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Abstract. The Cahn–Hilliard equations are a versatile model for describing the
evolution of complex morphologies. In this paper we present a computational
pipeline for the numerical solution of a ternary phase-field model for describing
the nanomorphology of donor–acceptor semiconductor blends used in organic
photovoltaic devices. The model consists of two coupled fourth-order partial
differential equations that are discretized using a finite element approach. In order to
solve the resulting large-scale linear systems efficiently, we propose a preconditioning
strategy that is based on efficient approximations of the Schur-complement of a saddle
point system. We show that this approach performs robustly with respect to variations
in the discretization parameters. Finally, we outline that the computed morphologies
can be used for the computation of charge generation, recombination, and transport in
organic solar cells.
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1 Introduction

We consider a model for solvent-based fabrication of organic solar cells. A thin-film of
a dilute blend containing electron-acceptor, electron-donor and solvent is deposited on
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a substrate. As the solvent evaporates, the initially homogeneous mixture undergoes
phase separation into electron-acceptor rich and electron-donor rich areas. In order to
simulate the evolution of the morphology we use a phase-field model based on the Cahn–
Hilliard equation [14], which is a fourth order partial differential equation (PDE). The
equations are derived from the minimization of the Ginzburg–Landau energy function
via a gradient flow. The original Cahn–Hilliard equation models the evolution of two
phases while in our case we require a system of three components and follow the model
introduced in [32]. Our aim in this paper is to focus on equipping the phase-field system
with a suitable discretization and a general preconditioning strategy as this is important
for enabling three-dimensional simulations required for realistic solar cell morphologies.
As these will be of large scale and the system will be ill-conditioned, the convergence of
any iterative solver will be slow unless we introduce a suitable preconditioning strategy.
Our preconditioning approach for the ternary Cahn–Hilliard system is based on applying
block-preconditioners [9–11,34] and these rely on the coupling of well studied components
such as algebraic multigrid methods. Finally, in a proof-of-concept study we demonstrate
how these morphologies can be incorporated into 2D electrical device simulations of
organic solar cells. We demonstrate that our generated morphologies can significantly
affect both the current voltage curves and the charge density within the active layer.

2 Phase–field model

The mathematical description of the morphology evolution can be done by a phase field
model [28, Chapter 10], that consists of a domain Ω⊂R3 and three scalar fields

ϕp, ϕNFA, ϕs : Ω×[0,T]→ [0,1]⊂R (2.1)

representing the volume fractions of polymer, non-fullerene acceptor (NFA) and solvent,
respectively, at a given point in the domain at a given time in the interval [0,T]. In this
work, we focus on the numerical treatment of the model and leave the scaling of physical
dimensions to future work. The conservation relation

ϕp+ϕNFA+ϕs =1 (2.2)

applies for all x∈Ω and every t∈ [0,T]. The Ginzburg–Landau energy functional forms
the basis for the Cahn–Hilliard equation and is given by

F(ϕp,ϕNFA,ϕs)=
∫

Ω

[
f (ϕp,ϕNFA,ϕs)+

ϵp

2

∣∣∇ϕp
∣∣2+ ϵNFA

2
|∇ϕNFA|2

]
dx+Fs(ϕp,ϕNFA,x),

(2.3)
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where f (ϕp,ϕNFA,ϕs) accounts for the bulk energy which, according to the Flory–Huggins
theory [21], is chosen as

f (ϕp,ϕNFA,ϕs)=
[ ϕp

Np
ln(ϕp)+

ϕNFA

NNFA
ln(ϕNFA)+

ϕs

Ns
ln(ϕs)

+χp,NFAϕpϕNFA+χp,sϕpϕs+χNFA,sϕNFAϕs

]
. (2.4)

The parameters ϵp, ϵNFA represent (ideally small) interface parameters that control the
width of the transition layers between the different components. Their values are chosen
as ϵp=ϵNFA=10−3 in most of our numerical experiments and Figure 4 shows a comparison
of different interface parameters. In the numerical experiment section we replace the
logarithmic bulk energy term (2.4) by a polynomial approximation, which is easier to
handle numerically.

Furthermore, we denote by Γb the part of the boundary ∂Ω that is in contact with the
substrate material while Γt denotes the top part where evaporation occurs. Interactions
with the substrate are incorporated by the quantity Fs(ϕp,ϕNFA,x), which acts only on the
surface Γb. For our application, we chose a density of the form

fs(ϕp,ϕNFA,x)= pp(x)(gpϕp+hpϕ2
p)+pNFA(x)

(
gNFAϕNFA+hNFAϕ2

NFA
)

, (2.5)

where pp(x) and pNFA(x) are functions defined for all points x∈Γb on the film’s interface
with the substrate material. Integration over the surface Γb and multiplication with the
usual factor gives

Fs(ϕp,ϕNFA,x)=−
∫

Γb

fs(ϕp,ϕNFA,x)dσ. (2.6)

For more details we refer to [7]. At the top surface, we assume that evaporating solvent
yields an increase in polymer and NFA concentration, see [32] for details. This results in
a non-homogeneous flux boundary condition with right hand side equal to the product
−kϕpϕs and −kϕNFAϕs, respectively, where k>0 denotes a proportionality constant. The
starting point to derive equations for the time evolution of the scalar fields is the continuity
equation which results from the local conservation of mass. We obtain

∂ϕi

∂t
=−div Ji, i∈{p,NFA, s}. (2.7)

The thermodynamic force driving the evolution is the gradient of the respective variation
of the free energy. For simplicity, we assume a linear relation between flux and force,
making the additional simplification that the coefficients are constant and that off-diagonal
terms are zero, which yields

Ji =−Mi∇µi, i∈{p,NFA, s}, (2.8)

where we call Mi the mobility coefficient. We remark that due to this simplification, the
relation ϕp+ϕNFA+ϕs = 1 is not rigorously satisfied in the evolution of the phase fields.
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However, as soon as segregation starts, is will hold approximately and thus we still chose
to solve the system (2.7)–(2.8) only for the unknowns ϕp and ϕNFA and compute ϕs via
ϕs =1−ϕNFA−ϕp.

The resulting system in strong form reads

∂ϕp

∂t
=div(Mp∇µp) and µp =

∂ f
∂ϕp
−ϵ2∇2ϕp in Ω×[0,T], (2.9a)

∂ϕNFA

∂t
=div(MNFA∇µNFA) and µNFA=

∂ f
∂ϕNFA

−ϵ2∇2ϕNFA in Ω×[0,T], (2.9b)

with boundary conditions

Mp∇µp ·n=


∂ fs
∂ϕp

on Γb×[0,T],

−kϕpϕs on Γt×[0,T],
0 on ∂Ω\(Γb∪Γt)×[0,T],

(2.10a)

MNFA∇µNFA ·n=


∂ fs

∂ϕNFA
on Γb×[0,T],

−kϕNFAϕs on Γt×[0,T],
0 on ∂Ω\(Γb∪Γt)×[0,T],

(2.10b)

and initial conditions

ϕp(x,0)=ϕ0
p(x) in Ω, (2.11a)

ϕNFA(x,0)=ϕ0
NFA(x) in Ω, (2.11b)

with n denoting the outward unit normal vector of Ω. A sensible relationship between
the two sets of equations is ensured by the mutually used potential term f (ϕp,ϕNFA,ϕs).
Without it, the solution of (2.9)–(2.11) would contain two independent solutions without
any constraints like (2.2). Note that due to the boundary conditions from (2.10) the mass
conservation relation (2.2) may locally be violated in the vicinity of Γt and Γb. However,
as one moves away from the boundaries, the relation is restored by the bulk potential
from (2.4). The boundary conditions (2.10) are incorporated into the discretized equations
that we discuss in the next section.

Remark 2.1 (Existence of solutions). In view of the constant mobility, we expect (global-
in-time) existence of weak solutions shown using a fixed point argument as in [18].
The additional difficulty here are the non-homogeneous boundary conditions and their
impact on energy equalities. In particular, it would be interesting to see whether the
model can still be understood as a gradient flow. We leave this question as future research.

3 Discretization and preconditioning

The discretization of the model (2.9)–(2.11) relies on a finite element approach [13, 33]. A
more detailed derivation of the conversion of the infinite–dimensional continuous system
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into a finite dimensional non-linear system is given in [7,32]. Applying the finite element
method gives us the above system discretized in space and we then need to consider a
temporal discretization. We here decide on a semi-implicit scheme where the linear part
of the right hand side of (2.9) is treated implicitly and the nonlinear terms coming from
the potential are handled explicitly. We then obtain the following system

1
τ

M
(
ϕ(k+1)

p −ϕ(k)
p
)
=−Kµ(k+1)

p and Mµ(k+1)
p = f (k)p +ϵKϕ(k+1)

p , (3.1a)

1
τ

M
(
ϕ
(k+1)
NFA −ϕ

(k)
NFA

)
=−Kµ

(k+1)
NFA and Mµ

(k+1)
NFA = f (k)NFA+ϵKϕ

(k+1)
NFA , (3.1b)

where ϕp, ϕNFA and µp, µNFA are the coefficient vectors representing the discretized
chemical potentials and order parameters, respectively, and τ denotes the time step size,
which is chosen between 10−7 and 10−4 in our numerical experiments. As observed in [8]
and the references mentioned therein, explicit schemes often require very tight time step
restrictions, often more so than implicit schemes, and the value of the time step is coupled
to discretization and interface parameters. A more detailed investigation along with
more sophisticated time-stepping is a topic of future research. The matrices M and K
denote standard mass and stiffness matrices arising from the spatial discretization with
finite elements, with appropriate constants. They coincide for both the polymer and the
non–fullerene acceptor equations. The indices ·(k+1) and ·(k) stand for the current and
previous time step. Also f p, f NFA are the discretized representations of ∂ f

∂ϕp
and ∂ f

∂ϕNFA
,

respectively. We now collect the polymer and the non-fullerene acceptor equations as[
M τK
−ϵK M

][
ϕ
(k+1)
p

µ
(k+1)
p

]
=

[
Mϕ

(k)
p

f (k)p

]
,

[
M τK
−ϵK M

][
ϕ
(k+1)
NFA

µ
(k+1)
NFA

]
=

[
Mϕ

(k)
NFA

f (k)NFA

]
. (3.2)

We need to solve these equations repeatedly for every time step and a direct solver based
on a factorization is too expensive for realistic mesh sizes in spite of the maturity of the
field [16, 17]. To overcome this issue we focus on iterative methods, in particular Krylov
subspace methods [29]. We illustrate this on one of the systems with the other being
equivalent. Let us consider the equivalent form of the first system in (3.2)[

M τK
τK − τ

ϵ M

][
ϕ
(k+1)
p

µ
(k+1)
p

]
=

[
Mϕ

(k)
p

− τ
ϵ f (k)p

]
, (3.3)

which is now a symmetric saddle point system [6]. Such block systems arise in a variety
of different applications such as PDE-constrained optimization or the treatment of complex
symmetric linear systems.

Motivated by [19, 23] we focus on a block-diagonal preconditioner

P=

[
M 0
0 S

]
,
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where S= τ
ϵ M+τ2KM−1K is the Schur complement of the matrix A=

[
M τK
τK − τ

ϵ M

]
.

We here focus on this block-diagonal matrix but other structured preconditioners for
related problems have been suggested [5,12], especially in the context of PDE-constrained
optimization. They typically rely on solution of a system involving the stiffness matrix.
The PRESB approach [4] does not require solutions with a mass matrix, thus for consistent
mass matrices further reducing the cost of the preconditioning scheme. A comparison of
such preconditioning strategies can be found in [4]. Our aim is to rely on a preconditioner
that can be used in a symmetric Krylov subspace method such as MINRES [25]. For
this we now focus on giving further details how to approximate the Schur-complement
efficiently.

The preconditioner P is an ideal version as it is too expensive to use in practice. We
derive a practical version of this via using the approximations M̃ ≈M and S̃≈ S. The
approximation M̃ is the simpler of the two and we will use an algebraic multigrid (AMG)
[20] for our implementation, but also other methods such as a Chebyshev semi-iteration
[31] are possible. The approximation of the Schur complement is more involved. We here
follow the matching approach of [26, 27] given by

S=
τ

ϵ
M+τ2KM−1K≈

(
τK+M̂

)
M−1(τK+M̂

)
and the condition

τ

ϵ
M= M̂M−1M̂.

This is obviously true for M̂ =
√

τ
ϵ M and then the Schur complement approximation is

based on
S̃ :=

(
τK+

√
τ
ϵ M

)
M−1(τK+

√
τ
ϵ M

)
.

The preconditioner requires the approximate solution of systems with S̃, which we will
realize using an algebraic multigrid approximation for

(
τK+

√
τ
ϵ M

)
. Let us motivate

why this preconditioner is a sensible choice ( [27]).

Lemma 3.1. The eigenvalues of the S̃
−1

S are contained in the interval [ 1
2 ,1], independent of all

system parameters.

Proof. To show this we consider the Rayleigh quotient

vTSv
vTS̃v

=
vT( τ

ϵ M+τ2KM−1K
)

v
vT
(
τK+

√
τ
ϵ M

)
M−1(τK+

√
τ
ϵ M

)
v
=

aTa+bTb
aTa+bTb+2aTb

with a=τM−1/2Kv and b=
√

τ
ϵ M1/2v and v ̸=0. We know that 0≤∥a−b∥2=(b−a)T(b−

a)= bTb+aTa−2bTa and as a result 2bTa≤ bTb+aTa. This gives the lower bound of 1
2 for

the eigenvalues. The upper bound of 1 can now be obtained if bTa≥ 0. Looking at this
term in detail we see bTa=τ

√
τ
ϵ vTKv, which is obviously positive given the property of

the stiffness matrix. We have thus obtained the eigenvalue bound, which is independent
of the system parameters like ϵ as well as time step and mesh size.
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As a results we now obtain the practical version of our preconditioner as shown in
Algorithm 1.

Algorithm 1 Preconditioner

1: procedure PREC(v) ▷ Application of preconditioner to block vector v
2: Approximately solve Mw1=v1 via AMG
3: Approximately solve

(
τK+

√
τ
ϵ M

)
w2=v2 via AMG

4: Compute w2←Mw2
5: Approximately solve

(
τK+

√
τ
ϵ M

)
w2=w2 via AMG

6: return w ▷ Preconditioned block-vector w
7: end procedure

Remark 3.1 (Implicit treatment of potential). The block-preconditioning strategy
presented above is also amenable to the case that the nonlinearities within the potentials,
i.e. ∂ f

∂ϕp
and ∂ f

∂ϕNFA
, are treated implicitly. One then typically obtains a nonlinear problem

that needs to be solved at every time step. For this Newton-type methods are often
employed and the linear system at the heart of the Newton iteration would then rely
on the system matrix [

M τK
τK+Mϕ − τ

ϵ M

]
, (3.4)

where Mϕ represents a matrix corresponding to the linearization required for the Newton
iteration. Again, a preconditioning strategy based on a Schur-complement approach can
be applied in this case, even though the matrix is not symmetric anymore. The downside
is that the matrix Mϕ changes from Newton to Newton iteration and also from time step
to time step requiring a recomputation of the AMG approximation.

4 Numerical experiments

We solve the model (2.9)–(2.11) with a PYTHON implementation using the finite element
libraries DOLFINX† and UFL [2,3] from the FENICS project [1,2] (latest software versions
as of January 2022). Codes that reproduce the numerical experiments presented in this
section are publicly available.‡

We generate uniform triangulations of 2- and 3-dimensional rectangular domains of
size 10×2.5 and 10×2.5×10, respectively, with a variable number of grid points nx×ny
and nx×ny×nz and choose linear triangular Lagrange elements. While we here use only
regular meshes the preconditioning strategy proposed in this paper remains applicable
for different meshes such as the ones obtained from an adaptive finite element scheme.
Note that the y-coordinate denotes the direction of the height of the film.

†https://github.com/FEniCS/dolfinx
‡https://github.com/KBergermann/Precond-Cahn-Hilliard-OSC

https://github.com/FEniCS/dolfinx
https://github.com/KBergermann/Precond-Cahn-Hilliard-OSC
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Boundary conditions on the top boundary Γt, i.e., y = ymax as well as the bottom
(substrate) boundary Γb, i.e., y = 0 are implemented via surface integral measures. On
Γb, we enable space-dependent substrate patterning. If activated, we have

pp(x)=

0, x∈ [ 1
6 xmax, 1

3 xmax]∪[ 1
2 xmax, 2

3 xmax]∪[ 5
6 xmax,xmax],

1, x∈ [0, 1
6 xmax]∪[ 1

3 xmax, 1
2 xmax]∪[ 2

3 xmax, 5
6 xmax]

and

pNFA(x)=

0, x∈ [0, 1
6 xmax]∪[ 1

3 xmax, 1
2 xmax]∪[ 2

3 xmax, 5
6 xmax],

1, x∈ [ 1
6 xmax, 1

3 xmax]∪[ 1
2 xmax, 2

3 xmax]∪[ 5
6 xmax,xmax]

for pp(x) and pNFA(x) in (2.5), i.e., polymer and non-fullerene acceptor preference
alternates on equispaced sub-intervals of Γb. In the absence of substrate patterning, we
set pp(x) = pNFA(x) = 1 for all x ∈ Γb. The remaining parameters in (2.5) are chosen as
gp = gNFA = 0.01 and hp = hNFA = 0. Furthermore, we choose the evaporation rate of
solvent at the top boundary Γt, which is modeled by an inward flow of polymer and
non-fullerene acceptor into the system as k = 5·10−3. The Flory–Huggins parameters
are chosen as χp,NFA = 1,χp,s =χNFA,s = 0.3, the employed degrees of polymerization are
Np=NNFA=20 and Ns=1, and the interface parameters were chosen as ϵp=ϵNFA=10−3.
These parameter choices are motivated by [32].

As initial conditions, we set polymer and non-fullerene acceptor concentrations to
ϕp =ϕNFA=0.35±0.01, where ±0.01 denotes uniformly distributed random fluctuations.
These induce non-zero concentration gradients at time t = 0, which are required for
the initiation of phase separation. Note that our model described in Section 2 omits
stochasticity in the equations (2.9), which could be included to model noise, cf., e.g., [32].

As in [7], we replace the logarithmic bulk energy term (2.4) by the polynomial
approximation

f (ϕp,ϕNFA,ϕs)=3.5ϕ2
pϕ2

NFA+0.1ϕ2
s , (4.1)

to allow for numerical stability in case concentrations become slightly negative due to
discretization errors, which would lead to a numerical breakdown in the evaluation of
the logarithmic terms. Further investigations for incorporating the logarithmic potentials
will be part of future research following e.g. [15].

After the linear systems (3.2) have been assembled for both the polymer and
non-fullerene acceptor equation by means of suitable UFL expressions, all matrices
are converted into scipy.sparse format [30]. The AMG preconditioning steps in
Algorithm 1 are realized by the Ruge–Stüben implementation of the PYTHON package
PYAMG [24]. Algorithm 1 is then passed as preconditioner to the preconditioned
MINRES [25] implementation of SCIPY [30].

Figures 1 to 5 illustrate the required number of MINRES iterations as well as the
runtime required to solve one preconditioned linear system of the form (3.3) to a tolerance
of 10−7 in terms of the concentrations ϕp,ϕNFA, ϕs ∈ [0,1]. All numerical experiments

s
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(b) MINRES runtimes

Figure 1: MINRES iteration numbers and runtimes per time step for different spatial discretizations of a
rectangular 2D domain (nx×ny denotes the number of spatial discretization points in x and y direction,
respectively). MINRES tolerance 10−7, AMG preconditioner tolerance 10−4, scaled time step size τ = 10−4,
interface parameters ϵNFA=ϵp=10−3. All numbers indicate the worst observed case, i.e., the larger number
of iterations of the two (polymer and non-fullerene acceptor) equations and the longest observed runtime of
both equations over the first 20 time steps.
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(b) MINRES runtimes

Figure 2: MINRES iteration numbers and runtimes per time step after 1000 time steps, i.e., time step 1 in
panel (a) denotes the 1001th overall time step. Otherwise, setup and parameters are the same as in Fig. 1.
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(b) MINRES runtimes

Figure 3: MINRES iteration numbers and runtimes per time step for different spatial discretizations of
a rectangular 3D domain (nx×ny×nz denotes the number of spatial discretization points in x, y, and z
direction, respectively). Otherwise, setup and parameters are the same as in Fig. 1.

were performed on an AMD Ryzen 5 5600X 6-Core processor with 16 GiB RAM. The
experiments corroborate the theoretical result from Lemma 3.1, i.e., the independence of
the preconditioner from Algorithm 1 of system parameters as well as time step and mesh
sizes.

More specifically, Figs. 1 and 3 indicate relatively constant MINRES iteration numbers
as well as an almost perfect linear scaling of the runtime in the first 20 time steps for 2- and
3-dimensional meshes of different fineness. In the 2D case, Fig. 2 shows that very similar
observations hold true after 1000 time steps have been completed. Furthermore, Figs. 4
and 5 illustrate that MINRES iterations and runtimes are similar for different values of
the interface parameters ϵp and ϵNFA as well as the chosen time step size τ for parameter
ranges that permit stable numerical solutions.

In order to numerically verify the theoretically indicated linear convergence order of
the IMEX scheme we ran our solver for five different time step sizes between τ=2·10−4

and 3.2·10−3. Comparing the results to a relatively fine solution computed with τ=10−5

we obtained an experimental order of convergence of 0.789 for the polymer and 0.788 for
the non-fullerene acceptor equation.

Finally, Figs. 6 and 7 show simulation results for both the 2- and 3-dimensional case.
Details on the parameter choices are given in the respective captions.
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Figure 4: MINRES iteration numbers and runtimes per time step for a spatial discretizations of a rectangular
2D domain of 800×400 (nx×ny denotes the number of spatial discretization points in x and y direction,
respectively) with varying interface parameters ϵNFA=ϵp. Otherwise, setup and parameters are the same as
in Fig. 1. Note that for ϵNFA =ϵp =10−4 the concentrations ϕp and ϕNFA diverge.
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Figure 5: MINRES iteration numbers and runtimes per time step for a spatial discretizations of a rectangular
2D domain of 800×400 (nx×ny denotes the number of spatial discretization points in x and y direction,
respectively) with varying scaled time step size τ. Otherwise, setup and parameters are the same as in
Fig. 1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6: Example 2D morphology evolution at five different times without substrate patterning on the
lower boundary. Time evolves from top to bottom. The time step size 2·10−4 was used and the depicted
morphologies correspond to t = 0.02, t = 0.06, t = 0.4, t = 2, and t = 10 (final time). Left: polymer
concentration, right: non-fullerene acceptor concentration. The spatial discretization was chosen 200×100.
Furthermore, the interface parameters ϵNFA=ϵp=10−3, initial concentrations ϕp=ϕNFA=0.35±0.01, degrees
of polymerization Np=NNFA=20,Ns=1, Flory–Huggins interaction parameters χp,NFA=1,χp,s=χNFA,s=0.3,
and the polynomial approximation (4.1) of the logarithmic potential were used.

5 Exploiting simulated morphologies

This section explores how the generated morphologies link to the electrical performance
of devices. We first used a thresholding function to convert the computationally
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(e) (f)

(g) (h)

Figure 7: Example 3D morphology evolution at four different times with substrate patterning on the
lower boundary. Time evolves from top to bottom. The time step size 2·10−4 was used and the
depicted morphologies correspond to t = 0.012, t = 0.04, t = 0.24, and t = 1 (final time). Left: polymer
concentration, right: non-fullerene acceptor concentration. The spatial discretization was chosen 80×40×80.
Furthermore, the interface parameters ϵNFA=ϵp=10−3, initial concentrations ϕp=ϕNFA=0.35±0.01, degrees
of polymerization Np=NNFA=20,Ns=1, Flory–Huggins interaction parameters χp,NFA=1,χp,s=χNFA,s=0.3,
and the polynomial approximation (4.1) of the logarithmic potential were used.
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generated morphologies into binary images. We then discretized these images using a
regular triangular mesh, vertex removal was performed to reduce the number of triangles
in the mesh, and the back of the object sealed with two more triangles to generate an
enclosed object. The mesh describing the morphology was loaded into our 2D finite
difference drift diffusion model (https://www.gpvdm.com) [22]. The structure was then
projected onto a 2D finite difference grid by shooting light rays from each mesh point
on the grid to the top of the simulation world. If the ray intersected an odd number
of faces of an object we were able to tell that the point on the grid resides within that
object, if an even number of faces is encountered the point lies outside the object. The
object with an odd number of triangles and a face closest to the light source was taken as
the object associated with the 2D grid point. Mobility values were set depending upon
which object the mesh point resided in. A high value of electron mobility (0.1 m2s−1V−1)
and a low value of hole mobility (1×10−10 m2s−1V−1) was assumed for the non-polymer
phase, and the opposite values for the polymer phase.

The bi-polar drift-diffusion equations along with Poisson’s equation were then solved
on the 2D finite difference grid using a Scharfetter–Gummel discretization and Fermi–
Dirac statistics. The set of equations are written out in a single Jacobian and all solved
together iteratively using Newton’s method.

Three morphologies were taken from the simulations above with different levels
of coarseness/complexity. It can be seen from Fig. 8 that the more fine grained the
morphology the higher the short circuit current (Jsc) and open circuit voltage (Voc) are.
Open circuit voltage is the voltage produced when the current generated by the cell is
zero (intersection of the x axis), and short circuit current is the current produced by the
cell when the external voltage is zero (intersection of y axis). Higher values of Jsc and Voc
are generally associated with more efficient devices. It can also be seen that the charge
density is higher in devices with less fine grained morphology.

6 Conclusion and outlook

In this paper we have presented a computationally efficient pipeline for the evaluation of
a phase–field model describing the morphology evolution of organic solar cells. Our
preconditioning strategy enabled the parameter-robust simulation of the discretized
equations. Additionally, we showcased how the results can be used to further
characterize properties of the organic solar cells such as current-voltage characteristics.

In order to be able to compare our results to experimental data, the next step will be
to perform a proper non-dimensionalisation using realistic physical parameters such as
diffusion constants or Flory–Huggins interaction parameters. As a result, large constants
might appear in the model, rendering the numerical solution even more challenging.
Furthermore, to be able to obtain results over longer time scales, e.g., as needed to
model spin coating experiments, additional homogenisation techniques might need to
be employed to obtain coarse-grained models.

https://www.gpvdm.com
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Figure 8: Lower row: Computationally generated morphologies; Middle row: The three morphologies
discretized and turned into 3D structures; Top row: Current and carrier density for each structure plotted as
a function voltage applied between the top (green) and bottom (yellow) contacts.
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