have

‖Bε(uη(t1))− Bε(uη(t2))‖Q ≤ ‖B‖ ‖ε(uη(t1))− ε(uη(t2))‖Q

≤ ‖B‖√
mA
‖uη(t1)− uη(t2)‖V ,(15)

and ∥∥∥∥∫ t1

0

R(t1 − s)ε(uη(s))ds−
∫ t2

0

R(t2 − s)ε(uη(s))ds

∥∥∥∥
Q

≤
∥∥∥∥∫ t1

0

R(t1 − s)ε(uη(s))ds−
∫ t1

0

R(t2 − s)ε(uη(s))ds

∥∥∥∥
Q

+

∥∥∥∥∫ t1

0

R(t2 − s)ε(uη(s))ds−
∫ t2

0

R(t2 − s)ε(uη(s))ds

∥∥∥∥
Q

≤
∫ t1

0

LR|t1 − t2|‖ε(uη(s))‖Qds+

∣∣∣∣∫ t2

t1

‖R(t2 − s)ε(uη(s))‖Q ds
∣∣∣∣

≤LR|t1 − t2|
√
T

(∫ T

0

‖ε(uη(s))‖2Qds

) 1
2

+ cR

∣∣∣∣∫ t2

t1

‖ε(uη(s))‖Qds
∣∣∣∣

≤

(
LR

√
T

mA
‖uη‖V +

cR√
mA
‖uη‖C([0,T ];V )

)
|t1 − t2|,(16)

where cR = ‖R‖C([0,T ];Q∞). Then we apply (15) and (16) to (14) to get

(Λη(t1)− Λη(t2),v)V ≤
‖B‖
mA
‖uη(t1)− uη(t2)‖V ‖v‖V

+

(
LR
√
T

mA
‖uη‖V +

cR
mA
‖uη‖C([0,T ];V )

)
|t1 − t2|‖v‖V

Take v = Λη(t1)− Λη(t2) in the above inequality and obtain

‖Λη(t1)− Λη(t2)‖V ≤
‖B‖
mA
‖uη(t1)− uη(t2)‖V
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+

(
LR
√
T

mA
‖uη‖V +

cR
mA
‖uη‖C([0,T ];V )

)
|t1 − t2|.(17)

Since uη ∈ H1(0, T ;V ), we deduce from (17) that Λη ∈ H1(0, T ;V ).
Now, let η1,η2 ∈ V and let t ∈ [0, T ], we use the notation u1 = uη1

and
u2 = uη2 . From (13), we have

(Λη1(t)− Λη2(t),v)V = (Bε(u1(t))− Bε(u2(t)), ε(v))Q

+

(∫ t

0

R(t− s)ε(u1(s))ds−
∫ t

0

R(t− s)ε(u2(s))ds, ε(v)

)
Q

,

for all v ∈ V . Arguments similar to (14)–(17) lead to

‖Λη1(t)− Λη2(t)‖V ≤
LB
mA
‖u1(t)− u2(t)‖V

+
cR
mA

∫ t

0

‖u1(s)− u2(s)‖V ds.(18)

We get from (10) that for a.e. t ∈ (0, T ),

(u′1(t)− u′2(t),u1(t)− u2(t))V ≤ (η1(t)− η2(t),u2(t)− u1(t))V .

Integrating the above inequality over the time interval [0, t], we have

1

2
‖u1(t)− u2(t)‖2V ≤

∫ t

0

(η1(s)− η2(s),u2(s)− u1(s))V ds

≤
∫ t

0

‖η1(s)− η2(s)‖V ‖u1(s)− u2(s)‖V ds

≤1

2

∫ t

0

‖η1(s)− η2(s)‖2V ds+
1

2

∫ t

0

‖u1(s)− u2(s)‖2V ds.(19)

We use Gronwall’s inequality in (19) to get

(20) ‖u1(t)− u2(t)‖2V ≤ c
∫ t

0

‖η1(s)− η2(s)‖2V ds.

Applying (20) to (18), we obtain

‖Λη1(t)− Λη2(t)‖2V ≤ c‖u1(t)− u2(t)‖2V + c

∫ t

0

‖u1(s)− u2(s)‖2V ds

≤c
∫ t

0

‖η1(s)− η2(s)‖2V ds+ c

∫ t

0

∫ s

0

‖η1(r)− η2(r)‖2V drds

≤c
∫ t

0

‖η1(s)− η2(s)‖2V ds,

for a.e. t ∈ (0, T ). By Theorem 2.3, we deduce that there exists a unique fixed
point η∗ of Λ.

Step 3. Let η∗ ∈ V be the unique fixed point of the operator Λ. Let uη∗ ∈
H1(0, T ;V ) be the unique solution to problem (10) corresponding to η∗. From the
definition of the operator Λ, we have

(η∗(t),v)V = (Λη∗(t),v)V = ((Euη∗)(t),v)V ,

for all v ∈ V and t ∈ [0, T ]. Thus, uη∗ ∈ H1(0, T ;V ) is the unique solution to
Problem 3.3. This completes the proof of the theorem. �
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4. Continuous dependence result

In this section, we first introduce an evolutionary inclusion of the subdifferential
type, which share the same unique solution with Problem 3.3. Then, some priori
estimates for the solution to Problem 3.3 will be established. Finally, we prove a
continuous dependence result for the solution map.

We introduce functionals ϕ̃1 : L2(Γ3,2) → R, ϕ̃2 : M × L2(Γ3,2;Rd) → R and
ϕ̃3 : L2(Γ3,1)→ R ∪ {+∞} defined as follows

ϕ̃1(v) =

∫
Γ3,2

Fv dΓ, v ∈ L2(Γ3,2),

ϕ̃2(µ,v) =

∫
Γ3,2

µF‖v‖ dΓ, µ ∈M, v ∈ L2(Γ3,2;Rd),

ϕ̃3(v) =

∫
Γ3,1

I(−∞,0](v) dΓ, v ∈ L2(Γ3,1).

Let γ1 : V → L2(Γ3,2) and γ2 : V → L2(Γ3,2;Rd) be operators of the normal and
tangential traces on Γ3,2, respectively, defined by γ1(v) = vν and γ2(v) = vτ for
v ∈ V . Let γ3 : V → L2(Γ3,1) be the operator of the normal trace on Γ3,1. We can
easily find that the following problem is equivalent to Problem 3.3.

Problem 4.1. Find u : [0, T ]→ V such that u(0) = u0 and for a.e. t ∈ (0, T ),

(u′(t) + (Eu)(t),v − u(t))V + ϕ̃1(γ1v)− ϕ̃1(γ1u(t))

+ ϕ̃2(µ, γ2v)− ϕ̃2(µ, γ2u(t)) + ϕ̃3(γ3v)− ϕ̃3(γ3u(t))

≥(f(t),v − u(t))V for all v ∈ V.(21)

We consider the following evolutionary inclusion problem.

Problem 4.2. Find u : [0, T ]→ V such that u(0) = u0 and for a.e. t ∈ (0, T ),

u′(t) + (Eu)(t) + γ∗1∂ϕ̃1(γ1u(t))

+ γ∗2∂ϕ̃2(µ, γ2u(t)) + γ∗3∂ϕ̃3(γ3u(t)) 3 f(t) in V.(22)

Note that (22) can also be writed as

(23) u′(t) + (Eu)(t) + γ∗1ξ1(t) + γ∗2ξ2(t) + γ∗3ξ3(t) = f(t), in V,

where

ξ1(t) ∈ ∂ϕ̃1(γ1u(t)), ξ2(t) ∈ γ∗2∂ϕ̃2(µ, γ2u(t)), ξ3(t) ∈ ∂ϕ̃3(γ3u(t)).(24)

Furthermore, using the corresponding Nemitsky operators, (23) can be equivalently
written as

(25) u′ + Eu+ γ∗1ξ1 + γ∗2ξ2 + γ∗3ξ3 = f , in V.
Here and after, we may not use new notations for Nemitsky operators and it will
not cause confusion.

Lemma 4.3. Problems 4.1 and 4.2 are equivalent.

Proof. On the one hand, assume u ∈ H1(0, T ;V ) is a solution of Problem 4.1.
Since u is also the solution of Problem 3.3, we equivalently write (9) as

(−u′(t)− (Eu)(t) + f(t),v − u(t))V ≤ ϕ1(v)− ϕ1(u(t))

+ ϕ2(v)− ϕ2(u(t)) + ϕ3(v)− ϕ3(u(t)) for all v ∈ V.
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From the definition of the convex subdifferential, we have

−u′(t)− (Eu)(t) + f(t) ∈ ∂ϕ1(u(t)) + ∂ϕ2(u(t)) + ∂ϕ3(u(t)) in V.

In addition, we have the following properties

∂ϕ1(v) = γ∗1∂ϕ̃1(γ1v),

∂ϕ2(v) = γ∗2∂ϕ̃2(µ, γ2v),

∂ϕ3(v) = γ∗3∂ϕ̃3(γ3v),

for all v ∈ V . Thus, we obtain

− u′(t)− (Eu)(t) + f(t)

∈ γ∗1∂ϕ̃1(γ1u(t)) + γ∗2∂ϕ̃2(µ, γ2u(t)) + γ∗3∂ϕ̃3(γ3u(t)) in V.

This is (22). On the other hand, assume u ∈ H1(0, T ;V ) is a solution of Problem
4.2. According to (23), (24) and the definition of the convex subdifferential, we
have

(−u′(t)− (Eu)(t) + f(t),v − u(t))V

= (ξ1(t), γ1v − γ1u(t))V + (ξ2(t), γ2v − γ2u(t))V + (ξ3(t), γ3v − γ3u(t))V

≤ ϕ̃1(γ1v)− ϕ̃1(γ1u(t)) + ϕ̃2(µ, γ2v)− ϕ̃2(µ, γ2u(t)) + ϕ̃3(γ3v)− ϕ̃3(γ3u(t)),

which verifies (21) and completes the proof. �

Now we define operators E0 : V → V, N0 : V → L2(0, T ;L2(Γ3,2)), N̄0 : V →
L2(0, T ;L2(Γ3,2;Rd)) and M0 : V → L2(0, T ;L2(Γ3,1)) by

(E0v)(t) = (E(v + u0)) (t),

(N0v)(t) = {ξ ∈ L2(0, T ;L2(Γ3,2)) | ξ(t) ∈ ∂ϕ̃1(γ1(v(t) + u0))},

(N̄0v)(t) = {ξ ∈ L2(0, T ;L2(Γ3,2;Rd)) | ξ(t) ∈ ∂ϕ̃2(µ, γ2(v(t) + u0))},
(M0v)(t) = {ξ ∈ L2(0, T ;L2(Γ3,1)) | ξ(t) ∈ ∂ϕ̃3(γ3(v(t) + u0))},

for all v ∈ V and a.e. t ∈ (0, T ). We propose the following evolutionary inclusion
problem.

Problem 4.4. Find w : [0, T ]→ V such that w(0) = 0 and

(26) w′ + E0w + γ∗1ζ1 + γ∗2ζ2 + γ∗3ζ3 = f , in V.
where

(27) ζ1 ∈ N0w, ζ2 ∈ N̄0w, ζ3 ∈M0w.

It is obvious that w ∈ H1(0, T ;V ) is a solution to Problem 4.4 if and only if
u = w + u0 is a solution to Problem 4.2.

Theorem 4.5. Under the assumptions H(A), H(B), H(R), H(C) and H(f), the
unique solution to Problem 4.1 has the following estimate

(28) ‖u‖V + ‖u′‖V ≤ c(u0,f),

where c(u0,f) denote a constant dependent on ‖u0‖V and ‖f‖V .

Proof. Take v = 0 in (21), we have

(u′(t),u(t))V + (Bε(u(t)), ε(u(t)))Q +

(∫ t

0

R(t− s)ε(u(s))ds, ε(u(t))

)
Q
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+

∫
Γ3,2

F (γ1u(t))dΓ +

∫
Γ3,2

µF‖γ2u(t)‖dΓ ≤ (f(t),u(t))V .(29)

We estimate each term of (29). First, from H(B)(ii), we have

(30) (Bε(u(t)), ε(u(t)))Q ≥ mB‖ε(u(t))‖2Q ≥
mB
‖A‖
‖u(t)‖2V .

Using H(R), we get(∫ t

0

R(t− s)ε(u(s))ds, ε(u(t))

)
Q

≥− ε‖ε(u(t))‖2Q − c(ε)
∥∥∥∥∫ t

0

R(t− s)ε(u(s))ds

∥∥∥∥2

Q

≥− ε

mA
‖u(t)‖2V − c(ε)

c2RT

mA

∫ t

0

‖u(s)‖2V ds.(31)

From H(C), we have ∫
Γ3,2

F (γ1u(t))dΓ

≥− ε
∫

Γ3,2

|γ1u(t)|2dΓ− c(ε)
∫

Γ3,2

F 2dΓ

≥− ε‖γ1‖2‖u(t)‖2V − c(ε)‖F‖2L2(Γ3,2),(32)

and

(33)

∫
Γ3,2

µF‖γ2u(t)‖dΓ ≥ 0.

Finally,

(34) (f(t),u(t))V ≤ ε‖u(t)‖2V + c(ε)‖f(t)‖2V .

We apply (30)–(34) to (29) and obtain

(u′(t),u(t))V +

(
mB
‖A‖

− ε

mA
− ε‖γ1‖2 − ε

)
‖u(t)‖2V

≤c(ε)c
2
RT

mA

∫ t

0

‖u(s)‖2V ds+ c(ε)‖F‖2L2(Γ3,2) + c(ε)‖f(t)‖2V .(35)

Integrating (35) over the time interval [0, t], we get

1

2
‖u(t)‖2V +

(
mB
‖A‖

− ε

mA
− ε‖γ1‖2 − ε

)∫ t

0

‖u(s)‖2V ds

≤c(ε)c
2
RT

mA

∫ t

0

∫ s

0

‖u(r)‖2V drds+ c(ε)T‖F‖2L2(Γ3,2)

+ c(ε)‖f‖2V +
1

2
‖u0‖2V .(36)

Taking ε small enough and using Gronwall’s inequality, we obtain

‖u‖2V ≤ c(1 + ‖u0‖2V + ‖f‖2V).

That is,

(37) ‖u‖V ≤ c(u0,f).
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Let w ∈ H1(0, T ;V ) be the solution to Problem 4.4, from (26), (27) and Lemma
4.3, we have

(38) ‖u′‖2V = ‖w′‖2V ≤ c
(
‖E0w‖2V + ‖γ∗1ζ1‖2V + ‖γ∗2ζ2‖2V + ‖γ∗3ζ3‖2V + ‖f‖2V

)
.

Since the relation u = w + u0 holds, by (37), we get

(39) ‖w‖V ≤ c(u0,f).

According to the assumptions H(B) and H(R) and the definition of the operator
E0, we find that

(40) ‖E0w‖V ≤ c (1 + ‖w‖V + ‖u0‖V ) ≤ c(u0,f).

By direct calculation of convex subdifferentials, we have

(41) ζ1(x, t) = F (x), ζ2(x, t) ∈ µ(x)F (x)∂‖wτ (x, t) + u0,τ (x)‖,
for a.e. (x, t) ∈ Γ3,2 × (0, T ). From (26), (39)–(41), we have

(γ∗3ζ3,w)V = (f −w′ − E0w − γ∗1ζ1 − γ∗2ζ2,w)V

≤ (‖f‖V + ‖E0w‖V + ‖γ∗1ζ1‖V + ‖γ∗2ζ2‖V) ‖w‖V ≤ c(u0,f).(42)

According to Lemma 3.10 in [22], the operator γ∗3M0 is strongly quasi-bounded.
Then, by (39) and (42), we find that

(43) ‖γ∗3ζ3‖V ≤ c(u0,f).

Now we apply (40), (41) and (43) to (38) and obtain

(44) ‖u′‖V ≤ c(u0,f).

Combining (37) and (44), we complete the proof of (28). �

We denote by u = U(f2, µ,u0) the unique solution to Problem 4.2 with data
(f2, µ,u0). Here

U : L2(0, T ;L2(Γ2;Rd))×M × V → V, (f2, µ,u0) 7→ u = U(f2, µ,u0),

is the solution map of Problem 4.2. Now we present the continuous dependence
result for the solution map.

Theorem 4.6. If the assumptions H(A), H(B), H(R), H(C) and H(f) hold,
{fn2 } ⊂ L2(0, T ;L2(Γ2;Rd)), fn2 → f2 weakly in L2(0, T ;L2(Γ2;Rd)), {µn} ⊂ M ,
µn → µ weakly in L2(Γ3,2), {un0} ⊂ V , un0 → u0 weakly in V . Then

un → u weakly in V,
u′n → u′ weakly in V,

where un = U(fn2 , µn,u
n
0 ) and u = U(f2, µ,u0).

Proof. Since un is the unique solution to Problem 4.2 with data (fn2 , µn,u
n
0 ), we

have

u′n + Eun + γ∗1ξ
n
1 + γ∗2ξ

n
2 + γ∗3ξ

n
3 = fn in V,(45)

with

ξn1 (t) ∈ ∂ϕ̃1(γ1un(t)), ξn2 (t) ∈ ∂ϕ̃2(µn, γ2un(t)), ξn3 (t) ∈ ∂ϕ̃3(γ3un(t)),

for a.e. t ∈ (0, T ) and

(fn(t),v)V = (f0(t),v)H + (fn2 (t),v)L2(Γ2;Rd), for all v ∈ V, a.e. t ∈ (0, T ).
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According to Theorem 4.5, we have

‖un‖V + ‖u′n‖V ≤ c(un0 ,fn).

From the conditions that fn2 → f2 weakly in L2(0, T ;L2(Γ2;Rd)) and un0 → u0

weakly in V , we deduce that {fn2 } is bounded in L2(0, T ;L2(Γ2;Rd)) and {un0} is
bounded in V . Thus the sequences {un} and {u′n} are bounded in V. As a result,
passing to a subsequence, if necessary, we have

un → u weakly in V,(46)

u′n → u′ weakly in V.(47)

By direct calculation of convex subdifferentials, we can find that

ξn1 (x, t) = F (x),(48)

ξn2 (x, t) ∈ µn(x)F (x)∂‖u′n,τ (x, t)‖,(49)

for a.e. (x, t) ∈ Γ3,2× (0, T ). From (48), we get ξn1 → ξ1 in L2(0, T ;L2(Γ3,2)), with
ξ1(t) = F and

ξ1(t) ∈ ∂ϕ̃1(γ1u(t)),

for a.e. t ∈ (0, T ). In fact, ∂ϕ̃1 is a single-valued map such as ∂ϕ̃1(v) = F for all
v ∈ L2(Γ3,2). By (48) and (49), we can also find that {ξn1 } and {ξn2 } are bounded
in L2(0, T ;L2(Γ3,2)) and L2(0, T ;L2(Γ3,2;Rd)), respectively. From (45), we have

γ∗3ξ
n
3 = fn − (u′n + Eun + γ∗1ξ

n
1 + γ∗2ξ

n
2 ) in V.

Since E , γ∗1 and γ∗2 are all bounded operators, all terms in the right side of the
above equality are bounded. Thus {ξn3 } is bounded in L2(0, T ;L2(Γ3,1)). Passing
to a subsequence, if necessary, we have

ξn2 → ξ2 weakly in L2(0, T ;L2(Γ3,2;Rd)),
ξn3 → ξ3 weakly in L2(0, T ;L2(Γ3,1)).

In what follows, we will prove that u ∈ H1(0, T ;V ) is the solution of Problem
4.2 with data (f2, µ,u0).

We first prove the initial condition. From (46) and (47), by Lemma 2.55(i) of
[9], we have un(0) → u(0) weakly in V . Since un(0) = un0 → u0 weakly in V , we
obtain u(0) = u0.

Then we prove that u ∈ H1(0, T ;V ) satisfies the equation. Under the assump-
tions H(B) and H(R), the operator E is linear and bounded, thus it is weakly
continuous. From (46), we have

Eun → Eu weakly in V.

By Theorem 2.18 of [1],

γ2un → γ2u in L2(0, T ;L2(Γ3,2;Rd)),
γ3un → γ3u in L2(0, T ;L2(Γ3,1)).

Passing to a subsequence, if necessary, we have for a.e. t ∈ (0, T ),

γ2un(t)→ γ2u(t) in L2(Γ3,2;Rd),
γ3un(t)→ γ3u(t) in L2(Γ3,1).
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According to Lemma 10 in [4], ∂ϕ2 is upper semicontinuous as a multifunction from
Mw × L2(Γ3,2;Rd) to L2

w(Γ3,2;Rd). We use Lemma 2.4 to conclude that

ξ2(t) ∈ ∂ϕ̃2(µ, γ2u(t)),

for a.e. t ∈ (0, T ). Moreover, we refer to Lemma 3.5 (P3) in [22], the graph of ∂ϕ̃3

is closed in the topology of L2(Γ3,2)× L2
w(Γ3,2). Thus

ξ3(t) ∈ ∂ϕ̃3(γ3u(t)),

for a.e. t ∈ (0, T ). On the other hand, it is immediate to see that

γ∗1ξ
n
1 → γ∗1ξ1, γ∗2ξ

n
2 → γ∗2ξ2, γ∗3ξ

n
3 → γ∗3ξ3 weakly in V.

Moreover, from fn2 → f2 weakly in L2(0, T ;L2(Γ2;Rd)), we can easily deduce that

fn → f weakly in V.
Now we pass to the limit in the inequality (45) to obtain

u′ + Eu+ γ∗1ξ1 + γ∗2ξ2 + γ∗3ξ3 = f in V,
which completes the proof. �

5. An optimal control problem

In this section, we consider an optimal control problem for the problem we
studied in Section 3 and Section 4, say Problem 3.3 or its equivalent form Problem
4.2. The control variables contain boundary and initial conditions, and the objective
cost functional combines observations within the domain, on the boundary and at
the terminal time. Our goal is to prove that the optimal control problem has at
least one solution.

To begin with, the control variables are given by f2, µ and u0, and the admissible
control set, denoted by Uad, is defined by

Uad = Fad ×M × Vad,

where Fad and Vad are convex, closed, bounded in L2(0, T ;L2(Γ2;Rd)) and V ,
respectively.

Then we define a cost functional J : L2(0, T ;L2(Γ2;Rd)) ×M × V × V → R as
follows

J(f2, µ,u0,u) = ρ1‖u0 − ū0‖2V + ρ2‖u(T )− ūT ‖2V

+ ρ3‖µ− µ̄‖2L2(Γ3,2) +

∫ T

0

ρ4(t)‖u(t)− ũ(t)‖2V dt

+

∫ T

0

(
ρ5(t)‖u(t)− ū(t)‖2H + ρ6(t)‖f2(t)− f̄2(t)‖2L2(Γ2;Rd)

)
dt,

with the following assumptions of the given data

Hop. ρi ∈ R, ρi ≥ 0, for i = 1, 2, 3. ρj ∈ L∞(0, T ), ρj ≥ 0, for j = 4, 5, 6. ū0 ∈ V ,

ūT ∈ V , µ̄ ∈ L2(Γ3,2), ũ ∈ V, ū ∈ H, f̄2 ∈ L2(0, T ;L2(Γ2;Rd)).

The optimal control problem we are concerned with is

minimize J(f2, µ,u0,u) subject to (f2, µ,u0) ∈ Uad and u = U(f2, µ,u0).(50)

Theorem 5.1. Under the assumptions H(A), H(B), H(R), H(C), H(f) and Hop,
the optimal control problem (50) has a solution (f2, µ,u0,u) ∈ L2(0, T ;L2(Γ2;Rd))×
M × V × V.
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Proof. We set

m = inf{J(f2, µ,u0,u) | (f2, µ,u0) ∈ Uad, u = U(f2, µ,u0)}.

Let (fn2 , µn,u
n
0 ,un) be a minimizing sequence for the cost functional J , i.e.,

lim
n→∞

J(fn2 , µn,u
n
0 ,un) = m with un = U(fn2 , µn,u

n
0 ).

Since Fad and Vad are convex, closed, bounded subsets in L2(0, T ;L2(Γ2;Rd)) and
V , respectively, there exists a subsequence of {(fn2 ,un0 )}, denoted by the same
notation, such that

fn2 → f∗2 weakly in L2(0, T ;L2(Γ2;Rd)),(51)

un0 → u∗0 weakly in V.(52)

Note that M is a convex, closed, bounded subset of L2(Γ3,2), then we may also find
a subsequence of {µn}, denoted by the same notation, such that

µn → µ∗ weakly in L2(Γ3,2).(53)

It is well-known that a convex subset of a Banach space is closed if and only if it is
weakly closed, thus

(f∗2 , µ
∗,u∗0) ∈ Uad.

From Theorem 4.6, we have

un → u∗ weakly in V,(54)

u′n → u∗
′

weakly in V,(55)

where u∗ = U(f∗2 , µ
∗,u∗0) is the unique solution to Problem 4.2. We note that the

norm ‖ · ‖V is weak lower semicontinuous, from (52), we have

lim inf
n→∞

‖un0 − ū0‖2V ≥ ‖u∗0 − ū0‖2V .(56)

From (54) and (55), by Lemma 2.55(i) of [9], we get

un(t)→ u∗(t) weakly in V, for all t ∈ [0, T ].(57)

Specifically,

un(T )→ u∗(T ) weakly in V,

thus,

lim inf
n→∞

‖un(T )− ūT ‖2V ≥ ‖u∗(T )− ūT ‖2V .(58)

Since the norm ‖ · ‖L2(Γ3,2) is also weak lower semicontinuous, we deduce the fol-
lowing inequality from (53)

lim inf
n→∞

‖µn − µ̄‖2L2(Γ3,2) ≥ ‖µ
∗ − µ̄‖2L2(Γ3,2).(59)

Applying Fatou’s Lemma, we obtain

lim inf
n→∞

∫ T

0

ρ4(t)‖un(t)− ũ(t)‖2V dt

≥
∫ T

0

lim inf
n→∞

ρ4(t)‖un(t)− ũ(t)‖2V dt

≥
∫ T

0

ρ4(t)‖u∗(t)− ũ(t)‖2V dt.(60)
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Since the embedding V ⊂ H is compact, from (57), we have

un(t)→ u∗(t) in H, for all t ∈ [0, T ],

Combined with the fact un,u
∗ ∈ C([0, T ];H), the above convergence gives

un → u∗ in H.(61)

Now we define an operator L : (0, T )×H × L2(Γ2;Rd)→ R by

L(t,v,w) = ρ5(t)‖v − ū(t)‖2H + ρ6(t)‖w − f̄2(t)‖2L2(Γ2;Rd).

In fact, the operator L : (0, T )×H × L2(Γ2;Rd)→ R satisfies

(i) L(t, ·, ·) is sequentially lower semicontinuous on H × L2(Γ2;Rd),
for a.e. t ∈ (0, T );

(ii) L(t,v, ·) is convex on L2(Γ2;Rd), for all v ∈ H, a.e. t ∈ (0, T );
(iii) There is N > 0 and ψ ∈ L1(0, T ) such that

L(t,v,w) ≥ ψ(t)−N
(
‖v‖H + ‖w‖L2(Γ2;Rd)

)
,

for all v ∈ H, w ∈ L2(Γ2;Rd), a.e. t ∈ (0, T ).

We give the proof of (iii). For a ∈ R, the simple inequality holds: a2 ≥ 2a − 1,
then we have

L(t,v,w) ≥ 2
√
ρ5(t)‖v − ū(t)‖H + 2

√
ρ6(t)‖w − f̄2(t)‖L2(Γ2;Rd) − 2

≥− 2
√
ρ5(t) (‖v‖H + ‖ū(t)‖H)

− 2
√
ρ6(t)

(
‖w‖L2(Γ2;Rd) + ‖f̄2(t)‖L2(Γ2;Rd)

)
− 2

≥− 2
√
ρ5(t)‖ū(t)‖H − 2

√
ρ6(t)‖f̄2(t)‖L2(Γ2;Rd) − 2

− 2ρ
(
‖v‖H + ‖w‖L2(Γ2;Rd)

)
,

where

ρ = max{
√
‖ρ5‖L∞(0,T ),

√
‖ρ6‖L∞(0,T )}.

We complete the proof of (iii) by taking N = 2ρ and

ψ(t) = −2
√
ρ5(t)‖ū(t)‖H − 2

√
ρ6(t)‖f̄2(t)‖L2(Γ2;Rd) − 2.

According to the claims (i)-(iii) related to the operator L, using Theorem 2.1 of
[15], the integral

I =

∫ T

0

L(t,u(t),f2(t))dt

is sequentially strong-weak lower semicontinuous on H×L2(0, T ;L2(Γ2;Rd)). Then
we use (51) and (61) to obtain

lim inf
n→∞

∫ T

0

L(t,un(t),fn2 (t))dt ≥
∫ T

0

L(t,u∗(t),f∗2 (t))dt.(62)

Finally, from (56), (58), (59), (60) and (62), we have

J(f∗2 , µ
∗,u∗0,u

∗) ≤ lim inf
n→∞

J(fn2 , µn,u
n
0 ,un) = m,

which means (f∗2 , µ
∗,u∗0,u

∗) is a solution to the optimal control problem (50). �
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