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Abstract. The present work analyzes the mean-square approximation error of split-step

theta methods in a non-globally Lipschitz regime. We show that under a coupled mono-

tonicity condition and polynomial growth conditions, the considered methods with the

parameters θ ∈ [1/2,1] have convergence rate of order 1/2. This covers a class of

stochastic differential equations with super-linearly growing diffusion coefficients such

as the popular 3/2-model in finance. Numerical examples support the theoretical results.

AMS subject classifications: 60H35, 60H15, 65C30

Key words: Stochastic differential equation, non-globally Lipschitz coefficient, split-step theta me-

thod, strong convergence rate.

1. Introduction

Stochastic differential equations (SDEs) play an important role in various fields of na-

tural and social sciences. However, most of SDEs can not be solved analytically, so that nu-

merical simulations become a vital tool for understanding SDE models. Various numerical

schemes are developed, with strong and weak approximation errors well studied under the

classical conditions that the coefficients of SDEs are globally Lipschitz continuous [21,30].

However, since the majority of nonlinear SDEs arising in applications have super-linearly

growing coefficients, the study of their numerical approximations is a non-trivial task. As is

shown in [16], for a large class of SDEs with super-linearly growing coefficients the popu-

larly used Euler-Maruyama (EM) method can produce numerical solutions with divergent

moment bounds as the time step-size tends to zero. This results in strong and weak diver-

gence of the numerical approximations. Such observations can be also found in the early

reference [11, Section 3], where a motivating example was given. Note that a large number

of works devoted to the numerical analysis of SDEs under non-globally Lipschitz conditions

makes an emphasis on implicit schemes — cf. [1–3,9,10,12,13,19,23,26,27,34,36], and on
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developing approximation methods based on modifications of traditional explicit schemes

— cf. [4–7,14,15,17,18,20,22,24,25,29,31–33,35,39], to just mention a few.

This work is concerned with a kind of split-step implicit schemes for SDEs with non-

globally Lipschitz coefficients, where the drift and diffusion coefficients are assumed to

obey the coupled monotonicity condition (2.3). This setting allows super-linearly grow-

ing diffusion coefficients and covers the popular 3/2-model in finance. The schemes under

consideration are called the split-step theta (SST) methods — cf. the Eqs. (2.2) below. They

have been introduced by Huang [13], where the exponential mean square stability of SST

methods and the usual stochastic theta methods (STMs), was examined under the mono-

tonicity condition (2.3). In particular, it was shown that the SST methods with θ > 1/2

have better nonlinear stability properties than the STMs do. The SST methods extend the

split-step backward Euler (SSBE) method proposed by Mattingly et al. [28], where the

ergodicity of SDEs with locally Lipschitz coefficients and their approximations have been

studied. They showed that the explicit EM method does not inherit the geometric ergodic-

ity of such SDEs while the SSBE scheme was able to reproduce the ergodicity. The strong

convergence rate of the SSBE scheme was first established in [9] for SDEs with non-globally

Lipschitz drift but globally Lipschitz diffusion coefficients. Similar strong convergence re-

sults are derived in [38] for the SST methods with θ ∈ [1/2,1] and in [19] for semi-implicit

split-step numerical methods and globally Lipschitz continuous diffusion coefficients. If the

diffusion coefficients can grow super-linearly, some efforts have been made to prove the

strong convergence rate of split-step type methods. Thus Liu et al. [23] proposed a family

of split-step balanced θ -methods for SDEs with non-globally Lipschitz continuous coeffi-

cients. Using the fundamental strong convergence theorem [33], they obtained the desired

strong convergence rate. Besides, using the notions of stochastic C-stability and stochas-

tic B-consistency, Andersson and Kruse [2] obtained the mean-square convergence rate of

the SSBE scheme under the coupled monotonicity condition (2.3) for non-globally Lips-

chitz diffusion coefficients. However, to the best of the authors knowledge, in the case of

non-globally Lipschitz diffusion coefficients, the convergence rates of general SST methods

(2.2) with θ ∈ [1/2,1] has not been studied. As pointed out in [9, p. 1060], the split-

step implicit method with θ = 1/2, may be of practical interest for Hamiltonian problems

perturbed by damping and/or noise.

Motivated by the above results, we study the mean-square error of the general SST

methods for SDEs with possibly super-linearly growing diffusion coefficients. In particular,

we show that SST methods with θ ∈ [1/2,1] converge with the rate 1/2 under a coupled

monotonicity condition and polynomial growth conditions. This setting covers a class of

SDEs with super-linearly growing diffusion coefficients including the popular 3/2-model

in finance. Wang et al. [36] proposed a new approach to the mean-square error analysis

for STMs. It does not require a priori high-order moment estimates of numerical approxi-

mations and allows to recover mean-square convergence rates of STMs with θ ∈ [1/2,1]

under the coupled monotonicity condition (2.3).

The present article extends the ideas of [36] to general SST methods with θ ∈ [1/2,1].

Unlike [36], we have to introduce an auxiliary process eX (tn) and develop a new techniques

in the error analysis — cf. the proof of Theorem 3.1 and comments at the end of Section 3.
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Finally, we note that the fundamental strong convergence theorem in [33] for one-step

approximations in a non-globally Lipschitz setting requires a priori high-order moment es-

timates of numerical approximations. However, we have not used this result because we

were not able to derive high-order moment estimates for general SST methods (2.2) with

θ ∈ [1/2,1] in the non-globally Lipschitz setting.

The remainder of this paper is organized as follows. Section 2 presents a numerical

scheme and formulates some assumptions. In Section 3, the expected rate of mean-square

convergence is established. Numerical simulations in Section 4 verify the theoretical results.

2. SST Methods

Let N denote the set of all positive integers and d , m ∈ N. If x , y ∈ Rd , then |x | refers to

the Euclidean norm of x and 〈x , y〉 the inner product of x and y. Besides, if A is an d ×m

matrix, then |A| :=
p

trace(AT A) denotes the trace norm of A. In addition, for a filtered

probability space (Ω,F , {Ft}t∈[0,T],P), let E and Lr(Ω;Rd), r ≥ 1 respectively denote the

expectation and the Banach space consisting of Rd-valued random variables ξ such that

‖ξ‖L r (Ω;Rd) :=
�
E

�
|ξ|r

�� 1
r <∞.

By C we denote generic h-independent deterministic positive constants that may take

different values at different occasions.

The present work is concerned with the mean-square approximations of the following

Itô SDEs:

dX (t) = f
�
t, X (t)

�
dt + g

�
t, X (t)

�
dW (t), t ∈ (0, T ], X (0) = X0, (2.1)

where W : [0, T ] × Ω → Rm is an Rm-valued standard Brownian motion with respect to

{Ft}t∈[0,T]. Besides, we assume that the initial data X0 : Ω→ Rd are F0-measurable and

the drift coefficient f : [0, T ]×Rd → Rd and the diffusion coefficient g : [0, T ]×Rd → Rd×m

satisfy the coupled monotonicity condition — cf. (2.3).

Note that in general, analytical solutions of SDEs (2.1) are not known, so that numerical

methods have to be used. In order to approximate (2.1), we construct uniform meshes

t i = ih, h = T/N , i = 1,2, . . . , N and consider split-step theta methods (SSTMs), given by

Y0 = X0, i.e.

Zn = Yn + θhf (tn + θh, Zn), (2.2a)

Yn+1 = Yn + hf (tn + θh, Zn) + g(tn + θh, Zn)∆Wn, (2.2b)

where

∆Wn :=W (tn+1)−W (tn), n= 0,1, . . . , N − 1.

If θ = 0, this scheme becomes the popular EM method and if or θ = 1, this is the split-step

backward Euler method [28].



62 X. Wu and S. Gan

Assumption 2.1 (Monotonicity Condition). There are non-negative constants q ∈ (2,∞)

and L ∈ [0,∞) such that



x − y, f (t, x)− f (t, y)

�
+

q− 1

2
|g(t, x)− g(t, y)|2

≤ L|x − y|2, t ∈ [0, T ], x , y ∈ Rd , (2.3)

where f and g are the drift and diffusion coefficients of the SDEs (2.1), respectively.

The monotonicity condition (2.3) guarantees that if h ∈ (0,1/(θ L)), then the implicit

methods (θ > 0) (2.2) admit unique Ftn
-adapted solutions Zn, Yn in Rd , cf. [2, Corol-

lary 4.2].

We also need another condition, related to polynomial growth and coercivity of the drift

and diffusion coefficients.

Assumption 2.2. There are positive constants γ ∈ [1,∞), ν ∈ (0,∞), and p0 ∈ [4γ −

2,∞) such that

| f (t, x)− f (s, x)|+ |g(t, x)− g(s, x)|

≤ C
�
1+ |x |γ

�
|t − s|

1
2 , t, s ∈ [0, T ], x ∈ Rd , (2.4)

| f (t, x)− f (t, y)| ≤ C
�
1+ |x |γ−1+ |y|γ−1

�
|x − y|, t ∈ [0, T ], x , y ∈ Rd , (2.5)



x , f (t, x)

�
+

p0 − 1

2
|g(t, x)|2 ≤ ν

�
1+ |x |2

�
, t ∈ [0, T ], x ∈ Rd . (2.6)

Moreover, we also assume that X0 is F0-measurable and ‖X0‖Lp0(Ω;Rd ) <∞.

Using (2.3) and (2.5), one can show that for any t ∈ [0, T ] and x , y ∈ Rd the following

estimates holds:

| f (t, x)| ≤ C
�
1+ |x |γ

�
, |g(t, x)| ≤ C

�
1+ |x |

γ+1
2

�
, (2.7)

and

|g(t, x)− g(t, y)|2 ≤
2L

q− 1
|x − y|2 +

2

q− 1
|x − y|| f (t, x)− f (t, y)|

≤ C
�
1+ |x |γ−1+ |y|γ−1

�
|x − y|2. (2.8)

Assumptions 2.1 and 2.2 ensure that the SDE (2.1) possesses a unique adapted solution

X : [0, T ]×Ω→ Rd with continuous sample paths such that for any p ∈ [2, p0], one has

sup
t∈[0,T]

‖X (t)‖Lp(Ω;Rd ) <∞. (2.9)

It follows from (2.7) and (2.9) that for any t, s ∈ [0, T ] the following estimate holds:

‖X (t)− X (s)‖Lδ(Ω;Rd) ≤ C |t − s|
1
2 , δ ∈ [1, p0/γ]. (2.10)

One can consult [2, Section 2, Proposition 5.4] for the above assertions.
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3. Convergence Rates

This section is devoted to the mean-square convergence of SST schemes for θ ∈ [1/2,1].

First, we consider an auxiliary process eX (tn), n= 0,1, . . . , N defined by

eX (tn) = X (tn) + θhf
�
tn + θh, eX (tn)

�
. (3.1)

It is easily checked that since f satisfies the monotonicity condition (2.3), for hθ L < 1 the

process eX (tn) ∈ Ftn
uniquely determined by (3.1) is well-posed — cf. [2, Theorem 4.1].

Besides, eX (0) = Z0.

Further, we have the following moment estimates for eX (tn).

Lemma 3.1. Suppose that θ ∈ [0,1], 2θνh≤ ̺ for a ̺ < 1, Assumptions 2.1, 2.2 hold, and
eX (tn), n= 0,1, . . . , N is the process defined by (3.1). Then

��eX (tn)
��2 ≤ 1

1−̺
|X (tn)|

2 +
2θνh

1−̺
. (3.2)

Proof. Using (2.6), we write

|X (tn)|
2 =

��eX (tn)− θhf
�
tn + θh, eX (tn)

���2

≥
��eX (tn)

��2 − 2θh

eX (tn), f

�
tn + θh, eX (tn)

��

≥ (1− 2θνh)
�� eX (tn)

��2 − 2θνh,

and the proof is complete.

For j = 1,2, . . . , N we set

R j :=

∫ t j

t j−1

f
�
s, X (s)

�
− f

�
t j−1 + θh, eX (t j−1)

�
ds

+

∫ t j

t j−1

g
�
s, X (s)

�
− g

�
t j−1 + θh, eX (t j−1)

�
dW (s), (3.3)

and evaluate the approximation error as follows.

Lemma 3.2. Let θ ∈ [1/2,1]. If Assumptions 2.1 and 2.2 hold, then

sup
1≤ j≤N

E

�
|R j|

2
�
≤ Ch2, sup

1≤ j≤N

E

�
|E(R j |Ft j−1

)|2
�
≤ Ch3. (3.4)

Proof. The Hölder inequality and the Itô isometry give

E

�
|R j|

2
�
≤ 2h

∫ t j

t j−1

E

��� f
�
s, X (s)

�
− f

�
t j−1 + θh, eX (t j−1)

���2
�

ds

+ 2

∫ t j

t j−1

E

���g
�
s, X (s)

�
− g

�
t j−1 + θh, eX (t j−1)

���2
�

ds

=: Err1 + Err2.
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The term Err1 can be estimated as

Err1 ≤ 6h

∫ t j

t j−1

E

��� f
�
s, X (s)

�
− f

�
t j−1 + θh, X (s)

���2
�

ds

+ 6h

∫ t j

t j−1

E

��� f
�
t j−1 + θh, X (s)

�
− f

�
t j−1 + θh, X (t j−1)

���2
�

ds

+ 6h

∫ t j

t j−1

E

��� f
�
t j−1 + θh, X (t j−1)

�
− f

�
t j−1 + θh, eX (t j−1)

���2
�

ds

=: Err11 + Err12 + Err13. (3.5)

By the inequality (2.4), we have

Err11 ≤ Ch

∫ t j

t j−1

E

��
1+ |X (s)|γ

�2� ��t j−1 + θh− s
�� ds ≤ Ch3.

Applying the Hölder inequality and the relations (2.5), (2.9), (2.10) yields

E

��� f
�
t j−1 + θh, X (s)

�
− f

�
t j−1 + θh, X (t j−1)

���2
�

≤ CE
��

1+ |X (s)|2γ−2 + |X (t j−1)|
2γ−2

���X (s)− X (t j−1)
��2
�

≤ C

�
1+

�
E

�
|X (s)|4γ−2

� � 2γ−2
4γ−2
+
�
E

�
|X (t j−1)|

4γ−2
� � 2γ−2

4γ−2

�

×

�
E

h
|X (s)− X (t j−1)|

4γ−2
γ

i� 2γ
4γ−2

≤ Ch,

Therefore, the term Err12 can be now estimated as

Err12 ≤ Ch3.

Considering the last term and using (2.5), (2.7), (3.1) and (3.2), we write

E

��� f
�
t j−1 + θh, X (t j−1)

�
− f

�
t j−1 + θh, eX (t j−1)

���2
�

≤ CE
��

1+ |X (t j−1)|
2γ−2 + |eX (t j−1)|

2γ−2
� ��X (t j−1)− eX (t j−1)

��2
�

≤ Ch2
E

��
1+ |X (t j−1)|

2γ−2 + |eX (t j−1)|
2γ−2

� �� f
�
t j−1 + θh, eX (t j−1)

���2
�

≤ Ch2
E

��
1+ |X (t j−1)|

2γ−2 + |eX (t j−1)|
2γ−2

� �
1+ |eX (t j−1)|

2γ
� �

≤ Ch2
E

��
1+ |X (t j−1)|

4γ−2 + |eX (t j−1)|
4γ−2

� �

≤ Ch2
�
1+E

�
|X (t j−1)|

4γ−2
��

.

Consequently,

Err13 ≤ Ch4,
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and recalling the above estimates gives

Err1 ≤ Ch3.

Similar to the previous considerations we write

Err2 ≤ 6

∫ t j

t j−1

E

���g
�
s, X (s)

�
− g

�
t j−1 + θh, X (s)

���2
�

ds

+ 6

∫ t j

t j−1

E

���g
�
t j−1 + θh, X (s)

�
− g

�
t j−1 + θh, X (t j−1)

���2
�

ds

+ 6

∫ t j

t j−1

E

���g
�
t j−1 + θh, X (t j−1)

�
− g

�
t j−1 + θh, eX (t j−1)

���2
�

ds

=: Err21 + Err22 + Err23.

The term Err21 is estimated in the same way as Err11. In order to bound Err22, we use

(2.8)-(2.10), the inequality
8γ− 4

3γ− 1
≤

4γ− 2

γ

valid for γ≥ 1, and the Hölder inequality, thus obtaining

E

���g
�
t j−1 + θh, X (s)

�
− g

�
t j−1 + θh, X (t j−1)

���2
�

≤ CE
��

1+ |X (s)|γ−1 + |X (t j−1)|
γ−1
�
|X (s)− X (t j−1)|

2
�

≤ C

�
1+

�
E

�
|X (s)|4γ−2

� � γ−1
4γ−2
+
�
E

�
|X (t j−1)|

4γ−2
� � γ−1

4γ−2

�

×

�
E

h
|X (s)− X (t j−1)|

8γ−4
3γ−1

i� 6γ−2
8γ−4

≤ Ch.

Analogously, we show that

E

���g
�
t j−1 + θh, X (t j−1)

�
− g

�
t j−1 + θh, eX (t j−1)

���2
�

≤ CE
��

1+ |X (t j−1)|
γ−1 + |eX (t j−1)|

γ−1
� ��X (t j−1)− eX (t j−1)

��2
�

≤ Ch2
E

��
1+ |X (t j−1)|

γ−1 + |eX (t j−1)|
γ−1
� �� f

�
t j−1 + θh, eX (t j−1)

���2
�

≤ Ch2
E

� �
1+ |X (t j−1)|

γ−1 + |eX (t j−1)|
γ−1
� �

1+ |eX (t j−1)|
2γ
� �

≤ Ch2
E

� �
1+ |X (t j−1)|

3γ−1 + |eX (t j−1)|
3γ−1

� �

≤ Ch2
�
1+E

�
|X (t j−1)|

3γ−1
� �

.

Combining the corresponding estimates gives

Err2 ≤ Ch2.
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Noting the stochastic integral vanishes under the conditional expectation and recalling es-

timates for Err1 as shown in (3.5), we get

E

���E
�
R j|Ft j−1

���2
�
= E




�����E
 ∫ t j

t j−1

f
�
s, X (s)

�
− f

�
t j−1 + θh, eX (t j−1)

�
ds

���Ft j−1

!�����

2




≤ E




�����

∫ t j

t j−1

f
�
s, X (s)

�
− f

�
t j−1 + θh, eX (t j−1)

�
ds

�����

2




≤ h

∫ t j

t j−1

E

��� f
�
s, X (s)

�
− f

�
t j−1 + θh, eX (t j−1)

���2
�

ds ≤ Ch3.

The proof is complete.

Theorem 3.1. Let θ ∈ [1/2,1], ̺ < 1, and Assumptions 2.1-2.2 hold. If

h ∈
�
0,̺/

�
2θ max(L,ν)

��
,

then there is a constant C independent of n, such that

E

�
|X (tn)− Yn|

2
�
≤ Ch, n ∈ {1,2, . . . , N}, N ∈ N. (3.6)

Proof. It follows from (3.3) that

X (tn+1) = X (tn) + hf
�
tn + θh, eX (tn)

�
+ g

�
tn + θh, eX (tn)

�
∆Wn +Rn+1. (3.7)

Setting

en := X (tn)− Yn,

δ feX (tn),Zn
:= f

�
tn + θh, eX (tn)

�
− f (tn + θh, Zn),

δg eX (tn),Zn
:= g

�
tn + θh, eX (tn)

�
− g(tn + θh, Zn),

and subtracting the Eq. (2.2a) from the Eq. (3.1) gives

eX (tn)− Zn = en + θh
�

f
�
tn + θh, eX (tn)

�
− f (tn + θh, Zn)

�

= en + θhδ feX (tn),Zn
. (3.8)

The monotonicity condition (2.3) yields

|en|
2 ≥

��eX (tn)− Zn

��2 − 2θh

eX (tn)− Zn,δ feX (tn),Zn

�

≥
�
1− 2θ Lh

���eX (tn)− Zn

��2,

so that ��eX (tn)− Zn

��2 ≤ 1

1− 2θ Lh
|en|

2. (3.9)
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Further, subtracting the Eq. (2.2b) from (3.7) and using the above notation we get

en+1 = en + hδ feX (tn),Zn
+δg eX (tn),Zn

∆Wn +Rn+1. (3.10)

Consequently,

|en+1|
2 = |en|

2 + h2|δ feX (tn),Zn
|2 + |δg eX (tn),Zn

∆Wn|
2 + |Rn+1|

2

+ 2h


en,δ feX (tn),Zn

�
+ 2



en,δg eX (tn),Zn

∆Wn

�
+ 2



en,Rn+1

�

+ 2h


δ feX (tn),Zn

,δg eX (tn),Zn
∆Wn

�
+ 2h



δ feX (tn),Zn

,Rn+1

�

+ 2


δg eX (tn),Zn

∆Wn,Rn+1

�
. (3.11)

Taking into account the relation (3.8), we write

2h〈en,δ feX (tn),Zn
〉 = 2h


eX (tn)− Zn − θhδ feX (tn),Zn
,δ feX (tn),Zn

�

= 2h

eX (tn)− Zn,δ feX (tn),Zn

�
− 2θh2

��δ feX (tn),Zn

��2,

2h〈δ feX (tn),Zn
,Rn+1〉 =

2

θ


eX (tn)− Zn − en,Rn+1

�
.

Substituting the above equation into (3.11) gives

|en+1|
2 = |en|

2 + (1− 2θ)h2|δ feX (tn),Zn
|2 + |δg eX (tn),Zn

∆Wn|
2 + |Rn+1|

2

+ 2h

eX (tn)− Zn,δ feX (tn),Zn

�
+ 2



en,δg eX (tn),Zn

∆Wn

�
+ 2〈en,Rn+1〉

+ 2h


δ feX (tn),Zn

,δg eX (tn),Zn
∆Wn

�
+

2

θ


eX (tn)− Zn,Rn+1

�
−

2

θ
〈en,Rn+1〉

+ 2


δg eX (tn),Zn

∆Wn,Rn+1

�
.

In order to proceed, we need the following auxiliary result:

E

�
|en|

2
�
<∞, n= 0,1, . . . , N . (3.12)

It is proved by the mathematical induction. Noting that

E

�
|e0|

2
�
= E

�
|X0− Y0|

2
�
= 0,

we assume that E[|ek|
2] <∞ for k = 0,1, . . . , N − 1. The relations (3.9) and (3.8) yield

E

��� eX (tk)− Zk

��2
�
<∞ (3.13)

and

E

���δ feX (tk),Zk

��2
�
=

1

θ2h2
E

���eX (tk)− Zk − ek

��2
�
<∞,

respectively. Using these relations and the monotonicity condition (2.3), we write

E

���δg eX (tk),Zk

��2
�
≤

2L

q− 1
E

���eX (tk)− Zk

��2
�
−

2

q− 1
E

�
eX (tk)− Zk,δ feX (tk),Zk

��

≤
2L + 1

q− 1
E

���eX (tk)− Zk

��2
�
+

1

q− 1
E

���δ feX (tk),Zk

��2
�
<∞. (3.14)
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Therefore,

E

�

ek,δg eX (tk),Zk

∆Wk

��
= 0,

E

�

δ feX (tk),Zk

,δg eX (tk),Zk
∆Wk

��
= 0

and

E

�
|ek+1|

2
�
= E

�
|ek|

2
�
+ (1− 2θ)h2

E

�
|δ feX (tk),Zk

|2
�
+ hE

�
|δg eX (tk),Zk

|2
�

+E
�
|Rk+1|

2
�
+ 2hE

�
eX (tk)− Zk,δ feX (tk),Zk

��

+

�
2−

2

θ

�
E

�

ek,E

�
Rk+1|Ftk

� ��

+
2

θ
E

�
eX (tk)− Zk,E
�
Rk+1|Ftk

� ��

+ 2E
�

δg eX (tk),Zk

∆Wk,Rk+1

��
<∞, (3.15)

where we also used the estimate (3.4) in order to ensure that

E

�
|Rk+1|

2
�
<∞, E

�
|E(Rk+1|Ftk

)|2
�
<∞.

By induction arguments, the estimates (3.12) hold for all n= 0,1, . . . , N . Therefore, (3.13)-

(3.14) are valid for any k = 0,1, . . . , N and (3.15) is valid for any k = 0,1, . . . , N −1. Since

θ ≥ 1/2, we can use the Cauchy-Schwarz inequality and the monotonicity condition (2.3),

thus obtaining

E[|en+1|
2] ≤ (1+ h)E

�
|en|

2
�
+ h(q− 1)E

�
|δg eX (tn),Zn

|2
�

+
q− 1

q− 2
E

�
|Rn+1|

2
�
+ 2hE

�
eX (tn)− Zn,δ feX (tn),Zn

��

+
3

h
E

���E
�
Rn+1|Ftn

� ��2
�
+ 2hE

��� eX (tn)− Zn

��2
�

≤ (1+ h)E
�
|en|

2
�
+

q− 1

q− 2
E

�
|Rn+1|

2
�
+

3

h
E

���E
�
Rn+1|Ftn

� ��2
�

+ 2h(L + 1)E
���eX (tn)− Zn

��2
�

, ∀n= 0,1, . . . , N − 1.

Taking into account (3.9), we show that

E

�
|en+1|

2
�
≤

�
1+ h+

2(L + 1)

1− 2θ Lh
h

�
E

�
|en|

2
�
+

q− 1

q− 2
E

�
|Rn+1|

2
�

+
3

h
E

���E
�
Rn+1|Ftn

� ��2
�

.

Since

e0 = 0,
1

1− 2θ Lh
≤

1

1−̺
,
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the iterations lead to the estimate

E

�
|en|

2
�
≤ C

 
n∑

j=1

E

�
|R j |

2
�
+ h−1

n∑

j=1

E

���E(R j |Ft j−1
)
��2
�
!

. (3.16)

Combining (3.16) and (3.4), we arrive at (3.6).

Let us point out that our approach to the error analysis is inspired by the work [36],

where the convergence rates of stochastic theta methods are established. However, here we

consider an auxiliary process eX (tn) and employ a new technique, since the error remainders

R j involve X (s), eX (t j−1) and are more complicated than the respective remainders in [36].

Moreover, the error equation en := X (tn)− Yn in (3.10) depends on eX (tn), Zn, instead of

depending on X (tn), Yn.

In addition, our approach can be extended to split-step implicit Milstein-type schemes

[37]. To briefly illustrate the results in [37], we take d = m = 1. In this setting, the work

considers the following split-step theta Milstein methods with Y0 = X0 and a parameter

θ ∈ [0,1]:

Zn = Yn + θhf (tn + θh, Zn),

Yn+1 = Yn + hf (tn + θh, Zn) + g(tn + θh, Zn)∆Wn

+
1

2
g′g

�
tn + θh, Zn

��
∆W 2

n − h
�
,

where

∆Wn :=W (tn+1)−W (tn), n= 0,1, . . . , N − 1.

We choose θ ∈ [0,1] and assume that there are constants q ∈ (2,∞), ζ ∈ (1,∞), L0, L1 ∈

(0,∞) and h0 ∈ (0, T ] such that for all x , y ∈ Rd , h ∈ (0,h0) the following inequalities

hold:



x − y, f (t, x)− f (t, y)

�
≤ L0|x − y|2,

2


x − y, f (t, x)− f (t, y)

�
+ (q − 1)|g(t, x)− g(t, y)|2

+ (1− 2θ)h| f (t, x)− f (t, y)|2

+
ζ

2
h|g′g(t, x)− g′g(t, y)|2 ≤ L1|x − y|2.

These monotonicity conditions and polynomial growth conditions similar to Assumption 2.2

allows to show that for θ ∈ [1/2,1] one has

E

�
|X (tn)− Yn|

2
�
≤ Ch2,

cf. [37] for more detail.
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4. Numerical Experiments

This section presents the results of numerical simulations aimed to support the theoret-

ical analysis. We start with the 3/2-model from finance

dX (t) = λX (t)
�
µ− |X (t)|

�
dt +σ|X (t)|

3
2 dW (t), X (0) = X0 > 0,

cf. [8,10]. It is shown in [32, Appendix] that in this case, Assumptions 2.1-2.2 are satisfied

with q = (λ+σ2)/σ2, L = ν = 2λµ, γ = 2, p0 = (2λ+σ
2)/σ2. We assume that λ/σ2 ≥

5/2, which implies q ≥ 7/2 > 2, p0 ≥ 4γ − 2 = 6, so that Theorem 3.1 is applicable.

Therefore, in numerical simulations we choose λ = 5/2,µ = 2/5,σ = 1, X0 = 1. As the

benchmark solutions we use the ones obtained by the SSBE approximations with the fine

step size hexact = 2−13. Besides, the mean-square errors E[|X (T )− YN |
2] are computed by

the Monte Carlo (MC) approximations over M = 10000 samples — i.e.

E

�
|X (T )− YN |

2
�
≈

1

M

M∑

i=1

��X (i)T − Y
(i)
N

��2.

The resulting root mean square error (RMSE)

RMSE=

√√Var(|XT − YN |2)

M

of the Monte Carlo approximation is computed approximately by using the sample variance

instead of the variance. For SST methods with θ = 1/2, θ = 1, Tables 1 and 2 show

the mean-square approximation errors 1/M
∑M

i=1 |X
(i)
T − Y

(i)
N |

2 and the RMSE for the MC

approximation, respectively. Note that the RMSE for the MC approximation is negligible.

Fig. 1 demonstrates the approximation errors

Ç
1/M

∑M

i=1 |X
(i)
T − Y

(i)
N |

2 of SST methods

with θ = 1/2 and θ = 1 for six step sizes h = 2−i, i = 5,6, . . . , 10. The resulting errors

decrease linearly, at a slope of about 1/2, consistent with the theoretical convergence rate.

Our second example concerns double well dynamics with multiplicative noise — viz.

dX (t) = X (t)
�
1− X (t)2

�
dt +σ

�
1− X (t)2

�
dW (t), t ∈ [0,1], X (0) = X0 = 2.

Table 1: Mean-square approximation errors
1/M

∑M

i=1
|X (i)T − Y

(i)

N |
2.

h θ = 0.5 θ = 1

h= 2−5 0.0016 0.0018

h= 2−6 6.5860e-04 7.0704e-04

h= 2−7 3.1292e-04 3.2641e-04

h= 2−8 1.5234e-04 1.5732e-04

h= 2−9 7.3609e-05 7.4433e-05

h = 2−10 3.2224e-05 3.2313e-05

Table 2: The RMSE for the MC approximation.

h θ = 0.5 θ = 1

h = 2−5 7.5128e-05 8.6959e-05

h = 2−6 2.9832e-05 3.6426e-05

h = 2−7 1.6934e-05 1.9320e-05

h = 2−8 1.0868-05 1.2161e-05

h = 2−9 3.4798e-06 3.5724e-06

h= 2−10 1.4789e-06 1.4818e-06
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Figure 1: Convergence rates of SST methods with θ = 1/2 (Left) and θ = 1 (Right).

Such a model has been considered in [3, Section 8.1] and [22, Section 1]. It is easily

seen that the conditions (2.4)-(2.5) are satisfied with γ = 3 and it is thus required that

p0 ≥ 10. We choose p0 = 10 and compute that



x , f (x)

�
+

p0 − 1

2
|g(x)|2 = x2 − x4 +

9σ2

2

�
1− x2

�2

= −

�
1−

9σ2

2

�
x4 + (1− 9σ2)x2 +

9σ2

2
≤ ν

for ν > 0. Note that (2.6) holds for σ2 < 2/9, and (2.3) is obviously satisfied with L = 1.

Furthermore, if σ2 < 2/9 and 2< q < 11/2, then

2〈x − y, f (x)− f (y)〉+ (q− 1)|g(x)− g(y)|2

=
�
2− 2

�
x2 + x y + y2

�
+ (q − 1)σ2(x + y)2

�
(x − y)2

=
�
2− x2 − y2 +

�
(q− 1)σ2 − 1

�
(x + y)2

�
|x − y|2

≤ 2|x − y|2,

where we used the inequality (q − 1)σ2 − 1 < 0. Thus Assumptions 2.1-2.2 hold true pro-

vided that σ2 < 2/9. Now we take σ = 0.45, θ = 1/2,1 so that σ2 < 2/9 and Theorem 3.1

is applicable. Fig. 2 shows the approximation errors

Ç
1/M

∑M

i=1 |X
(i)
T − Y

(i)
N |

2 of the SST

methods with θ = 1/2,θ = 1 for six step sizes h = 2−i, i = 5,6, . . . , 10. Similar to the first

test, the expectations are approximated by computing averages over M = 10000 samples

and the benchmark solutions are obtained by using the fine step size hexact = 2−13. Nu-

merical results indicate that the RMSE for the MC approximation here are negligible. Thus

the resulting errors decrease almost linearly at a slope of about 1/2, consistent with the

theoretical convergence rate.

As the third example, we consider the SDE system

dX (t) =
�
AX (t) + F(X (t))

�
dt + G

�
X (t)

�
dW (t), t ∈ [0,1], X (0) = X0, (4.1)
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Figure 2: Convergence rates of SST methods with θ = 1/2 (Left) and θ = 1 (Right).

where X0 = (1,1, . . . , 1)T ∈ Rm×1, A∈ Rm×m and

A= (m+ 1)2





−2 1 0 · · · 0 0

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0

· · · · · ·

0 0 0 · · · −2 1

0 0 0 · · · 1 −2




,

F(x) =





1+ x1 − x3
1

1+ x2 − x3
2

...

1+ xm− x3
m



 , G(x) =





2x1

2x2
...

2xm



 .

Such SDE system arise in the finite difference spatial discretization with the spatial stepsize

∆x := 1/(m+ 1), of the following stochastic partial differential equation

du(t, x) =

�
∂ 2

∂ x2
u(t, x) + f

�
u(t, x)

��
dt

+ g
�
u(t, x)

�
dW (t), t ∈ (0,1], x ∈ (0,1),

u(t, 0) = u(t, 1) = 0,

u(0, x) = u0(x),

where u0(x) ≡ 1, f (u) = 1+ u− u3 and g(u) = 2u. We use SST methods with θ = 0.5,1

and the tamed Euler method proposed by [17] to discretize the SDE system (4.1) with

five step sizes h = 2−i, i = 2,5, . . . , 6. As before, the expectations are again approximated

by the averages over M = 10000 samples and the benchmark solutions are obtained by

approximations using the fine step size hexact = 2−12. Numerical results show that the

RMSE for the MC approximation here are negligible.

Tables 3 and 4 show the approximation errors
Ç

1/M
∑M

i=1
|X
(i)
T
− Y

(i)
N
|2 of these three

methods for two dimensions m = 4 and m = 9. It is easily seen that the tamed Euler
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Table 3: Mean-square approximation errors for
three schemes (m= 4).

h θ = 0.5 θ = 1 Tamed Euler

h = 2−2 0.3202 0.2040 5.0269

h = 2−3 0.1156 0.1229 3.6509

h = 2−4 0.0653 0.0723 1.2767

h = 2−5 0.0424 0.0453 0.0528

h = 2−6 0.0276 0.0288 0.0292

Table 4: Mean-square approximation errors for
three schemes (m= 9).

h θ = 0.5 θ = 1 Tamed Euler

h= 2−2 0.8619 0.2852 9.1844

h= 2−3 0.2645 0.1721 8.9198

h= 2−4 0.0923 0.1013 5.6077

h= 2−5 0.0591 0.0632 1.8393

h= 2−6 0.0384 0.0401 0.4821

method can give satisfactory results in the low dimension case m = 4 if the time step size

is small — viz. h = 2−5, 2−6. When dimension increases to 9, the tamed Euler method

produces rather large errors and the approximations obtained become unreliable for all

step sizes. However, the SST methods with step sizes 2−3, 2−4, 2−5, 2−6 always produce

reliable results with small errors, even in the high dimensional case m = 9. This happens

because the problem (4.1) turns out to be a very stiff system [30] as m increases. The tamed

Euler method, as a kind of explicit methods, faces severe time step-size reduction due to

stability issues. On the other hand, the SST methods, as implicit methods, have excellent

stability property and perform very well.
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