
East Asian Journal on Applied Mathematics Vol. 13, No. 1, pp. 177-193

doi: 10.4208/eajam.240522.200822 February 2023

Cryptographic Systems Based on an Algebraic

Structure

Łukasz Matysiak1,*, Monika Chrzaniuk1,2, Maximilian Duda1,2,

Marta Hanc1,2, Sebastian Kowalski1,2, Zoja Skotnicka1,2

and Martin Waldoch1,2

1Kazimierz Wielki University, Institute of Mathematics, ul. Powstancow

Wielkopolskich 2, 85-090 Bydgoszcz, Poland.
2Institute of Informatics, ul. Mikolaja Kopernika 1, 85-074 Bydgoszcz, Poland.

Received 24 May 2022; Accepted (in revised version) 20 August 2022.

Abstract. In this paper cryptographic systems based on the Dedekind and Galois struc-

tures are considered. We supplement the created cryptosystems based on the Dedekind

structure with programs written in C ++ and discuss the inner structure of Galois in

cryptography. It is well-known that such a structure is based on finite fields only. Our

results reveals something more internal. The final section contains additional informa-

tion about square-free and radical factorizations in monoids consisting in searching for

a minimal list of counterexamples. As an open problem, we leave creating a program

that would generate such a list and how to use such a list to create a cryptosystem.

AMS subject classifications: 94A60, 11R32

Key words: Monoid, cryptography, Dedekind domain, Galois extension, factorization.

1. Introduction

In this paper we present developed cryptographic programs written in C ++ (see Sec-

tions 2 and 3). These cryptographic systems are based on the Dedekind structure —

cf. [1,3]. This motivation is coming from the first author works [2,3].

Dedekind domains are one of the most important rings in algebra. They have many

valuable properties and applications. In such rings, any nonzero proper ideal factors into

primes and any non-zero fractional ideal is invertible. In Section 2, we introduce a crypto-

graphic program, where the key is an analog to a fractional ideal. In Section 3 we present

another cryptographic program, where an alphabet is analog to the fractional ideal. In

Section 4 we have complementary of [2, 3]. In addition, we consider the application of

∗Corresponding author. Email addresses: lukmat@ukw.edu.pl (Ł. Matysiak), marta.hanc@student.
ukw.edu.pl (M. Hanc), monika.chrzaniuk@student.ukw.edu.pl (M. Chrzaniuk), mxdu0407@
gmail.com (M. Duda), kspterna@student.ukw.edu.pl (S. Kowalski), skotnickazoja@gmail.com
(Z. Skotnicka), martin.waldoch@student.ukw.edu.pl (M. Waldoch)

http://www.global-sci.org/eajam 177 ©2023 Global-Science Press

178 Ł. Matysiak et al.

polynomial composites and monoid domains in cryptology in the form of certain cryptosys-

tems. In this paper we present a program about this. Section 5 is devoted to a cryptosystem

based on a Galois extension. Let us recall that a Galois extension is an algebraic field exten-

sion K ⊂ L that is normal and separable. We introduce an example of such cryptosystem

using Q ⊂ Q(
p

2,
p

3) which is a Galois extension. This cryptosystem can be freely modi-

fied while maintaining the idea of its operation. The motivation here is the development of

a cryptosystem based on the Galois theory. They do exist, of course, but there is only talk

of finite fields. To the best of our knowledge, there are no cryptosystems that go deeper

into this science so far.

By a monoid we mean a commutative cancellative monoid. In Section 6, we provide

a minimal list of possible counterexamples to find in monoids. Note that [4, Section 4]

contains 24 square-free and radical factorizations and all dependencies in general monoids

and in particular monoids (GCD-, pre-Schreier-, SR-, ACCP-, atomic, factorial monoids). We

recall that a monoid is called GCD-monoid, if for any two elements there exists a greatest

common divisor. A monoid H is called a pre-Schreier monoid, if any element a ∈ H is

primal — i.e. for any b, c ∈ H such that a | bc there exist a1, a2 ∈ H such that a =

a1a2, a1 | b and a2 | c. A monoid H is called SR-monoid, if every square-free element

is radical — cf. [4]. A monoid H is called ACCP-monoid if any ascending sequence of

principal ideals of H stabilizes — i.e. for any sequence of principal ideals I1 ⊂ I2 ⊂ · · · ,
there exists n ∈ N such that In = In+1 = · · · . A monoid H is called atomic, if every non-

invertible element a ∈ H is a finite product of irreducibles (atoms). A monoid H is factorial,

if each non-invertible element can be written as a product of irreducible elements and this

representation is unique. We also recall that any factorial monoid is ACCP-monoid, any

ACCP-monoid is atomic, any factorial monoid is GCD-monoid, and any GCD-monoid is pre-

Schreier. Since every pre-Schreier is AP-monoid — i.e each its irreducible element (atom)

is prime, it yields that every atomic and AP-monoid is factorial.

We also note that Section 6 discusses a separate topic closely related to [4, Section 7].

More exactly, we consider a minimal list of counterexamples that we can look for (Theo-

rem 6.1). Some of them are taken from [4, Section 7]. This list of counterexamples to be

looked for concerns checking whether a given implication about whether we can obtain

a different factorization from a given factorization (with respect to square-free or radical

factorization) from [4, Section 7] is non-empty. Using the laws of logic, we can easily, al-

though not quickly, generate such a list. Open search for such counterexamples is left as

an open problem. It is well-known that cryptology has often used factorization of given

numbers (or elements, more generally). The theory discussed in [4] and in this section can

be successfully used to develop new cryptosystems.

2. First Cryptosystem with a Dedekind Structure

Consider an alphabet A = {a0, a1, . . . , an} such that |A| is a prime number, and let x ∈
{2,3, . . . , |A|} be the value of a letter in the alphabet, and k ¾ 2 a key. Then

y = xk (mod |A|),

Cryptographic Systems Based on an Algebraic Structure 179

where y is the value of a letter in the alphabet. Assuming that y is an encrypted letter, we

get the decrypted letter x by the formula

x =
�

y + (k − d) · |A|
�

· k−1, (2.1)

where d is the remainder of dividing y by k. The proof of (2.1) can be found in [3, Sec-

tion 2].

The algorithm in C++ below, has a predefined 28-character alphabet. We encourage

the reader to modify it.

#include <iostream>

using namespace std;

char pub_alphabet[29], message[100]={}, test=message[100];

int x[29], p=29,noc,k;

int calc_number_of_charactes()
{
noc=0;
for(int i=0; i<100; i++)
{
if(message[i]!=test)
noc++;
}
return noc;
}

int search_ch(char a)
{
char test_key=’A’;
for(int i=0; i<p; i++)
{
if(a==test_key)
return i+2;
else
{
test_key++;
}
}
}

int encrypt(int m)

180 Ł. Matysiak et al.

{
return (m*k)%p;
}

int main()
{
pub_alphabet[0]=’A’;
x[0]=2;

for(int i=1; i<=28; i++)
{
x[i]=2+i;
pub_alphabet[i]=’A’+i;
}
pub_alphabet[28]=’ ’;
do
{
cout << "Enter a key(must be equal or greater than 2)" <<
endl;
cin >> k;
}while(k<2);

cout << "Write a message to encrypt(max 100 characters)" <<
endl;
cin >> message;

calc_number_of_charactes();

for(int i=0; i<noc; i++)
{
message[i]=toupper(message[i]);
cout << encrypt(search_ch(message[i])) << " ";
}

return 0;
}

3. Second Cryptosystem with a Dedekind Structure

We now consider another cryptosystem — cf. [3, Section 3]. Let A be a set of characters.

Assume that |A| is a prime number and secretly establish a second alphabet A′ such that

A′ ⊂ A with a prime length.

Let m1m2m3 . . . mn be the message, we want to encrypt. The secret short alphabet A′

Cryptographic Systems Based on an Algebraic Structure 181

divides large public alphabet into zones. We skip extra characters such that 0,1. So we

have a clean alphabet from 2. Let us move one over, so we have 1. If p = |A|, q = |A′|,
then we have ⌈p/q⌉ zones. The zero zone contains alphabet from 1 to q, the first zone the

alphabet from q + 1 to 2q, etc. The last zone (⌈p/q⌉ − 1) contains alphabet from ⌈p/q⌉q
to p.

We extend the message values by random numbers informing us about the given zone

of a given letter and denote this information by zi , viz.

z1m1z2m2 . . . znmn.

Denote by k the key. Multiplying each value of the message (but not the information about

the zone) by k and using the modulo q produces the ciphertext

z1d1z2d2 . . . zndn, (3.1)

where d1d2 . . . dn is the encrypted message.

In order to decode the message, we split (3.1) into blocks, each of which contains the

zone and message and apply the formula

mi =
di + (zi + t i · k)|A|

k
,

where k is the key, mi is the decoded letter, di the encrypted letter, t i the zone, and zi

a number satisfying the congruence

|A|−1zi ≡ di (mod k).

The algorithm in C ++ below is limited to 100 characters. We leave it open as to how

this program can be improved and also encourage the reader to modify the algorithm.

#include <iostream>

using namespace std;

char pub_alphabet[29], priv_alphabet[3]={’A’,’B’,’C’},
message[100]={}, test=message[100];

int x[29], p=29, q=3,noc,k;

int calc_number_of_charactes()
{
noc=0;
for(int i=0; i<100; i++)
{
if(message[i]!=test)
noc++;

182 Ł. Matysiak et al.

}
return noc;
}

int zones(int x)
{
int y=0;
while(x>=q)
{
y++;
x-=q;
}
return y;
}

int search_ch(char a)
{
char test_key=’A’;
for(int i=0; i<p; i++)
{
if(a==test_key)
return i;
else
{
test_key++;
}
}
}

int encrypt(int m)
{
return (m*k)%q;
}

bool key_check()
{
if(k%3!=0)
return true;

else
return false;
}

Cryptographic Systems Based on an Algebraic Structure 183

int main()
{
pub_alphabet[0]=’A’;
x[0]=2;

for(int i=1; i<=28; i++)
{
x[i]=2+i;
pub_alphabet[i]=’A’+i;

}
pub_alphabet[28]=’ ’;

do
{
cout << "Enter a key (must not be divisible by 3)" << endl;
cin >> k;
}while(key_check()==false);

cout << "Write a message to encrypt(max 100 characters)" <<
endl;
cin >> message;

calc_number_of_charactes();

for(int i=0; i<noc; i++)
{
message[i]=toupper(message[i]);
cout << zones(search_ch(message[i])) <<
encrypt(search_ch(message[i])) << " ";
}

return 0;
}

4. Cryptosystem Based on Monoid Domains

In this section we use notions and results from [3, Section 5]. In particular, if F is a field

and M a submonoid of Q+, then we can construct the following monoid domain:

F[M] = F[X ; M] =
�

a0X m0 + · · ·+ anX mn | ai ∈ F, mi ∈ M
	

.

Note that any alphabet of characters creates a finite set. Although most ciphers are based on

finite sets, we can consider using an infinite alphabets A. Nevertheless, in real applications

184 Ł. Matysiak et al.

such alphabets can be cyclical sets with an index — i.e. given cycles. For example, A0 -

0, B0 - 1, . . . , Z0 - 25, A1 - 0, B1 - 1, . . ., where Ai=A, . . . , Zi=Z for i = 0,1, We note

that this is isomorphic to a monoid N0 of non-negative integers with the corresponding

isomorphism

f : A→ N0, f (mi) = i.

Now we can use the monoid domain by a map

ϕ : A→ F[A], ϕ(m0, m1, . . . , mn) = a0X m0 + · · ·+ anX mn .

In order to encrypt the message m0m1m2 . . . mn, i.e. to transform letters into the numbers

by using a function ϕ, we need a secret key X . If F is a field, we choose any coefficients

a0, a1, . . . , an from this field. The message m0m1m2 . . . mn can be then transformed into the

polynomial

a0X m0 + a1X m1 + · · ·+ anX mn .

Computing

di = aiX
mi (mod |A|), i = 0,1, . . . , n

with a prime |A|, we obtain an encrypted message d0d1 . . . dn. To decrypt it, one can use

the formulas

mi = logX

di

ai

(mod |A|), i = 0,1, . . . , n.

The following program is a modification of the presented mathematical algorithm. After

entering a key, the program determine the coefficients, which are successive powers of 2

modulo 10.

#include <iostream>
#include <math.h>

using namespace std;

char message[100]={}, test=message[100];

int p=29,noc,k;

struct polynomial
{
char a;
int x;
};

int calc_number_of_charactes()
{
noc=0;

Cryptographic Systems Based on an Algebraic Structure 185

for(int i=0; i<100; i++)
{
if(message[i]!=test)
noc++;
}
return noc;
}

int search_ch(char a)
{
char test_key=’A’;
for(int i=0; i<p; i++)
{
if(a==test_key)
return i;
else
{
test_key++;
}
}
}

int encrypt(int m, int x)
{
int en;
en=x*pow(k,m);
return en%p;
}

int main()
{
polynomial table[29];
table[0].a=’A’;

for(int i=1; i<=28; i++)
{
table[i].x=2;
table[i].x=pow(table[i].x,i);
table[i].x%=10;
table[i].a=’A’+i;
}
table[28].a=’ ’;

186 Ł. Matysiak et al.

cout << "Enter a key" << endl;
cin >> k;

cout << "Write a message to encrypt(max 100 characters)" << endl;
cin >> message;

calc_number_of_charactes();

for(int i=0; i<noc; i++)
{
message[i]=toupper(message[i]);
cout << encrypt(search_ch(message[i]),
table[search_ch(message[i])].x) << " ";
}
cout << endl;
int de;

return 0;
}

5. A Cryptosystem Based on a Galois Extension

Let L be a Galois extension field of Q. Recall, if K ⊂ L is a Galois extension, then AutK L

is called the Galois group of K ⊂ L and denoted by G(L | K). It is well-known how to form

a Galois group of such an extension. We consider a simple example. Let L = Q(
p

2,
p

3).

Of course L is a Galois extension field of Q. Then Gal(L | Q) = {σ1,σ2,σ3,σ4}, where

σ1

�

a + b
p

2+ c
p

3+ d
p

6
�

= a + b
p

2+ c
p

3+ d
p

6= id ,

σ2

�

a + b
p

2+ c
p

3+ d
p

6
�

= a + b
p

2− c
p

3− d
p

6,

σ3

�

a + b
p

2+ c
p

3+ d
p

6
�

= a − b
p

2+ c
p

3− d
p

6,

σ4

�

a + b
p

2+ c
p

3+ d
p

6
�

= a − b
p

2− c
p

3+ d
p

6

with a, b, c, d ∈Q. Note that the automorphismsσ1,σ2,σ3,σ4 can be conveniently written

as

σ1(a, b, c, d) = (a, b, c, d) = id ,

σ2(a, b, c, d) = (a, b,−c,−d),

σ3(a, b, c, d) = (a,−b, c,−d),

σ4(a, b, c, d) = (a,−b,−c, d).

Consider the English alphabet of 26 letters. Let m1m2m3m4 be a 4-letter block of a mes-

sage. In the Galois group we ignore id because it does not change anything. Let us encode

Cryptographic Systems Based on an Algebraic Structure 187

the block by using the automorphism σ2, i.e.

σ2(m1, m2, m3, m4) = (m1, m2,−m3,−m4).

After that we replace −m3 by the letter that has the opposite position in the alphabet —

e.g. D is the 4-th letter in the alphabet, hence −D will be replaced by W because W is the

4-th one to last letter in the alphabet. Similarly, we deal with −m4.

If a letter such as m1 does not change as a result, we check what place in the alphabet

does it take, divide it by 2, and replace by the letter from that position. However, if the

remainder of dividing of this letter’s position by 2 is 1, then we round down and instead of

placing a capital letter, we place a small one. The letter m2 can be handled analogously.

The other automorphisms can be encoded analogously. Thus using Table 1 and the

Galois group, we can decode the encoded message without any problems.

Table 1: Action table.

Place Letter Negative letter The letter it turns into if it does not change

1 A Z z

2 B Y A

3 C X a

4 D W B

5 E V b

6 F U C

7 G T c

8 H S D

9 I R d

10 J Q E

11 K P e

12 L O F

13 M N f

14 N M G

15 O L g

16 P K H

17 Q J h

18 R I I

19 S H i

20 T G J

21 U F j

22 V E K

23 W D k

24 X C L

25 Y B l

26 Z A M

188 Ł. Matysiak et al.

In a very similar way, we can construct an analogous cryptosystem, where the key is an

extension field of rational numbers, and if the addressee knows the Galois theory, he can

easily calculate the Galois group of such extension and perform appropriate steps.

It is known — cf. [5, Theorem 2.2], that every finite group is a Galois group of a exten-

sion field of Q. This means that instead of extension field of Q, we can pass a finite group

as a key. This will further increase the security of the cryptosystem.

6. Minimal List of Counterexamples in Monoids

Recall that a 24 square-free and radical factorizations and all dependencies in general

monoids and in particular monoids has been discussed in [4, Section 4]. In this section, we

consider a minimal list of possible counterexamples, which can be found in commutative

cancellative monoids. Some of them are presented in [4, Section 7].

Theorem 6.1. The statement that there are (in general) no other implications than the ones

stated in [4] is equivalent to the existence of the following counter-examples:

1. Any monoid satisfies the conditions

4s∧¬0s, 5s∧¬0s, 5.1s∧¬0s, 3s∧¬1s, 5.1s∧¬4s, 4s∧¬4.1s, 2s∧¬4.2s, 5.3s∧¬4.2s,

1s∧¬5s, 3s∧¬5s, 4s∧¬5s, 5.1s∧¬5s, 2s∧¬5.3s, 4s∧¬5.3s, 4.1s∧¬5.3s, 1s∧¬6s,

4s∧¬6s, 5s∧¬6s, 5.1s∧¬6s, 5r∧¬0r, 0r∧¬1r, 3r∧¬1r, 5.1r∧¬4r, 5.2r∧¬4.1r,

1r ∧¬4.2r, 3r ∧¬4.2r, 5.3r ∧¬4.2r, 1r ∧¬5.3r, 3r ∧¬5.3r, 4r ∧¬5.3r, 1r ∧¬6r,

4r ∧¬6r.

2. Non-factorial GCD-monoids satisfy the conditions

4/5s ∧¬0s/1s/2s/3s, 6s ∧¬4.1s /5.1s, 5.3s ∧¬4.2s/5.2s, 4.1s/5.1s ∧¬6s.

3. Pre-Schreier non-GCD-monoids satisfy the conditions

4s/5s∧¬0, 4.1s/5.1s∧¬4s/5s, 4.2s/5.2s∧¬4.1s/5.1s, 5.3s∧¬4.2s/5.2s, 3s∧¬5.3s,

0s ∧¬6s, 4.1s/5.1s ∧¬6s.

4. SR-non-pre-Schreier monoids satisfy the conditions

5s∧¬0s, 0s∧¬1s, 3s∧¬1s, 5.1s∧¬4s, 5.2s∧¬4.1s, 1s∧¬4.2s, 3s∧¬4.2s, 5.3s∧¬4.2s,

1s ∧¬5.3s, 3s ∧¬5.3s, 4s ∧¬5.3s, 1s ∧¬6s, 4s ∧¬6s.

5. Non-factorial ACCP-monoids satisfy the conditions

4s∧¬0s, 4.1s∧¬0s, 5.2s∧¬0s, 6s∧¬0s, 0s∧¬1s, 5.1s∧¬4s, 4s∧¬4.1s, 5.2s∧¬4.1s,

2s∧¬4.2s, 5.3s∧¬4.2s, 6s∧¬4.2s, 1s∧¬5s, 4s∧¬5s, 4.1s∧¬5s, 5.3s∧¬5s, 6s∧¬5s,

2s/3s ∧ ¬5.3s, 4s ∧ ¬5.3s, 4.1s ∧ ¬5.3s, 1s ∧ ¬6s, 4s ∧ ¬6s, 4.1s ∧ ¬6s, 5.2s ∧ ¬6s,

4r ∧¬0r, 5.3r ∧¬0r, 0r ∧¬1r, 4.1r ∧¬4r, 4.2r ∧¬4.1r, 1r ∧¬4.2r, 5.3r ∧¬4.2r,

1r ∧¬5.3r, 4r ∧¬5.3r.

6. An atomic non-ACCP monoid satisfy exactly the same conditions as in item 1.

Cryptographic Systems Based on an Algebraic Structure 189

Proof. We will only give a sketch of the proof. Let us demonstrate the proof ideas by the

diagram below. Of course, appropriate diagrams and tables from [4] should be included.

4 ⇒ 6

⇐ ⇐

A ⇒ B ⇒ 1

⇐

2 ⇒ 3

⇐
5

Arranging all properties in the order A, B, 1,2,3,4,5,6, we analyze all implications in this

order, starting from the first stage.

I. A. (1) We have implications:

A⇒ B, A⇒ 1, A⇒ 4, A⇒ 6.

(2) Remaining implications from A are

A⇒ 2, A⇒ 3, A⇒ 5.

(3) Dependencies between them are

(A⇒ 2)⇒ (A⇒ 3), (A⇒ 2)⇒ (A⇒ 5).

(4) It is enough to have counter-examples to the implications

A⇒ 3, A⇒ 5.

I. B. (1) We have implication

B⇒ 1.

(2) Remaining implications from B are

B⇒ A, B⇒ 2, B⇒ 3, B⇒ 4, B⇒ 5, B⇒ 6.

(3) Dependencies between them are

(B⇒ A)⇒ (B⇒ 4)⇒ (B⇒ 6), (B⇒ 2)⇒ (B⇒ 3), (B⇒ 2)⇒ (B⇒ 5).

(4) It is enough to have counter-examples to the implications

B⇒ 3, B⇒ 5, B⇒ 6.

190 Ł. Matysiak et al.

I. 1. (1) We have no implications starting from 1.

(2) Remaining implications from 1 are

1⇒ A, 1⇒ B, 1⇒ 2, 1⇒ 3, 1⇒ 4, 1⇒ 5, 1⇒ 6.

(3) Dependencies between them are

(1⇒ A)⇒ (1⇒ B), (1⇒ A)⇒ (1⇒ 4)⇒ (1⇒ 6),

(1⇒ 2)⇒ (1⇒ 3), (1⇒ 2)⇒ (1⇒ 5).

(4) It is enough to have counter-examples to implications

1⇒ B, 1⇒ 3, 1⇒ 5, 1⇒ 6.

I. 2. (1) We have implications

2⇒ 1, 2⇒ 3, 2⇒ 5.

(2) Remaining implications from 2 are

2⇒ A, 2⇒ B, 2⇒ 4, 2⇒ 6.

(3) Dependencies between them are

(2⇒ A)⇒ (2⇒ B), (2⇒ A)⇒ (2⇒ 4)⇒ (2⇒ 6).

(4) It is enough to have counter-examples to implications

2⇒ B, 2⇒ 6.

I. 3. (1) We have implication

3⇒ 1.

(2) Remaining implications from 3 are

3⇒ A, 3⇒ B, 3⇒ 2, 3⇒ 4, 3⇒ 5, 3⇒ 6.

(3) Dependencies between them are

(3⇒ A)⇒ (3⇒ B), (3⇒ A)⇒ (3⇒ 4)⇒ (3⇒ 6), (3⇒ 2)⇒ (3⇒ 5).

(4) It is enough to have counter-examples to implications

3⇒ B, 3⇒ 5, 3⇒ 6.

I. 4. (1) We have implications

4⇒ 1, 4⇒ 6.

Cryptographic Systems Based on an Algebraic Structure 191

(2) Remaining implications from 4 are

4⇒ A, 4⇒ B, 4⇒ 2, 4⇒ 3, 4⇒ 5.

(3) Dependencies between them are

(4⇒ A)⇒ (4⇒ B), (4⇒ 2)⇒ (4⇒ 3), (4⇒ 2)⇒ (4⇒ 5).

(4) It is enough to have counter-examples to implications

4⇒ B, 4⇒ 3, 4⇒ 5.

I. 5. (1) We have no implications starting from 5.

(2) Remaining implications from 5 are

5⇒ A, 5⇒ B, 5⇒ 1, 5⇒ 2, 5⇒ 3, 5⇒ 4, 5⇒ 6.

(3) Dependencies between them are

(5⇒ A)⇒ (5⇒ B)⇒ (5⇒ 1),

(5⇒ A)⇒ (5⇒ 4)⇒ (5⇒ 6),

(5⇒ 2)⇒ (5⇒ 3).

(4) It is enough to have counter-examples to implications

5⇒ 1, 5⇒ 3, 5⇒ 6.

I. 6. (1) We have no implications starting from 6.

(2) Remaining implications from 6 are

6⇒ A, 6⇒ B, 6⇒ 1, 6⇒ 2, 6⇒ 3, 6⇒ 4, 6⇒ 5.

(3) Dependencies between them are

(6⇒ A)⇒ (6⇒ B)⇒ (6⇒ 1),

(6⇒ A)⇒ (6⇒ 4)⇒ (6⇒ 1),

(6⇒ 2)⇒ (6⇒ 3), (6⇒ 2)⇒ (6⇒ 5).

(4) It is enough to have counter-examples to implications

6⇒ 1, 6⇒ 3, 6⇒ 5.

192 Ł. Matysiak et al.

In the first stage we have selected the following implications:

A⇒ 3, A⇒ 5,

B⇒ 3, B⇒ 5, B⇒ 6,

1⇒ B, 1⇒ 3, 1⇒ 5, 1⇒ 6,

2⇒ B, 2⇒ 6,

3⇒ B, 3⇒ 5, 3⇒ 6,

4⇒ B, 4⇒ 3, 4⇒ 5,

5⇒ 1, 5⇒ 3, 5⇒ 6,

6⇒ 1, 6⇒ 3, 6⇒ 5.

In the second stage we will analyze dependencies between implications from this list

ending at each of the consecutive properties.

II. B. (1) We consider the following implications ending at B:

1⇒ B, 2⇒ B, 3⇒ B, 4⇒ B.

(2) Dependencies between them are

(1⇒ B)⇒ (4⇒ B), (1⇒ B)⇒ (3⇒ B)⇒ (2⇒ B).

(3) It is enough to have counter-examples to implications

2⇒ B, 4⇒ B.

II. 1. (1) We consider the following implications ending at 1:

5⇒ 1, 6⇒ 1.

(2) No dependencies between them.

II. 3 (1) We consider the following implications ending at 3:

A⇒ 3, B⇒ 3, 1⇒ 3, 4⇒ 3, 5⇒ 3, 6⇒ 3.

(2) Dependencies between them are

(1⇒ 3)⇒ (B⇒ 3)⇒ (A⇒ 3),

(1⇒ 3)⇒ (4⇒ 3)⇒ (A⇒ 3),

(6⇒ 3)⇒ (4⇒ 3)⇒ (A⇒ 3).

(3) It is enough to have counter-examples to implications

A⇒ 3, 5⇒ 3.

The proof is complete.

We strongly encourage the reader to write a program generating the minimum set of

counterexamples for any set of implications. Besides, we leave the question about how to

use such a list to create a cryptosystem.

Cryptographic Systems Based on an Algebraic Structure 193

7. Code Availability

The code in this paper is available for any use.

References

[1] M. Jankowska and Ł. Matysiak, A polynomial composites and monoid domains as algebraic struc-

tures and their applications, Global Journal of Science Frontier Research: F Mathematics and

Decision Sciences 21(3), (2021).

[2] Ł. Matysiak, Generalized RSA cipher and Diffie-Hellman protocol, J. Appl. Math.& Informatics

39(1-2), 93–103 (2021).

[3] Ł. Matysiak, A structure of Dedekind in the cryptosystem, SCIREA Journal of Mathematics 7(1),

1–8 (2022).

[4] Ł. Matysiak, On square-free and radical factorizations and relationships with the Jacobian

conjecture, accepted in The Asian Journal of Mathematics (2022), https://lukmat.ukw.
edu.pl/files/14square-free.pdf

[5] Ł. Matysiak, The inverse Galois problem, J. Appl. Math. Inform. 40(3-4), 765–767 (2022).

