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Abstract. We propose a splitting Hamiltonian Monte Carlo (SHMC) algorithm, which
can be computationally efficient when combined with the random mini-batch strategy.
By splitting the potential energy into numerically nonstiff and stiff parts, one makes
a proposal using the nonstiff part of U, followed by a Metropolis rejection step using
the stiff part that is often easy to compute. The splitting allows efficient sampling from
systems with singular potentials (or distributions with degenerate points) and/or with
multiple potential barriers. In our SHMC algorithm, the proposal only based on the
nonstiff part in the splitting is generated by the Hamiltonian dynamics, which can
be potentially more efficient than the overdamped Langevin dynamics. We also use
random batch strategies to reduce the computational cost to O(1) per time step in
generating the proposals for problems arising from many-body systems and Bayesian
inference, and prove that the errors of the Hamiltonian induced by the random batch

approximation is O(
√

∆t) in the strong and O(∆t) in the weak sense, where ∆t is the
time step. Numerical experiments are conducted to verify the theoretical results and
the computational efficiency of the proposed algorithms in practice.

AMS subject classifications: 62M05, 65C05
Key words: Markov chain Monte Carlo, potential splitting, random-batch method, many body
systems, Bayesian inference.

1 Introduction

Markov chain Monte Carlo (MCMC) [4, 22, 27, 47, 53, 58] methods are nowadays rou-
tinely used in a variety of scientific computing problems, including computing statistics
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for many-body systems [1, 21], sampling from log-concave distributions [11, 13, 39, 43],
parameter estimation in Bayesian statistics [2, 22, 25, 57] and Bayesian inverse problems
[24, 50], just to name a few. Among MCMC methods, Hamiltonian Monte Carlo (HMC)
[3, 7, 16, 49] has recently garnered a lot of attention in practice due to its scalability and
efficiency in high-dimensional settings [6, 49]. Nonetheless, there are several situations
where HMC can encounter difficulties. The first such scenario might be sampling from
the Gibbs distribution

µ(q)∝ exp[−βU(q)] (1.1)

of a many-body interacting particle system, where β > 0 is the (dimensionless) inverse
temperature. It takesO(N2) operations to compute the total potential energy

U(q)=
N

∑
i=1

wiV(qi)+ ∑
i,j:i<j

wiwjφ(qi−qj), (1.2)

where qi∈R
d is the position of the i-th particle and wi denotes the weight. If one moves

one particle per step, which is preferred in some applications [15, 21, 42], the computa-
tional cost of evolving the Hamiltonian dynamics and the Metropolis-Hastings correction
step in HMC are both O(N). This fact makes HMC computationally expensive when
sampling from the Gibbs distribution. Moreover, interaction potentials φ such as the
Coulomb potential or the Lennard-Jones potential are usually singular [21]. Singularity
in φ can introduce stiffness to the Hamiltonian system, which makes the numerical sim-
ulations difficult [62], and possibly leads to low acceptance rates [42], thus deteriorating
the sampling efficiency of HMC.

As for another well-known example, let us consider Bayesian inference of a parame-
ter θ based on its posterior distribution ppost(θ|DN) given the observed data DN

ppost(θ|DN)∝ pprior(θ)
N

∏
i=1

p(yi;θ), (1.3)

where DN ={y1,. . .,yN} is a sample of size N drawn from the probabilistic model p(·;θ).
When p(·;θ) is posited to be a mixture model, which is often the case in clustering and
density estimation problems [20], the corresponding posterior distribution ppost(θ|DN)
may be multimodal. One main reason for multimodality in mixture models is the non-
identifiability of the parameters due to label switching [29]. When the target distribu-
tion (the posterior distribution in this case) is multimodal, most MCMC algorithms have
difficulty moving between isolated modes and are therefore prone to generate biased
samples. As a result, HMC could fail to explore the entire state space and lead to even
worse performance than the simple Random Walk Metropolis (RWM) algorithm [44].
Indeed, the Hamiltonian simulation heavily relies on the gradient information of the po-
tential U, easily resulting in samples trapped in one single well of U when U has multiple
modes. A popular strategy of sampling from multimodal distributions is running multi-
ple chains with over-dispersed initializations in parallel. Other methods include parallel
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tempering [23,48], simulated tempering [45], Wormhole HMC [38] and the Wang-Landau
algorithm [12, 60, 61].

In order to deal with the numerical stiffness in the potential for the Gibbs distribu-
tions of many-body particle systems and multi-modal distributions, like the singularity
in Lennard Jones potential and the deep wells in the multi-modal distributions men-
tioned above, we adopt the idea of potential splitting [28, 42, 49, 55, 56] for this numerical
challenge. Compared to the existing potential splitting for HMC [49, 56], our motivation
is different in the sense that we aim to separate out the numerically stiff part so that some
standard methods can be used for generating the proposal samples. This motivation is
similar to the Random Batch Monte Carlo (RBMC) method [42], but we choose to use the
Hamiltonian dynamics to generate the samples for possible shorter mixing time. This
leads us to a novel splitting Hamiltonian Monte Carlo (SHMC) method. In particular,
consider a target distribution ρ with the effective potential energy

U=−β−1 logρ+const. (1.4)

After splitting the potential U into two parts U =U1+U2, a candidate state is first pro-
posed by evolving the Hamiltonian system corresponding to U1 and then is probabilisti-
cally accepted by a Metropolis rejection step determined by U2. By combining with the
random mini-batch strategy, the SHMC method could address the above issues regard-
ing computational costs, singularity and multimodality to some extent. The benefits of
our SHMC method can be summarized as follows:

(a) When sampling from the Gibbs distribution (1.1) of an interacting particle system,
particularly with singular interaction, we decompose U into a nonstiff part U1 and a part
U2 with short-range interactions. The nonstiffness of U1 guarantees the feasibility of
the Hamiltonian simulation while U2 reduces the computational cost of the Metropolis
correction step since only particles within a small neighborhood need to be considered
when calculating the acceptance probability.

(b) There is often a big summation term in the potential energy (1.4), e.g. see Eq. (1.2).
In this paper, we apply the random mini-batch idea [31,52] to further reduce the compu-
tation load due to summing over many terms, leading to more efficient algorithms. In
particular, if only one randomly picked particle is updated [21] in each iteration, the cost
can be reduced to O(1) per iteration.

(c) As for a multimodal distribution, we choose U1 with a relatively flat landscape to
enable the Markov chains traveling between isolated wells. Such U1 can be constructed
by either reducing the height of the barriers between different wells of U or filling the
wells with “computational sand”, an idea borrowed from the metadynamics approach
[37] (for further details, see Remark 2.4).

(d) As we shall see later, our proposed SHMC method can possibly have shorter mixing
time compared to the Langevin-based methods like the RBMC method.
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We remark that the random batch strategy has recently been applied to interacting
particle systems, resulting in several efficient algorithms [31, 34, 35, 41, 42]. Different
from the mini-batch in stochastic gradient descent (SGD) [8,9,52] and stochastic gradient
Hamiltonian Monte Carlo (SGHMC) [10], the random batch methods for interacting par-
ticle systems aim to grasp the dynamics as well. The rationale is a time averaging effect,
by which RBM methods converge in a “law of large number” manner in time [30, 31].
Introducing random batch strategy into the Hamiltonian dynamics, however, will intro-
duce extra effective noise, and the Hamiltonian is no longer conserved and long time
simulation is not accurate. Nonetheless, in our proposed method, the Hamiltonian dy-
namics is never performed for a long time so this issue is nonessential in this paper; see
Section 3.2 for the error estimates.

The rest of this paper is organized as follows. In Section 2, we propose our algorithm
and provide some motivating applications. Specifically, we first elaborate the general
framework of the splitting Monte Carlo method. Then we incorporate HMC into the gen-
eral framework and present the splitting Hamiltonian Monte Carlo (SHMC) algorithm in
Section 2.1. Finally, taking interacting particle systems and Bayesian inference problems
as examples, we further introduce the random batch idea to reduce computational cost
in Section 2.2. In Section 3, we prove an error bound of the value of the approximate
Hamiltonian generated in random batches and show the advantage of our method over
sampling algorithms based on overdamped Langevin equations. Finally, we perform
some numerical experiments to verify the high numerical and computational efficiency
of our algorithm in Section 4.

2 The Splitting Hamiltonian Monte Carlo method and its

random batch variant

In this section, we propose the Splitting Hamiltonian Monte Carlo (SHMC) method to
overcome the aforementioned difficulties that HMC could encounter in practice. To make
SHMC scalable to large-scale problems such as many-body systems and Bayesian infer-
ence, we also incorporate the idea of random mini-batch into SHMC. We abbreviate the
resulting algorithms RB-SHMC.

To start with, let us introduce the general framework of the splitting Monte Carlo
method; see Algorithm 1. As mentioned in Section 1, common MCMC methods such as
RWM and HMC behave poorly when sampling from the Gibbs distribution of interacting
particle systems with singular potentials and sampling from multimodal distributions
that often arise in Bayesian inference of mixture models. In both cases, there is some
stiff part in the potential U, so the traditional gradient-based MCMC methods fail to
sample from the target distribution efficiently. To alleviate this problem, we first construct
a surrogate potential U1 without stiffness and apply some generic sampling method S
satisfying detailed balance with respect to the Gibbs distribution ρ1 ∝ exp(−βU1). Then
one obtains a proposed state which is a sample from ρ1 and may be severely biased from
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the target distribution ρ ∝ exp(−βU). In the second step, a Metropolis rejection step
using U2 :=U−U1 is required to determine whether the aforementioned proposal shall
be accepted as a new sample, thereby correcting the bias introduced in the first step.

The splitting Monte Carlo (Algorithm 1) can be viewed as a special case of the Metro-
polis-Hastings algorithm. Denote the transition probability of S from state x to state y as
q(y;x). The acceptance probability in the Metropolis rejection step is then given by

A(y;x) :=min

(
1,

exp[−βU(y)]q(x;y)

exp[−βU(x)]q(y;x)

)
, (2.1)

and the detailed balance condition of S yields

q(x;y)

q(y;x)
=

exp[−βU1(x)]

exp[−βU1(y)]
. (2.2)

Substitute identity (2.2) into (2.1), one can see that the acceptance probability is only
related to the U2 component of U

A(y;x)=min

(
1,

exp[−βU(y)]exp[−βU1(x)]

exp[−βU(x)]exp[−βU1(y)]

)

=min
(
1,exp

[
−β
(
U2(y)−U2(x)

)])
. (2.3)

Algorithm 1 (General Splitting Monte Carlo algorithm)

Step 1. Propose a candidate state x∗ using some generic sampling method S satisfying
detailed balance with respect to the Gibbs distribution corresponding to U1

exp[−βU1(x)]q(x;x∗)=exp[−βU1(x∗)]q(x∗;x). (2.4)

Step 2. Set x← x∗ with probability

A(x∗;x) :=min
(
1,exp

[
−β
(
U2(x∗)−U2(x)

)])
. (2.5)

Otherwise, x← x remains unchanged.

2.1 Splitting Hamiltonian Monte Carlo method

We now present a splitting Monte Carlo method based on HMC, coined as the Split-
ting Hamiltonian Monte Carlo (SHMC) method, which evolves a Hamiltonian system to
make a proposal in Step 1 of Algorithm 1.

We first recall some fundamental properties of the standard HMC, which obviously
satisfies the detailed balance condition. HMC generates samples from the D-dimensional
target distribution (1.1) by introducing an auxiliary variable p∈R

D, namely the momen-
tum, and sampling from the joint distribution µ̃(x,p)∝exp[−βH(x,p)]. Traditionally, the
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Hamiltonian H(x,p) = U(x)+K(p) is separable with K(p) = ‖p‖2/(2m), where m can
be interpreted as “mass” in physics term. Hence, p is sampled from the isotropic mul-
tivariate Gaussian distribution N (0,(m/β)ID). The Hamiltonian system satisfies many
nice properties such as conservation of energy, reversibility, and symplecticity [3,49], and
therefore it is usually discretized by the leapfrog method, a symmetric symplectic inte-
grator [40]. HMC proposes a new state in the phase space by simulating a Hamiltonian
dynamics. The proposed momentum is flipped after the numerical simulation to guaran-
tee the time reversibility and a correction step follows to correct the discretization error
induced by the leapfrog integrator. In practice, the momentum flipping step is skipped
since K is symmetric and the momentum should be resampled to ensure ergodicity. How-
ever, frequent resampling may result in random walk and thus multiple leapfrog steps
are performed per iteration.

Sharing the same algorithmic structure as HMC but differing in some specific steps,
SHMC numerically evolves a Hamiltonian system with a surrogate potential U1 to pro-
pose a candidate state (x∗,p∗) and carries out a Metropolis rejection step only using
U2 :=U−U1 after the momentum flipping step. The same as HMC, flipping p∗ ensures
time reversibility but is usually omitted since the rejection step has nothing to do with
the momentum and it should also be resampled in the next iteration to ensure ergodic-
ity. Note that the candidate state (x∗,p∗) is proposed based on the surrogate potential
U1 and may not be a typical sample from the target distribution. Therefore, the rejection
step for U2 is critical to guarantee the empirical distribution of the samples to converge
to the target distribution, beyond the sole purpose of correcting the discretization error
as in HMC.

Remark 2.1. Recall that since the Hamiltonian system is numerically solved by the leap-
frog integrator, which is symplectic and has a second-order accuracy, the discretization
error would not be a great issue. Moreover, the method will have negligible systematic
error if the step size ∆tn gradually decreases to zero and the Metropolis correction step in
HMC to correct the errors introduced by the time discretization can be omitted to reduce
computational cost. A related error bound can be found in Theorem 3.1 below. We also
refer interested readers to the experiments in [63, Section 5] for further empirical evidence
that decreasing step size helps to eliminate the systematic error.

For high-dimensional problems, especially the interacting particle systems, randomly
picking a few entries of x to update per iteration can be more efficient [21]. In the follow-
ing, we assume x = [x1,. . .,xN ]∈R

d×N and only xi, one randomly chosen entry of x, is
updated per iteration. The detailed procedure of our SHMC method is given in Algo-
rithm 2 and the splitting schemes are presented in Section 2.2.

Algorithm 2 (Splitting Hamiltonian Monte Carlo algorithm)

1: Split U := U1+U2 such that U1 is nonstiff and the remaining part U2 contains the
numerically stiff part of U and can be computed efficiently. Randomly generate the
initial position x(0) and set Ns as the total number of samples.
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2: for n=1,.. .,Ns do

3: Randomly pick xi with uniform probability. Sample a momentum
pi∼N (0,(m/β)Id) and set Ln≥1, ∆tn >0.

4: (x∗i ,p∗i )← (x
(n−1)
i ,pi).

5: for ℓ=1,.. . ,Ln do

6: Perform the following leapfrog discretization:

p∗i ← p∗i −
∆tn

2
∇U1(x∗i ),

x∗i ← x∗i +∆tn
p∗i
m

,

p∗i ← p∗i −
∆tn

2
∇U1(x∗i ).

(2.6)

7: end for
8: Evaluate the following Metropolis acceptance probability:

A←A(x∗i ;xi)=min
(

1,exp
[
−β
(

U2(x∗i )−U2(x
(n−1)
i )

)])
.

9: Generate a random number ζ from uniform distribution on [0,1]. If ζ≤A, set

x
(n)
i ← x∗i .

Otherwise, set

x
(n)
i ← x

(n−1)
i .

10: end for

2.2 Splitting Hamiltonian Monte Carlo method with random batch

In this section, we discuss how to apply the random batch idea [52] to SHMC for prob-
lems with big summation in the potential U. Typical examples include the Gibbs dis-
tribution arising from interacting particle systems and the posterior distribution from
Bayesian inference problems. For these examples, any algorithm that needs to evaluate
the full summation, such as the traditional Metropolis Hastings algorithm and the stan-
dard HMC, will be computationally inefficient.

The random batch idea is originated from the famous SGD algorithm [8, 52] and the
stochastic gradient Langevin dynamics (SGLD) for Bayesian inference [63]. The random
mini-batch based on random grouping strategy has recently been applied to many-body
interacting systems [31–33,41,64]. Recently, a novel efficient molecular dynamics simula-
tion method by building random batch and importance sampling into the Fourier space
of Ewald sum has been proposed in [34]. In a nutshell, the random batch strategy ap-
proximates a big summation by summing over only a small random subset of size O(1)
and therefore the complexity per time step is reduced to O(1) [31, 42]. The convergence
of the random batch lies in the time average behavior and it can be intuitively interpreted
as an extension of the “law of large number” from “over samples” to “over time”.
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Remark 2.2. (a) Introducing random batch strategy into the Hamiltonian dynamics will
introduce extra noise and lead to the so-called “numerical heating” effects [30]. The
Hamiltonian is no longer conserved and the long-run simulation will not be accurate.
However, in either HMC or SHMC, the Hamiltonian dynamics are only performed for
a short time so this issue is nonessential; see Section 3.2 for error bound estimates.

(b) The error in the Hamiltonian introduced by random batch, albeit small as proved
in Section 3.2, will necessarily introduce systematic errors in the invariant measures of
the Markov chain. One may correct this using a Metropolis rejection step as in the
Metropolis-adjusted Langevin algorithm (MALA) [4, 54]. However, we choose not to
do this simply because such a correction will bring back an O(N) computation cost that
we have tried to avoid using random batch. As above in Remark 2.1, one may decrease
∆t to make the systematic error negligible.

In the following, we present two implementations of the RB-SHMC algorithm.

2.2.1 Gibbs distribution of interacting particle system

For the Gibbs distribution of a N-particle interacting system, the potential (1.2) comprises
the confining potential V and the interaction potential φ. Without loss of generality, we
assume that the confining potential is smooth and the interaction potential is symmetric
in the sense φ(qi−qj)=φ(qj−qi). We also assume wi≡w for simplicity. In practice, the in-
teraction between particles is of long range and usually singular. It is thus recommended
that φ is decomposed into a smooth part φ1 and a short-range part φ2. Hence, one has

U1(q)=w
N

∑
i=1

V(qi)+w2 ∑
i,j:i<j

φ1(qi−qj),

U2(q)=w2 ∑
i,j:i<j

φ2(qi−qj),
(2.7)

where q=[q1,. . .,qN ] with qi∈R
d denoting the position of the i-th particle and w represents

the weight. Clearly, the short range nature of φ2 is essential to reducing the computational
cost because only particles within that short range need to be counted and therefore U2

can be efficiently evaluated using suitable data structures like cell lists [21, Appendix F].

The Hamiltonian dynamics corresponding to U1 defined in (2.7) are given by

q̇i =
pi

m
,

ṗi =−
(
∇V(qi)

w(N−1)
+

1

N−1 ∑
j:j 6=i

∇φ1(qi−qj)

)
.

(2.8)

Note that we have done a time rescaling t←w
√

N−1t and redefined the momentum by
p← p/(w

√
N−1) so that the interacting force on the i-th particle is O(1). The step of
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resampling of p in Algorithm 2 now becomes

pi∼N
(

0,
m

w2(N−1)
Id

)
.

The acceptance rate is again given by min(1,exp(−∆U2)).

Remark 2.3. Note that the time rescaling here is equivalent to setting

Ũ1=
N

∑
i=1

V(qi)

w(N−1)
+

1

N−1 ∑
i,j:i<j

φ1(qi−qj),

Ũ2=
1

N−1 ∑
i,j:i<j

φ2(qi−qj),

and choosing β=w2(N−1) in Algorithm 2. The acceptance rate is then again based on
β∆Ũ2=∆U2.

In the case of mean-field regime where w∼ 1/N, it becomes the usual ODE system
for interacting particles in literature.

When random batch is applied, the total interacting force acting on i, which should
be contributed by all the other particles j 6= i, is now approximated by that only from
a random batch of particles and the Hamiltonian system is reduced to

˙̃qi =
p̃i

m
,

˙̃pi =−
(
∇V(q̃i)

w(N−1)
+

1

s ∑
j∈ξ

∇φ1(q̃i− q̃j)

)
,

(2.9)

where ξ={ξ1,. . .,ξs} is a random subset of {1,.. . ,N}\{i}, bookkeeping the indices of the
particles selected into the small batch.

We remark that there exist other ways to implement the random batch strategy. For
example, in the case of Coulomb interactions in a periodic box, the importance sampling
in Fourier space is possible and the time scaling in (2.8) may be unnecessary [34]. Even if
we do random batch in real space as indicated above in the molecular dynamics regime
where w = 1, the time scaling to have 1/N factor in (2.7) is only a convenience made
for establishing theoretical results. It will not change the intrinsic dynamics and is not
necessary for implementation in practice [33].

2.2.2 Multimodal posterior in Bayesian inference

In Bayesian inference problems, the potential of the posterior is given by

U(θ)=
1

β

[
−log pprior(θ)+

N

∑
i=1

−logp(yi;θ)

]
, (2.10)
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where θ is the parameter of interest, yi,i=1,.. . ,N are the observations and β>0 is a scaling
factor†.

In many cases, ppost is multimodal and thus there are multiple wells in the landscape
of U. The energy barriers between wells frustrate general MCMC methods and lead to
biased samples trapped in one single well. In this situation, one can flatten the landscape
of U to construct U1 by adding “computational sand” G into the wells and thus U2=−G.
One feasible choice of G is the Gaussian kernel.

Here, we take the potential U1 to be

U1(θ)=−log pprior(θ)+
N

∑
i=1

−logp(yi;θ)+G(θ).

As above, we do a time rescaling t←
√

Nt and the momentum is redefined as p←p/
√

N.
Then, we can resample the momentum from the isotropic Gaussian N (0,(m/N)Id), and
the momentum update in the RB-SHMC is given by

p∗← p∗−∆tℓ

[
− 1

N
∇log pprior(θ

∗)+
1

s ∑
i∈ξℓ

−∇log p(yi;θ
∗)+

1

N
∇G(θ∗)

]
, (2.11)

where ξℓ = {ξℓ,1,. . .,ξℓ,s} ⊂ {1,.. . ,N} denotes the random batch of data chosen in the ℓ-
th step of the current iteration to approximate the likelihood of the entire dataset. The
acceptance rate is simply min(1,exp(∆G)).

The time rescaling here is again equivalent to choosing β=N

U1=−
1

N
log pprior(θ)+

1

N

N

∑
i=1

−log p(yi;θ)+
1

N
G, U2=−

1

N
G

in Algorithm 2. The goal of time rescaling or choosing β= N is to scale the summation
term by 1/N so that the variance of

Hiℓ :=
1

s ∑
i∈ξℓ

−∇log p(yi;θ
∗)− 1

N

N

∑
i=1

−∇log p(yi;θ
∗)

is controlled independent of N. Indeed, choosing β = N is only for convenience in the
analysis and incurs no essential change in the physical interpretation [33]. In practice,
one may perform the updates directly by

p∗← p∗−∆tℓ

[
−∇log pprior(θ

∗)+
N

s ∑
i∈ξℓ

−∇log p(yi;θ
∗)+∇G(θ∗)

]
.

†Note that the N here denotes the number of observed data and has nothing to do with the dimension of the
variable θ.



L. Li, L. Liu and Y. Peng / CSIAM Trans. Appl. Math., 4 (2023), pp. 41-73 51

Remark 2.4. The idea of adding computational sand is inspired by metadynamics [37],
which is informally described as “filling the free energy wells with computational sand”.
In some special cases, the modes of the posterior, and thus the locations of the wells in U,
can be roughly estimated by the modes of the marginal distributions. Then an amenable
G can be designed in advance. Such an example is presented in Section 4.3.2 below.
Generally, however, the modes of the marginals fail to imply the location of the modes of
the joint distribution. Hence, one may dynamically add a sequence of standard Gaussian
kernels at the positions already visited by the proposals of the Hamiltonian simulation.
In this case, Metropolis rejection steps are skipped in the first few trial runs. Then one
collects all the added Gaussian kernels and obtains U1, which is U plus the sum of these
Gaussian kernels. Interested readers may refer to [37] for more details. We leave the
theoretical justification of this proposal to future work.

3 Theoretical properties of SHMC and RB-SHMC

In this section, we provide some theoretical justifications for the SHMC and RB-SHMC
algorithms. First, in Section 3.1, we give some informal justification on why SHMC could
potentially be better than splitting Monte Carlo methods based on overdamped Langevin
dynamics. Second, in Section 3.2, we provide error estimates of the values of the approx-
imate Hamiltonian generated from RB-SHMC under some mild regularity conditions.
These results give practitioners some guidance on when to expect SHMC or RB-SHMC
to succeed in applications.

3.1 Benefits of Hamiltonian dynamics in sampling compared to
the overdamped Langevin equations

As is well known, the Langevin sampling [5, 13, 51, 54] is another popular sampling
scheme for the Gibbs distribution. Consider the overdamped Langevin equation

dX=−∇U(X)dt+

√
2

β
dW, (3.1)

where β > 0 is a known constant and W denotes the d-dimensional Wiener process. It
converges exponentially to its invariant measure, the Gibbs distribution (1.1), under mild
regularity conditions [46]. The Langevin sampler discretizes the overdamped Langevin
equation (3.1), by the Euler-Maruyama scheme

X(tn+1)=X(tn)−∆tn∇U
(
X(tn)

)
+

√
2∆tn

β
zn, zn∼N (0, Id).

Hence, the Markov chain generated by the Langevin sampler also exhibits an exponen-
tially fast convergence rate up to the discretization error of order O(∆t) [14].
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In this section, we point out several possible benefits of the HMC-based samplers
over the overdamped Langevin equation-based samplers like the RBMC and SGLD algo-
rithms. In fact, the RBMC method uses the overdamped Langevin equation for generat-
ing the proposals in Step 1 of Algorithm 1, as the overdamped Langevin equation satisfies
the detailed balance condition with respect to this invariant measure determined by U1.
This may provide some heuristic justification for why in certain cases RB-SHMC may be
preferred compared to RBMC, such as the examples described in Sections 4.1 and 4.2.

In the discussion here, we assume that the potential U is smooth and for the sake
of simplicity, there is no splitting so U1≡U. Recall that we perform Ln leapfrog steps
with time step size ∆tn in the n-th iteration, which means that we evolve a Hamiltonian

system with respect to (Xi(n) ,Pi(n)) for t∈[T(n−1)

i(n)
,T

(n)

i(n)
). Assume the particle index updated

in the n-th iteration is i≡ i(n), where we omit the superscript for convenience. Then we

approximate the momentum Pi(t
′) at time t′∈ (T(n−1)

i ,T
(n)
i ) by

Pi(t
′)=Pi(T

(n−1)
i )+

∫ t′

T
(n−1)
i

−∇U
(
Xi(τ)

)
dτ.

Thus

Xi

(
T
(n)
i

)
=Xi

(
T
(n−1)
i

)
+
∫ T

(n)
i

T
(n−1)
i

m−1Pi(t
′)dt′

=Xi

(
T
(n−1)
i

)
+

Ln∆tn

m
Pi

(
T
(n−1)
i

)
− 1

m

∫ T
(n)
i

T
(n−1)
i

∫ t′

T
(n−1)
i

∇U
(
Xi(τ)

)
dτdt′

=Xi

(
T
(n−1)
i

)
−∆̂tn∇̃U+

√
2∆̂tn

β
zn (3.2)

with

∇̃U=
2

(L∆tn)2

∫ T
(n)
i

T
(n−1)
i

∫ t′

T
(n−1)
i

∇U
(
Xi(τ)

)
dτdt′

and ∆̂tn =(Ln∆tn)2/2m and zn∼N (0, Id).
Roughly, the numerical evolution in the n-th iteration of SHMC is nearly equivalent

to the simulation of an overdamped Langevin equation for time ∆̂tn. Hence, the effective
time step of the overdamped Langevin equation is longer than the evolution time Ln∆tn

of the corresponding Hamiltonian system, provided Ln∆tn > 2m. This means that run-
ning the Hamiltonian system with Ln∆tn large has a longer effective dynamics so it might
approximate the equilibrium faster than the overdamped Langevin dynamics. This prop-
erty may be the reason why SHMC is preferred in some applications over RBMC (see
Examples 4.1-4.2). Moreover, if the Hamiltonian step in (3.2) is accurately solved, it then
exactly satisfies the detailed balance with respect to the target distribution. Discretizing
the Hamiltonian using leapfrog might yield O(∆t2) error, which is better compared to
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the Euler-Maruyama discretization of overdamped Langevin dynamics with errorO(∆t)
if we use the same step size.

Another benefit of HMC is that it can take advantage of the symplectic integrators to
conserve the Hamiltonian even when the system evolves for a long time. Usually, with
fixed time step ∆t, the discretization error would increase exponentially with the evolu-
tion time. However, the symplectic integration can be carried out for eO(1/∆t) time steps
such that the numerical trajectories would always oscillate around the exact Hamilto-
nian trajectories within this time interval [4, 26]. This guarantees that the Hamiltonian
can be conserved within a reasonable tolerance for a long time, which is highly desired
for HMC-based algorithms as the invariant measure is related to the Hamiltonian di-
rectly. Moreover, due to the time-reversibility and volume-preservation property of the
leapfrog integrator, HMC exhibits better scalability compared to RWM and MALA in
some cases. For instance, when the potential of the target distribution is a sum of i.i.d.
terms such as (1.2) and satisfies mild regularity conditions, HMC can allow a larger time
step ∆t=O(N−1/4), and thus requires less steps to traverse the state space, as the number
N of i.i.d. terms tends to infinity [6, 49].

3.2 Error estimates of the random batch method

In this section, we derive an error bound for the values of the Hamiltonian approximated
by the random batch strategy in one iteration of RB-SHMC (the process between any two
consecutive resampling steps of the momentum). We analyze how the random batch
strategy affects the value of the Hamiltonian corresponding to U1. Note that the error of
the value of the Hamiltonian determines the deviation of the invariant measure so this
estimate can provide us some insight on the impact of the random batch approximation
on the invariant measures.

Without loss of generality, we denote the beginning of an iteration as t=0, and con-
sider the following Hamiltonian system:

ẋ=
p

m
,

ṗ=−∇V1(x)+
1

NJ
∑
j∈J
∇ψj(x)

(3.3)

and its counterpart after applying random batch

˙̃x=
p̃

m
,

˙̃p=−∇V1(x̃)+
1

s ∑
j∈ξ

∇ψj(x̃).
(3.4)

Here NJ is the size of the index set J and ξ denotes a random subset of size s. We
remark that introducing the notations V1 and ψj enables us to unify the Hamiltonian



54 L. Li, L. Liu and Y. Peng / CSIAM Trans. Appl. Math., 4 (2023), pp. 41-73

systems of the two examples discussed in Section 2.2. In particular, in the examples
of interacting particle systems (Sections 4.1, 4.2 and 4.4), V1(x) = V(x)/(w(N−1)) is
a scaling of the confining potential of the current particle i which is located at x and
ψj(x) =ψ(x;qj) =−φ1(x−qj) is the interaction potential between particle i and another
particle j 6= i located at qj. When it comes to the example of the Bayesian posterior infer-
ence (Section 4.3.2), V1(·)=(−log pprior(·)+G)/N is a scaling of the sum of the log prior
density and the auxiliary Gaussian kernel added to flatten the landscape of the potential
and ψj corresponds to the log-likelihood term −log p(yj;·).

We first clarify the notations used in the following analysis. Fix the number of leapfrog
steps and the time step in each iteration to be L and ∆t and denote T := L∆t. The initial
values (i.e., the values at the beginning of one iteration) are denoted by X0 and P0. De-
note the random batch selected in the ℓ-th leapfrog step as ξℓ, ℓ=1,.. . ,L. The Kolmogorov
extension theorem [17] guarantees the existence of a probability space (Ω,F ,P) such that
{X0,P0,ξℓ, ℓ= 1,.. .,L} are independent random variables on this space. The L2(Ω,P)
norm is denoted as ‖·‖=

√
E|·|2, where E is the expectation with respect to the proba-

bility measure P.
Now we start to estimate the difference of H(x̃(T), p̃(T)) and H(x(T),p(T)), where

(x(·),p(·)) is the solution of the fully coupled Hamiltonian system (3.3) and therefore
H(x(T),p(T))=H(x(0),p(0)).

For error bound estimates, we assume that the Hamiltonian is sufficiently smooth.

Assumption 3.1. V1∈C1 and ψ∈C2 with ∇V1,∇ψ and ∇2ψ being bounded.

Remark 3.1. In cases where the actual confining potential has an unbounded gradient,
one can still split V into a bounded and an unbounded part so the unbounded part can
be used in the Metropolis rejection step. However, this may not be needed in practice as
the particles usually move in a bounded domain so the unboundedness of V is not very
relevant.

The main results are as follows.

Theorem 3.1. Under Assumption 3.1 and assume ∆t is sufficiently small such that T(1+
T2)∆t≪ 1. If x(0) = x̃(0) = X0, and p(0) = p̃(0) = P0, and the fourth moment of the initial
momentum E[|P0|4] is bounded, then the error from using random batches can be bounded above
as follows:

‖H(x̃(T), p̃(T))−H(x(T),p(T))‖≤C
√

T(1+T2)∆t, (3.5)

and for any test function ϕ∈C∞
b ,

∣∣E[ϕ(H(x̃(T), p̃(T)))−ϕ(H(x(T),p(T)))]
∣∣≤CϕT(1+T2)∆t, (3.6)

where C,Cϕ>0 are constants independent of T and N and Cϕ depends on ϕ.

Remark 3.2. As mentioned in Remark 2.2, the estimation of the error introduced by ran-
dom batch guarantees that the systematic error of our method vanishes as ∆tn→0.
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We also remark that the bounded fourth moment conditions on the momentum P0

are trivially satisfied as it usually sampled from a multivariate Gaussian distribution. In
the proof, we need to define the filtration {Fℓ}1≤ℓ≤L by

Fℓ :=σ
(

X0,P0,{ξk}1≤k≤ℓ
)

, (3.7)

the σ-algebra generated by the initial values X0,P0 and the first ℓ random batches ξk,
k=1,.. . ,ℓ. Obviously, Fℓ+1=σ(Fℓ∪σ(ξℓ+1)). Denote the error of the random approxima-
tion of the summation term by

Hiℓ(t) :=
1

s ∑
j∈ξℓ

∇ψj

(
x̃(t)

)
− 1

NJ
∑
j∈J
∇ψj

(
x̃(t)

)
. (3.8)

Clearly, Hiℓ is Fℓ-measurable and for any ℓ≥0, q>0,

sup
t∈[tℓ,tℓ+1)

E

[
|Hiℓ(t)|q

∣∣Fℓ

]
≤2q‖∇ψ‖q

∞. (3.9)

With these, the following upper bound, which will be used in the proof of Theo-
rem 3.1, can be easily obtained.

Lemma 3.1. Under conditions in Theorem 3.1, it holds that,

sup
0≤t≤T

E

[
|p̃(t)|4

]
≤C(1+T4), (3.10)

where C>0 is a constant independent of N, s,ξk, k=1,.. . ,L.

The proof of this simple lemma is deferred to Appendix A. We are now able to pro-
vide the proof of the error estimates for the Hamiltonian.

Proof of Theorem 3.1. Define

∆H(t) :=H
(

x̃(t), p̃(t)
)
−H

(
x(t),p(t)

)
=H

(
x̃(t), p̃(t)

)
−H0, (3.11)

where H0 =H(X0,P0) is the initial value of the Hamiltonian since H is conserved under
the evolution (3.3). Consequently, it is straightforward to find

d

dt
∆H(t)=

p̃(t)

m
·HiLt(t), (3.12)

where

Lt=

⌊
t

∆t

⌋
. (3.13)

Hence,

d

dt
‖H(x̃(t), p̃(t))−H(x(t),p(t))‖2 =2E

[
∆H(t)

p̃(t)

m
·HiLt(t)

]
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=2E

[(
∆H(tLt)+

p̃(t̂)

m
·HiLt(t̂)(t−tLt)

)
p̃(t)

m
·HiLt(t)

]

=: I1+ I2, (3.14)

where t̂∈ (tLt ,t) by the mean value theorem for one variable functions.

Step 1. Estimation of I1: Note that ∆H(tLt)∈FLt−1 and p̃(tLt)∈FLt−1. Then one has

E

[
∆H(tLt)

p̃(tLt)

m
HiLt(tLt)

]
=E

[
∆H(tLt)

p̃(tLt)

m
·E
(
HiLt(tLt)

∣∣∣FLt−1

)]
=0.

Therefore,

E

[
∆H(tLt)

p̃(t)

m
HiLt(t)

]

=E

[
∆H(tLt)

(
p̃(t)

m
HiLt(t)− p̃(tLt)

m
HiLt(tLt)

)]

=E

[
∆H(tLt)E

(
p̃(t)

m
HiLt(t)− p̃(tLt)

m
HiLt(tLt)

∣∣∣∣FLt

)]

=E

[
∆H(tLt)

∫ t

tLt

E

(
˙̃p(t′)
m
HiLt(t′)+

p̃(t′)
m
Ḣi

Lt(t′)
∣∣∣∣FLt

)
dt′
]

≤C(1+T2)∆t‖∆H(tLt )‖

≤C(1+T2)∆t

(
‖∆H(t)‖+

∥∥∥∥
p̃(t̂)

m
HiLt(t̂)(t−tLt)

∥∥∥∥
)

≤ C(1+T2)∆t
(
‖∆H(t)‖+C(1+T)∆t

)

≤C(1+T2)∆t‖∆H(t)‖.
Step 2. Estimation of I2:

E

[
p̃(t̂)

m
HiLt(t̂)

p̃(t)

m
HiLt(t)

]

≤
{

E

[∣∣∣∣
p̃(t̂)

m

∣∣∣∣
4
]

E

[∣∣∣HiLt(t̂)
∣∣∣
4
]

E

[∣∣∣∣
p̃(t)

m

∣∣∣∣
4
]

E

[∣∣∣HiLt(t)
∣∣∣
4
]} 1

4

≤C(1+T2).

Therefore, I2 is controlled by C(1+T2)∆t.
Combining the above two steps gives

d

dt
‖∆H(t)‖2≤C(1+T2)∆t

(
‖∆H(t)‖+1

)
. (3.15)

Recall that ∆t is assumed to be sufficiently small. Then one has

‖H(x̃(T), p̃(T))−H(x(T),p(T))‖≤C
√

T(1+T2)∆t. (3.16)
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Similarly, (3.6) follows from

∣∣E
[
ϕ
(

H
(
x̃(T), p̃(T)

))
−ϕ

(
H
(

x(T),p(T)
))]∣∣

=

∣∣∣∣
∫ T

0
E

[
ϕ′
(

H
(
x̃(t), p̃(t)

)) p̃(t)

m
HiLt(t)

]
dt

∣∣∣∣

=

∣∣∣∣
∫ T

0
E

[
ϕ′
(

H
(
x̃(t), p̃(t)

)) p̃(t)

m
HiLt(t)−ϕ′

(
H
(
x̃(tLt), p̃(tLt)

)) p̃(tLt)

m
HiLt(tLt)

]
dt

∣∣∣∣

≤
∣∣∣∣∣
∫ T

0

∫ t

tLt

E

[
ϕ′′
(

H(x̃(t′), p̃(t′))
)( p̃(t′)

m
HiLt(t′)

)2
]

dt′dt

∣∣∣∣∣

+

∣∣∣∣∣
∫ T

0

∫ t

tLt

E

[
ϕ′
(

H(x̃(t′), p̃(t′))
)( ˙̃p(t′)

m
HiLt(t′)+

p̃(t′)
m
Ḣi

Lt(t′)
)]

dt′dt

∣∣∣∣∣
≤
(
‖ϕ′‖∞+‖ϕ′′‖∞

)
CT(1+T2)∆t.

The proof is complete.

4 Numerical examples

In this section, we conduct some numerical experiments to demonstrate the computa-
tional efficiency of SHMC and RB-SHMC. First, we give an artificial example with regular
interactions to test the influence of the length of Hamiltonian dynamics in an iteration. In
the second example, we simulate the Dyson Brownian motion for N≫1. The advantage
of potential splitting and the high efficiency of random batch will manifest itself in this
example, where the interaction is singular and of long range. Third, we consider a distri-
bution with double well potential to demonstrate the benefit of potential splitting even
in regular interaction cases, and then consider a classical example in Bayesian inference:
estimating the locations of a two-dimensional Gaussian mixture model using SHMC and
RB-SHMC. Finally, we consider the Gibbs distribution of a three-dimensional interact-
ing particle system, the interaction potential of which is modelled by the Lennard-Jones
potential. This example, which is of higher dimension than previous examples, further
demonstrates the benefit of RB-SHMC in practice.

4.1 A test example

In the following toy example, we explore how Ln, the number of leapfrog steps in the
n-th iteration, can influence the efficiency of the RB-SHMC algorithm. For the purpose of
a relatively fair comparison between algorithms with different evolution time per itera-
tion, we define the evolution time TE up to the M-th iteration of Algorithm 2 by

TE(M)=
1

N

M

∑
n=1

Ln×∆tn. (4.1)
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The rescaling factor 1/N arises from the fact that Algorithm 2 updates only one “particle”
per iteration and thus on average N iterations are needed to update all the variables.

Consider the simple one-dimensional Langevin equation

dXi =Pidt,

dPi =

(
−αXi+

1

N−1 ∑
j:j 6=i

Xi−X j

1+
∣∣Xi−X j

∣∣2−γPi

)
dt+

√
2γ

β
dW i.

(4.2)

Clearly, the interaction is smooth and bounded and its derivative is also bounded. The
corresponding Gibbs distribution is

µ ∝ exp

[
−β

2

(
α∑

i

X2
i −

1

N−1 ∑
i,j:i<j

ln
(
1+|Xi−Xj|2

)
+∑

i

P2
i

)]
. (4.3)

Consider a system of N = 500 particles sampled from the uniform distribution on
[−10,10]. Since the interaction kernel is regular, we move all the particles simultaneously
using φ1 :=φ and omit the Metropolis rejection step since φ2=0. Choosing α=1, β=1 and
fixing the batch size s=1, the ℓ-th leapfrog step includes the following updates:

p← p−∆tn

2

(
αx− x−ηℓ

1+|x−ηℓ|2
)

,

x← x+∆tn p,

p← p−∆tn

2

(
αx− x−ηℓ

1+|x−ηℓ|2
)

,

where the i-th element of ηℓ is ηℓ,i=xξi
, with ξi∈{1,2,.. . ,N}\{i} for i=1,2,.. . ,N. Fixing the

time step ∆tn≡0.02, we run RB-SHMC with Ln≡100 and Ln≡10 respectively for TE=100
units of evolution time to see how the efficiency can be influenced by different values of
Ln. Fig. 1 shows the empirical densities at “evolution times” TE =30,60,100 obtained by
the simple “bin-counting”. Specifically, the empirical density in the j-th bin is approxi-
mated by µ̄j≈Nj/(Ntoth), where Nj is the number of particles in the j-th bin during the
entire sampling process and Ntot is the number of total particles (clearly, Ntot=Ns N where
Ns is the number of iterations in sampling). One can observe that RB-SHMC with larger
Ln approaches the equilibrium faster, meaning that it can have shorter burn-in phase.
This observation is consistent with the heuristic explanation provided in Section 3.1.

To quantify the effects of Ln in different stages of sampling, we use the following
quantity (which we call “relative error”) to gauge the error of the empirical density:

Ũ :=∑
j

∣∣∣∣∣
Nj

Ntot
− Ñj

Ñtot

∣∣∣∣∣,

where j denotes the bin index, and the quantities with tildes are the reference quantities
obtained by HMC (25 leapfrog steps with time step size ∆t=0.01 per sampling iterations,
for a total of 4e8 iterations).
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Figure 1: Empirical densities obtained by RB-SHMC with different Ln, numbers of leapfrog steps, at three
different evolution time points TE = 30,60,100. The red dots are for Ln = 100 leapfrog steps and the black
triangles are for Ln = 10 leapfrog steps in each iteration. The blue curve is the reference density obtained by
running HMC, 25 leapfrog steps with time step size ∆t= 0.01 per iteration, for 4e8 iterations. The empirical
density obtained by RB-SHMC with large Ln (red dots), i.e. more leapfrog steps in each iteration, approximates
the reference density better than the empirical density obtained by RB-SHMC with small Ln (black triangles).

As can be seen from Fig. 2, the experiment with larger Ln is more efficient when the
evolution time is not very long as it has shorter burn-in phase. However, the systematic
error becomes larger when one runs the sampling for longer time. Hence, an adaptive
strategy can be used: one uses a large Ln in the early sampling phase, and when the
distribution is close to equilibrium one can then switch to smaller Ln so that the results
can be more accurate. Here, for comparison, we set Ln = 100 for TE≤ 100 and then set
Ln =10. The error vs. the evolution time and CPU time are plotted in Fig. 2. One can see
that running RB-SHMC with a large Ln for a few units of evolution time at the beginning
accelerates the empirical density to approach its equilibrium state while reducing Ln to
a smaller number after reaching a quasi-equilibrium yields a smaller error. The adaptive
method can thus be efficient.
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Figure 2: Left panel: relative error versus evolution time. Right panel: relative error versus CPU time. In both
panels, blue curve is for RB-SHMC with varying Ln, red dashed curve is for RB-SHMC with Ln≡100 while black
dotted curve is for RB-SHMC with Ln≡10. The relative error of the empirical density obtained by RB-SHMC
with varying Ln (blue curve) decays faster than those of RB-SHMC with fixed Ln.
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4.2 Dyson Brownian motion

In this section, we demonstrate the efficiency of RB-SHMC by simulating the Dyson
Brownian motion with singular interaction kernels, which models the eigenvalues of cer-
tain random matrices [18, 19]

dλi(t)=

(
−λi(t)+

1

N−1 ∑
j:j 6=i

1

λi(t)−λj(t)

)
dt+

√
2

N−1
dWi(t), (4.4)

where {λi(t)} denote the eigenvalues and {Wi(t)} are independent standard Brownian
motions. We have replaced N in the original model with N−1, which is nonessential
when N≫1. It has been shown in [59] that in the N→∞ limit, these eigenvalues follow
a distribution ρ that satisfies

∂tρ(x,t)+∂x

(
ρ(u−x)

)
=0, u(x,t)=π(Hρ)(x,t)=p.v.

∫

R

ρ(y,t)

x−y
dy, (4.5)

where H(·) is the Hilbert transform on R and p.v. is the standard notation for integrals
evaluated using the Cauchy principal value. The mean field equation (4.5) has the fol-
lowing invariant measure:

ρ(x)=
1

π

√
2−x2, (4.6)

which is the celebrated Wigner semicircle law. Clearly, (4.4) has an invariant measure

µ ∝ exp

[
−
(

N−1

2 ∑
i

x2
i − ∑

i,j:i<j

ln|xi−xj|
)]

,

where the interaction φ(xi−xj)=−ln(|xi−xj|) is singular. For samples (λ1,··· ,λN)∼µ,
we expect that the random empirical measure µN = (∑i δ(x−λi))/N will be close to ρ
in the weak topology. Below, we collect Ns such configurations (λ1,··· ,λN) by sampling
from µ using our sampling methods, and then compare the empirical measure of these
NsN samples to the target Wigner semicircle law ρ. Following [42], we use the surro-
gate potential φ1(xi−xj)= ln(100)−100|xi−xj|+1 when 0< |xi−xj|<0.01 to remove the
singularity while performing RB-SHMC sampling.

Recall that the example in Section 4.1 indicates that running Ln leapfrog steps with
Ln large in the burn-in phase can accelerate the convergence to a quasi equilibrium state
while a small Ln in later iterations can reduce the error. Hence, we adopt a dynamic
leapfrog steps in the simulation for this example. Specifically, we choose Ln =100 in the
first 105 sampling iterations and Ln=20 in the next 3×105 iterations. Then we reduce Ln

to 10 and keep it fixed until the end of the sampling process. The corresponding time step
size ∆tn also varies in different sampling phases (detailed in Table 1). We compare it to
the RBMC which is a splitting Monte Carlo based on overdamped Langevin dynamics.
With Ln denoting the number of discretization steps in the n-th iteration, we consider
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Table 1: The specific choices of the number of discretization steps Ln and the stepsize ∆tn in each iteration of
RB-SHMC, RBMC-fixed and RBMC-varying in the experiment for Dyson Brownian motion.

Ln ∆tn

RB-SHMC

n≤105 100 2×10−4

105<n≤4×105 20 2×10−4

n>4×105 10 10−4

RBMC-fixed 10 10−4

RBMC-varying

n≤2×105 100

10−42×105<n≤8×105 20

n>8×105 10

both fixed ∆tn and Ln parameters (denoted as “RBMC-fixed”) and varying Ln (denoted
as “RBMC-varying”). Table 1 shows the specific choice of these parameters for the three
methods considered in this example.

The same evolution time (4.1) is used again for this example. Fig. 3 presents the
empirical densities obtained by running RB-SHMC (red dots) for 106 and 107 sampling
iterations, corresponding to 7.6 and 25.6 units of evolution time respectively. The numer-
ical results generated by running RBMC (black triangles) for the same evolution time are
also presented for comparison. Obviously, RB-SHMC approaches the equilibrium much
faster than RBMC which is consistent with our heuristic justification in Section 3.1.

In Fig. 4, we visualize the relative error of the three methods vs. the evolution time
and CPU time respectively. The same “relative error” as in Example 4.1 has been used.
Clearly, RB-SHMC is far more efficient than RBMC and is also superior to RBMC-v2.
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Figure 3: The empirical densities obtained by RB-SHMC and RBMC at different evolution times. Specifically,
the left panel is for evolution time TE =7.6, or equivalently 106 iterations, and the right panel is for TE =25.6,
or equivalently 107 iterations. The red dots and the black triangles are the empirical densities obtained by
RB-SHMC and RBMC-fixed respectively. The blue curve is the equilibrium semicircle law (4.6). The empirical
density obtained by RB-SHMC approaches faster than that of RBMC-fixed.
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Figure 4: Left panel: relative error versus evolution time. Right panel: relative error versus CPU time. In both
panels, the blue curve is for RB-SHMC, the red dashed curve is for RBMC-fixed while the black dotted curve is
for RBMC-varying. The relative error of the empirical density obtained by RB-SHMC (blue curve) decays faster
than those of the other two versions of RBMC considered in this example.

4.3 Bimodal distribution

The two examples given below will show that an appropriate potential splitting effec-
tively prevents the problem of generating biased samples when the target distribution
is multimodal. These examples showcase the advantage of SHMC and RB-SHMC even
when there is no singularity in the potential, further expanding the application territory
of the framework of SHMC and RB-SHMC where they can be superior to many other
existing methods.

Intuitively, if we can “flatten” the landscape of U, then the samples can escape from
one local minimum, cross the barrier and visit other local minima more efficiently. With-
out loss of generality, we only consider the bimodal distributions for simplicity.

4.3.1 Double well potential

Consider the following one-dimensional double well potential:

U(x)=
H

W4
(x2−W2)2, (4.7)

where H=20/β is the height of the barrier and W =1 is the half width between the two
wells. Clearly, the Gibbs distribution corresponding to (4.7) is

µ(x)=
1

Z
exp

[
−β

H

W4
(x2−W2)2

]
, (4.8)

where Z is the normalizing constant.
We first apply the basic HMC algorithm to sample (4.8). There are L = 40 leapfrog

steps in each iteration and the time step is ∆t= 2W/L= 0.05. The initial position of the
samples is generated randomly on [−W,W]. Drawing 105 samples from (4.8), the results
plotted in Fig. 5 clearly show that samples are trapped in the local minimum x=−W.
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Figure 5: Samples and the empirical density obtained by HMC with L= 40 leapfrog steps and time step size
∆t= 2W/L= 0.05 in each iteration. In the left panel, the black dots are the samples obtained by HMC while
the red curve is the exact potential (4.7). In the right panel, the black dots are the empirical density obtained
by HMC while the red curve is the analytic density (4.8).

To fix the above problem, we decompose U into the sum of U1, a double well poten-
tial energy with lower barrier to flatten the landscape and U2, the difference between U
and U1. Specifically, we choose

U1(x)=

{
λU(x), |x|<W,

U(x), |x|≥W,
(4.9)

and

U2(x)=

{
(1−λ)U(x), |x|<W,

0, |x|≥W,
(4.10)

where λ∈ (0,1) is a positive constant being small enough. Here, we choose λ=0.05. We
apply SHMC to draw 105 samples from (4.8). We again set L=40 leapfrog steps with time
step ∆t= 2W/L in each iteration. The samples we obtained and the resulting empirical
density are presented in Fig. 6. Clearly, the splitting strategy can successfully overcome
the local barrier.

4.3.2 Gaussian mixture model

As can be seen from the previous example, an appropriate splitting easily alleviates the
problem of generating biased samples in the vanilla HMC algorithm when we have some
knowledge about the landscape, e.g. where the local minima are located. However,
in many problems including problems in Bayesian inference, the locations of the local
minima are generally unknown. In this section, we consider such examples and propose
a potential solution by modifying SHMC and RB-SHMC.
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Figure 6: Samples and the empirical density obtained by SHMC using the surrogate potential U1 given by (4.9)
with λ= 0.05. There are L= 40 leapfrog steps with time step size ∆t= 2W/L= 0.05 in each iteration. In the
left panel, the black dots are the samples obtained by SHMC while the red curve is the exact potential (4.7). In
the right panel, the black dots are the empirical density obtained by SHMC while the red curve is the analytic
density (4.8).

To further illustrate our proposed solution, we slightly modify the first example in [63,
Section 5.1], which is a classical Bayesian inference problem of mixture models. We will
evaluate the performance of sampling from the posterior distribution using SHMC and
RB-SHMC. To be specific, we consider the following Gaussian mixture model:

θ1∼N
(
0,σ2

1

)
, θ2∼N

(
0,σ2

2

)
,

yi∼
1

2
N
(
θ1,σ2

y

)
+

1

2
N
(
θ1+θ2,σ2

y

)
,

(4.11)

where σ2
1 = 10,σ2

2 = 1 and σ2
y = 0.5. N = 100 data points are drawn from the model with

(θ1,θ2)=(0,2). The left panel of Fig. 7 shows the potential U corresponding to the target
posterior distribution, from which one can imagine that the barrier between the two wells
of U will prevent samples from moving between these two wells. Indeed, the samples
generated by HMC are trapped in one well; see the left panel of Fig. 8.

Inspired by the metadynamics approach [37], we add scaled Gaussian kernels in the
wells to raise the altitudes of the landscape and obtain a new potential energy U1. Defin-
ing U2 :=U−U1, we get a decomposition U=U1+U2. The locations of the wells are ap-
proximated by modemar(θ1) and modemar(θ2), the modes‡ of the marginal distributions
of θ1 and θ2 (see the right panel of Fig. 7), while hb, the height of the barrier in U, is esti-
mated by the difference between the altitude at the mid-point between the two wells and
the average altitudes between the two wells. From our experiments, the scaled Gaussian
kernel with height hG =hb+10/β and covariance matrix I2 turns out to be a good choice

‡One may obtain the modes of the marginal distributions using any off-the-shelf mode-finding methods:
e.g. the function ‘findpeaks()’ in Matlab.
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Figure 7: Left panel: The contour plot of the potential corresponding to the posterior of model (4.11). Right
panel: The marginal distributions of the target posterior distribution.

for this specific example. In particular,

U1(θ)=U(θ)+2πhG

[
N
(
modemar(θ1), I2

)
+N

(
modemar(θ2), I2

)]
. (4.12)

We choose β=N such that the scaling factor of the big summation in U is 1/N

U(θ)=
1

N

(
θ2

1

2σ2
1

+
θ2

2

2σ2
2

)
− 1

N

N

∑
i=1

log

[
exp

(
− (θ1−yi)

2

2σ2
x

)
+exp

(
− (θ1+θ2−yi)

2

2σ2
x

)]
. (4.13)

Under the specific setting of our experiment, the distance between the two wells in U
is dw = 4.1931 and the height of the barrier is hb = 0.4054. The energy barriers for two
wells are reduced to 0.0131 and 0.0113 respectively after the above two scaled Gaussian
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Figure 8: Samples from the posterior distribution obtained by HMC, SHMC and RB-SHMC with batch size
s=10. For all the 3 methods, the time step is fixed to be ∆t=0.01 and evolution time per iteration is 0.4dw.
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kernels are added to the wells. Fix the evolution time of each iteration L∆t= 0.4dw and
time step size ∆t = 0.01,0.001, we apply HMC, SHMC and RB-SHMC with batch size
s = 10 to sample from the posterior. For each method, we collect 104 samples after 103

burn-in iterations. The scatter plot of the samples obtained by these three methods are
shown in Fig. 8. Clearly, SHMC and RB-SHMC can sample from the two modes of the
posterior without multiple initializations while the samples of HMC are trapped in one
single well. For HMC, we even run the algorithm with longer evolution time per iteration
L∆t=2dw . But still, the samples generated by HMC fail to escape from a single well. We
have also tried to use SGLD [63], the naive version of SGHMC [10] and split HMC with
“the splitting of data” strategy in [56]; however, all of them yield severely biased samples
trapped in one single well since both the distance between the two wells and the height
of the barrier between the two wells are large (larger than those in the similar experiment
conducted in [63]). In summary, one can see that a suitable splitting strategy is powerful
in the problem of sampling from a bimodal distribution.

Table 2 shows the average CPU time and acceptance rate of five runs of SHMC and
RB-SHMC, with the corresponding standard deviations recorded in the parentheses. The
CPU time spent in the sampling phase of RB-SHMC is less than 40% of that of SHMC
and tg, the CPU time to evaluate the summation term in∇U1, of RB-SHMC exhibits a sig-
nificant advantage over that of SHMC, which clearly shows the benefit of random batch
in terms of computational efficiency. In the experiment with ∆t = 0.01, the acceptance
rate of RB-SHMC is comparatively low since the difference between the exact dynam-
ics and the dynamics using random batch has a relatively large variance when ∆t is not
small enough [42]. Nevertheless, the acceptance rate of RB-SHMC is comparable to that
of SHMC when the time step is sufficiently small (∆t=0.001).

Finally, we remark that the application of random batch does inject some noise into
the original dynamics. As a result, the invariant measure cannot be preserved exactly.
In particular, the random batch approximation may not be accurate enough for some
complicated problems due to this extra variance by randomization. Hence, we suggest
that practitioners exploit the random batch strategy when computational cost is high
whereas the demand on accuracy is relatively low. A theoretical understanding of such
computational-accuracy trade-off even for general random batch methods will be an in-
teresting research direction to explore in future works.

Table 2: The CPU time of evaluating the summation term in ∇U1, denoted by tg, the CPU time of the
sampling phase and the acceptance rate of SHMC and RB-SHMC. The evolution time per iteration is fixed to
be L∆t=0.4dw and L=168 and L=1678 leapfrog steps are perform respectively for the two choices of ∆t.

tg (s) Sampling time (s) Acceptance rate

∆t=0.01
SHMC 28.68 (0.4597) 36.00 (0.5848) 0.2411 (0.0070)

RB-SHMC 6.62 (0.1006) 14.31 (0.1730) 0.0856 (0.0018)

∆t=0.001
SHMC 289.56 (5.3467) 361.72 (6.8459) 0.2386 (0.0045)

RB-SHMC 65.00 (1.0334) 139.62 (2.7512) 0.1903 (0.0010)
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4.4 Lennard-Jones fluids

Now we apply RB-SHMC to sample from the Gibbs distribution of a three-dimensional
interacting particle system whose interaction potential is modelled by the Lennard-Jones
potential

φ(ri−rj)=Φ(rij)=4

[(
1

rij

)12

−
(

1

rij

)6
]

, (4.14)

where rij = |ri−rj| is the distance between the two particles located at ri and rj in R
3.

Conventionally, we use periodic boxes with side length L to approximate the fluids in
the numerical simulation. Therefore, each particle i interacts with not only all the other
particles j 6= i in the system but also their periodic images (including its own periodic
image). The corresponding Gibbs distribution is given by

µ ∝ exp

[
− β

2 ∑
n

′∑
i,j

φ(ri−rj+nL)

]
, (4.15)

where β= 1/T is the inverse temperature (all quantities have been scaled according to
some basic units so that they are dimensionless) and n ∈Z

3. Here, we introduce the
notation ∑n

′ to mean that the term with n=0 is excluded from the outer summation if i=j.
Note that the Lennard-Jones potential (4.14) decays rapidly as the distance between the
two particles increases so that one may approximate the discrete sum by the continuous
integral over ri,rj : |ri−rj+nL|≥Rc for some chosen cutoff Rc>0. Thus the pressure of the
system can be approximated by

P=
ρ

β
+

8

V

N

∑
i=1

∑
j:j>i,

r∗ij<Rc


2

(
1

r∗ij

)12

−
(

1

r∗ij

)6

+ 16

3
πρ2

[
2

3

(
1

Rc

)9

−
(

1

Rc

)3
]

, (4.16)

where ρ = N/L3 is the particle density and r∗ij = |ri−rj+n∗ijL| is the distance between

particle i and the nearest image of j. One may refer to [21,42] for more details. Moreover,
with this cutoff, we only need to consider the interactions between particles and images
that have distance less than Rc during our sampling algorithms using RB-SHMC and
RBMC.

In this example, we take the cutoff length Rc = L/2 and compare our proposed RB-
SHMC algorithm with RBMC [42]. We use similar settings to those in [42]. Specifically,
the system consists of N=500 particles and the length of the periodic boxes is varied with
the given density ρ∈ [0,1] by

L=

(
N

ρ

) 1
3

. (4.17)

We adopt a simpler splitting strategy than that in [42], given by

Φ(r)=Φ1(r)+Φ2(r), (4.18)
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with

Φ1(r)=

{
−2−

1
6 r, 0< r<2

1
6 ,

4
(
r−12−r−6

)
, r≥2

1
6 ,

(4.19)

Φ2(r)=

{
4
(
r−12−r−6

)
+2−

1
6 r, 0< r<2

1
6 ,

0, r≥2
1
6 .

(4.20)

In the experiment, we let the number of leapfrog steps and the timestep for RB-SHMC
gradually decrease. Specifically, the number of leapfrog steps is chosen to be

Ln =max

{⌈
log2·L1

log(1+kn)

⌉
,L1−kn+1,3

}

with kn = ⌈n/2000⌉ and the initial value L1 = 20. By this strategy, Ln decreases as 21−
n/2000 in the earlier stage of iterations (roughly when n≤3.2×104) and as 20log2/log(1+
n/2000) in the later stage (roughly when n≥3.2×104). Moreover, we make sure Ln≥3 so
that the displacement is not too small. The timestep is chosen to be ∆tn=∆t1n−γ with the
initial step size ∆t1=0.2 and the decaying exponent γ=0.06. Following [42], the number
of discretization steps and timestep size of RBMC are fixed at Ln≡ 9 and ∆tn ≡ 0.01 in
each iteration. For both RB-SHMC and RBMC, the batch size is chosen to be s=1 and the
first 2×105 iterations are taken to be the burn-in phase. Only the samples generated after
the burn-in phase are collected. The pressure obtained over M iterations is computed
in the following way: we first compute the pressure (4.16) of each sample configuration
collected after the burn-in phase, and then we take the sample average of the pressures
over these M iterations. It can be seen from Fig. 9 that the pressures obtained by 107

iterations of both RB-SHMC (red dots) and RBMC (black triangles) capture the reference
solution (blue curve) given by the fitting curve provided in [36] well.

Following [42], the numerical results are evaluated by the relative error in the ℓ2 norm

√√√√ 9

∑
i=1

1

9

(
Pi−P(ρi)

)2

/√√√√ 9

∑
i=1

1

9
P(ρi)2 , (4.21)

where Pi denotes the pressure at different density values ρ=ρi (here we choose 9 different
density values as shown in Fig. 9) and P(·) represents the reference solution given by the
fitting curves in [36]. Fig. 10 presents how the relative errors of RB-SHMC and RBMC
vary over the CPU time used. Here, the value of the pressure Pi used to compute the
relative error (4.21) is averaged over the pressures generated by 10 independent chains
to further reduce the impact of randomness. One can clearly see that both the relative
errors of RB-SHMC and RBMC quickly decrease to below 1% and the relative error of
RB-SHMC decays even faster than that of RBMC.



L. Li, L. Liu and Y. Peng / CSIAM Trans. Appl. Math., 4 (2023), pp. 41-73 69

0 0.2 0.4 0�� 0�� 1
0

2

4

6

8

10

12

14

16

Figure 9: The pressure obtained by 107 iterations of RB-SHMC (red dots) and RBMC (black triangles) re-

spectively. The samples are collected after the burn-in phase, defined as the first 2×105 iterations of the two
methods. The blue curve is the reference solution given by the fitting curve in [36].
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Figure 10: The relative ℓ2 error of the pressures obtained by RB-SHMC (blue curve) decays faster than that of
RBMC (red dashed curve). The value of the relative error (4.21) is computed by the pressure averaged over 10
independent chains.

Remark 4.1. The three examples arising from interacting particle systems (Example 4.1,
Example 4.2 and Example 4.4) clearly exhibit the benefits of RB-SHMC. First, for an inter-
acting particle system with N particles, the application of the random batch strategy ef-
ficiently reduces the computational cost per timestep from O(N) to O(1). A second ben-
efit of RB-SHMC comes from the splitting strategy. Note that the interaction potentials
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in the examples of Dyson Brownian motion and Lennard-Jones fluids are singular, pop-
ular gradient-based sampling methods, such as SGLD and standard HMC, are doomed
to fail. Moreover, a clever splitting scheme can further reduce the computational cost.
Recall that we perform the splitting by truncating the pairwise interaction potential at
a small cutoff radius r = rc so that the number of particles within the range of rc to the
current particle is O(1) and thus the computational cost of the Metropolis rejection step
is reduced from O(N) to O(1).

Appendix A. Proof of Lemma 3.1

Proof. Denote Cq as a constant depending on q and Cq may change from line to line. For
any t∈ [0,T],

d

dt
E
(
|p̃(t)|q |FL

)
=qE


|p̃(t)|q−1

∣∣∣∣−∇V1

(
x̃(t)

)
+

1

s ∑
j∈ξLt

∇ψj(x̃)

∣∣∣∣
∣∣∣∣FL




≤q
(‖∇V1‖∞+‖∇ψ‖∞

)
E

(
| p̃(t)|q−1 ∣∣FL

)

≤CqE
(
|p̃(t)|q |FL

) q−1
q , (A.1)

where the last line follows from Hölder’s inequality. By integration, one has

E(|p̃(t)|q |FL)≤Cq(|p̃(0)|q+tq)≤Cq(|p̃(0)|q+Tq) , (A.2)

and thus Eq. (3.10) follows from taking expectation with respect to the randomness in FL

on both sides and setting q=4.
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