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1 Introduction

Since Granger [17] and Engle and Granger [13], the cointegrating time series has
been a leading topic in the literature of economics. Numerous economic models,
such as consumption function, purchasing power parity, money demand func-
tion, hedging ratio of spot and futures exchange rates, and yield curves of dif-
ferent terms of maturities, have been shown to have the cointigrating structure.
The partially nonstationary Vector AR model or cointegrating time series models
without GARCH effect have been extensively discussed over the past decades,
see for example, Phillips and Durlauf [37] and Stock and Watson [43] in early
years. Recently, Wang and Phillips [46] proposed a specification test for nonlin-
ear non-stationary models. Kristensen and Rahbek [22] analyzed estimators and
tests for a general class of VEC models that allows for asymmetric and non-linear
error correction. Wang [45] established a martingale limit theorem for non-linear
cointegration systems. Cavaliere et al. [9] considered bootstrap tests on the coin-
tegration rank in vector AR models. Liang et al. [28] investigated local linear
estimation of a nonparametric cointegration model. Cavaliere et al. [8] investi-
gated a number of methods for estimating the cointegration rank in integrated
vector AR systems with unknown AR order. Cai et al. [7] studied a new class of
bivariate threshold cointegration models. Johansen and Nielsen [20] studied non-
stationary cointegration in the fractionally cointegrated VAR model. Lin et al. [29]
considered a double-nonlinear cointegration. She and Ling [40] studied a heavy-
tailed VEC model. A recent overview on times series cointegration was given by
Johansen [19].

Economic and financial time series often exhibit time-varying variances, cal-
led ARCH-type volatilities. Since Engle [11] and Bollerslve [4] proposed the
ARCH/GARCH models, this kind of time series models have been extensively
studied and applied in financial markets, see a nice review in Francq and Za-
koian [14]. Ling et al. [31–34], Seo [39] established the asymptotic theory of the
quasi-maximum likelihood estimator (QMLE) of unit root with the GARCH er-
rors. Li et al. [27] investigated vector time series that exhibit both cointegration
and time-varying variances. Li and Li [26] studied least absolute deviation esti-
mation for unit root processes with GARCH errors. Chan and Zhang [10] pro-
vided an inference procedure for unit-root models with infinite variance GARCH
errors. Lange [23] and Lange et al. [24] studied estimation and asymptotic in-
ference for the AR-ARCH model. Shinki and Zhang [41] established asymptotic
theory for fractionally integrated asymmetric power ARCH models. Zhang and
Ling [48] established the asymptotic inference for AR models with heavy-tailed
G-GARCH noises. Zhang et al. [47] studied an AR(1) model with ARCH(1) errors.
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This paper is to study a partially nonstationary VAR model with vector
GARCH noises. We study the full rank and the reduced rank QMLE of parame-
ters in the model. It is shown that both QMLE of long-run parameters asymptot-
ically converge to a functional of two correlated vector Brownian motions. Based
these, the likelihood ratio (LR) test statistic for the cointegration rank is shown to
be a functional of the standard Brownian motion and normal vector, asymptoti-
cally. The critical values of the LR test are simulated via the Monte Carlo method.
As far as we know, our test is new in the literature.

The remaining part of this paper proceeds as follows. Section 2 gives the
model and assumptions. Sections 3 and 4 study the full rank and the reduced
rank QMLEs, respectively. Section 5 studies the LR test for the cointegration
rank. Section 6 presents the method of simulating critical values. Section 7 re-
ports the results from Monte Carlo experiments and Section 8 gives an illustrative
empirical example of three interest rates. Conclusion is in Section 9. All the tech-
nical proofs are given in Appendix A. Throughout, −→L denotes convergence
in distribution, Op(1) denotes a series of random numbers that are bounded in
probability, and op(1) denotes a series of random numbers converging to zero in
probability.

2 Model and assumptions

We consider an m-dimensional autoregressive (AR) process {Yt}, generated by

Yt =Φ1Yt−1+···+ΦsYt−s+εt, (2.1)

εt =(ε1t ,. . .,εmt)
′, (2.2)

εit =ηit

√

hit−1, hit−1= ai0+
q

∑
j=1

aijε
2
it−j+

p

∑
k=1

bikhit−1−k, (2.3)

where Φj’s are constant matrices. In (2.3), ηt =(η1t,. . .,ηmt)′ is a sequence of inde-
pendently and identically distributed (i.i.d.) random vectors with zero mean and
E(ηtη

′
t)=Γ≡(σij)m×m, a positive definite matrix with σii=1 and σij=σji. It is easy

to see that

E(εt |Ft−1)=0, E
(

εtε
′
t|Ft−1

)

=Vt−1=Dt−1ΓDt−1,

where

Ft−1=σ{ηs,s= t−1,t−2,.. .},

Dt−1=diag
(
√

h1t−1,. . .,
√

hmt−1

)

.
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Vt−1 is the time-varying covariance matrix with constant correlation. The pro-
cess εt in (2.2)-(2.3) is the multivariate generalized autoregressive conditional het-
eroskedasticity (GARCH) process proposed by Bollerslev [5] and has been widely
used in the literature, for example by Tse [44]. As a referee commented, there is
no cross-sectional dependence in the model structure of the multivariate GARCH
(2.3). This is a strong restriction. Without this, it will be more difficult to work
out the asymptotic theory of the estimated parameters and need to be further ex-
plored in the future. For example, ones may consider to extend the results in this
paper to other types of GARCH noises such as BEKK or DCC-GARCH noises.

Denote L as the lag operator and define Φ(L)= Im−∑
s
j=1ΦjL

j. We first make

the following assumption.

Assumption 2.1. |Φ(z) |=0 implies that either |z |>1 or z=1.

Define

Wt =Yt−Yt−1, Φ∗
j =−

s

∑
k=j+1

Φk, C=−Φ(1)=−
(

Im−
s

∑
j=1

Φj

)

.

By Taylor’s formula, Φ(L) can be decomposed as

Φ(z)=(1−z)Im−Cz−
s−1

∑
j=1

Φ∗
j (1−z)zj. (2.4)

Thus, we can reparameterize process (2.1) as

Wt =CYt−1+
s−1

∑
j=1

Φ∗
j Wt−j+εt. (2.5)

Following Ahn and Reinsel [1] and Johansen [18], we can decompose C = AB,
where A and B are respectively m×r and r×m matrices of rank r. Define d=m−r.
Denote B⊥ as a d×m matrix of full rank such that BB′

⊥=0r×d, B̄=(BB′)−1B and

B̄⊥=(B⊥B′
⊥)

−1B⊥, and A⊥ as an m×d matrix of full rank such that A′A⊥=0r×d,

Ā=A(A′A)−1 and Ā⊥=A⊥(A′
⊥A⊥)−1.

We further impose the following condition.

Assumption 2.2. |A′
⊥(Im−∑

s−1
j=1 Φ∗

j )B
′
⊥ |6=0.

From the proof of [18, Theorem 4.2], we have the following decomposition:

B⊥Yt =B⊥Yt−1+u1t, BYt =u2t, (2.6)
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where

ut =
(

u′
1t,u

′
2t

)′
=ψ(L)at ,

at ≡
(

Ā⊥, Ā
)′

εt,

ψ(z)≡
[(

Ā⊥, Ā
)′

Φ(z)
(

B̄′
⊥,B̄′(1−z)−1

)]−1
,

where ψ(z) exists by Assumption 2.2, see [18, p. 51]. Thus, B⊥Yt is I(1) while BYt

is I(0). Under Assumption 2.1, model (2.1) or (2.5) is not stationary. But since BYt

is stationary if εt is stationary, we call process (2.1)-(2.3) a partially nonstationary
VAR process with vector GARCH noises. A sufficient condition for the strict
stationarity of εt is as follows.

Assumption 2.3. For i = 1,.. .,m, ai0 > 0, ai1,. . .,aiq,bi1,. . .,bip ≥ 0, and ∑
q
j=1aij+

∑
p
k=1bik<1.

The next assumption is the necessary and sufficient conditions such that the
fourth moment of each component in εt is finite, see [34].

Assumption 2.4. For i=1,.. .,m, all eigenvalues of E(Ait⊗Ait) lie inside the unit

circle, where ⊗ denotes the Kronecker product and

Ait=













ai1η2
it . . . aiqη2

it bi1η2
it . . . bipη2

it

Iq−1 0(q−1)×1 0(q−1)×p

ai1 . . . aiq bi1 . . . bip

0(p−1)×q Ip−1 0(p−1)×1













.

We further make an assumption as follows, which is to allow the parameters
in (2.1) and those in (2.2)-(2.3) to be estimated separately without altering the
asymptotic distributions. Without this assumption, the asymptotic distribution
of the estimated parameters can be derived, but is rather complicated. To make it
simple, we avoid this case in this paper.

Assumption 2.5. ηt is symmetrically distributed.

In many empirical studies such as those in Section 8 below, model (2.5) is
augmented with an unknown constant, that is

Wt=CYt−1+
s−1

∑
j=1

Φ∗
j Wt−j+εt+µ. (2.7)

As we can see in all the subsequent sections, the asymptotic theories are essen-
tially the same, with the standard Brownian motion Bd(u) replaced by the stan-

dard Brownian bridge Bd(u)−
∫ 1

0 Bd(u)du. For ease of exposition, we focus on
model (2.5). Model (2.7) will be briefly discussed in Sections 5 and 6.
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3 Full rank estimation

This section considers the full rank estimators for the mean parameters ϕ ≡
vec[C,Φ∗

1 ,. . .,Φ∗
s−1] and the estimators for the variance parameters δ ≡ [δ′1,δ′2]

′,
δ1≡ [a′0,a′1,. . .,a′q,b′1,. . .,b′p]

′, aj≡ [a1j,. . .,amj]
′,bk≡ [b1k,. . .,bmk]

′, j=0,1,.. .,q,k=1,.. . ,p,

and δ2 ≡ ν̃(Γ), which is obtained from vec(Γ) by eliminating the super-diagonal
and the diagonal elements of Γ (see [36, p. 27]).

Given {Yt : t = 1,.. .,n}, conditional on the initial values Yt = 0 for t ≤ 0, the
log-likelihood function (LF) (with a constant ignored), as a function of the true
parameters, can be written as

lF(ϕ,δ)=
n

∑
t=1

lt, lt=−1

2
ε′tV

−1
t−1εt−

1

2
ln|Vt−1|, (3.1)

where

Vt−1=Dt−1ΓDt−1, Dt−1=diag
(
√

h1t−1,. . .,
√

hmt−1

)

.

Further denote ht−1=(h1t−1,. . .,hmt−1)
′, Ht−1=(h−1

1t−1,. . .,h−1
mt−1)

′. The score func-
tion, as a function of the true parameters, can be expressed as

∇ϕlt=−1

2
∇ϕht−1

(

ι−w
(

εtε
′
tV

−1
t−1

))

⊙Ht−1+(Xt−1⊗ Im)V
−1
t−1εt,

∇δlt=







−1

2
∇δ1

ht−1

(

ι−w
(

εtε
′
tV

−1
t−1

))

⊙Ht−1

−ν̃
(

Γ−1−Γ−1D−1
t−1εtε

′
tD

−1
t−1Γ−1

)






,

where Xt−1=[Y′
t−1,W ′

t−1,. . .,W ′
t−s+1]

′, ι=(1,1,.. .,1)′ and w(χ) is a vector contain-
ing the diagonal elements of the square matrix χ. For expositional sake, we
present the formulae for ∇ϕht−1 and ∇δ1

ht−1 in (B.1) and (B.2) of Appendix B.

We first find an initial estimator (ϕ̂, δ̂). For instance, we may adopt the LSE
(least squares estimator) considered in [27] and use the residuals of the VAR for
estimating the variance parameters (see, e.g. [32]). Given this initial estimator, we
perform a one-step iteration

ϕ̇= ϕ̂−
( n

∑
t=1

Ft|ϕ̂,δ̂

)−1( n

∑
t=1

∇ϕlt|ϕ̂,δ̂

)

, (3.2)

δ̇= δ̂−
( n

∑
t=1

St|ϕ̂,δ̂

)−1( n

∑
t=1

∇δlt|ϕ̂,δ̂

)

, (3.3)
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where, in terms of the true parameters,

Ft =−
(

Xt−1X′
t−1⊗V−1

t−1

)

− 1

4
(∇ϕht−1)D

−2
t−1

(

Γ−1⊙Γ+ Im

)

D−2
t−1

(

∇′
ϕht−1

)

, (3.4)

and, in terms of the true parameters, St=(Sijt)2×2 with

S11t =−1

4
(∇δ1

ht−1)D
−2
t−1

(

Γ−1⊙Γ+ Im

)

D−2
t−1

(

∇′
δ1

ht−1

)

,

S12t =−(∇δ1
ht−1)D

−2
t−1Ψm

(

Im⊗Γ−1
)

Nm L̃′
m,

S22t =−2L̃mNm[Γ
−1⊗Γ−1]Nm L̃′

m,

Ψm, Nm and L̃m are constant matrices of dimensions mxm2, m2xm2 and m(m−
1)/2 respectively. See [36, p. 109, pp. 48-49, pp. 96-97]. We reproduce them in
Appendix B with m=2, see (B.5)-(B.7).

Remark 3.1. Due to the different heteroskedasticity, the algorithm of this one-

step iteration is somewhat different from that in [27]. However, the proof of

our Theorem 3.1 below is similar to that of [27, Theorem 2]. We simply provide

a sketchy proof in Appendix A. In practice, we may repeat the iterative proce-

dure in (3.2)-(3.3), and get an estimator closer to the quasi-maximum likelihood

estimator (QMLE), though the asymptotic distribution is not altered.

Recall that ϕ̇=vec[Ċ,Φ̇∗
1 ,. . .,Φ̇∗

s−1]. In Theorem 3.1 below, we state the asymp-

totic distribution of n(Ċ−C)B̄′
⊥ (the nonstationary mean parameters), that of√

nvec[(Ċ−C)B̄′,(Φ̇∗
1−Φ∗

1),. . .,(Φ̇
∗
s−1−Φ∗

s−1)] (the stationary mean parameters),

and that of
√

n(δ̇−δ) (the variance parameters). To facilitate our discussion, we
first introduce another set of score function and Hessian function in (3.5)-(3.6), in
terms of the true parameters. These score function and Hessian function will also
be used in Section 4.2

∇α2 lt=−1

2
∇α2 ht−1

(

ι−w
(

εtε
′
tV

−1
t−1

))

⊙Ht−1+(Ut−1⊗ Im)V
−1
t−1εt, (3.5)

R2t =−
(

Ut−1U′
t−1⊗V−1

t−1

)

− 1

4
(∇α2 ht−1)D

−2
t−1

(

Γ−1⊙Γ+ Im

)

D−2
t−1

(

∇′
α2

ht−1

)

, (3.6)

where
α2=vec[A,Φ∗

1 ,. . .,Φ∗
s−1], Ut−1=[Y′

t−1B′,W ′
t−1,. . .,W ′

t−s+1]
′.

As in [27, Theorem 2(a)], the asymptotic distribution of n(Ċ−C)B̄′
⊥ is a functional

of two correlated vector Brownian motions, though the covariance matrix is dif-
ferent because of a different heteroskedasticity model. To facilitate our discussion
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on Theorem 3.1, first refer to the heteroskedasticity model (2.3). For i=1,2,.. .,m,
let

a(i)(z)b(i)(z)−1=
∞

∑
l=1

νilz
l ,

where

a(i)(z)=
q

∑
l=1

ailz
l , b(i)(z)=1−

p

∑
l=1

bilz
l.

Denote νl = (ν1l ,. . .,νml)
′, l = 1,2,.. .. Let (W ′

m(u),W
∗′
m (u))′ be a 2m-dimensional

Brownian motion (BM) with the covariance matrix

uΩ≡u

(

(EVt−1) Im

Im Ω∗
1

)

, (3.7)

where

Ω∗
1 =E

(

V−1
t−1

)

+(∆− ιι′)⊙
∞

∑
l=1

(

νlν
′
l⊙E(Πlt)

)

,

∆=E
[

w
(

ηtη
′
tΓ

−1
)(

w
(

ηtη
′
tΓ

−1
))′]

,

Πlt=
(

εt−lε
′
t−l⊙Ht−1H′

t−1

)

.

Thus,

Bd(u)≡Ω
− 1

2
a1

[Id,0d×r]Ω
1
2
a (EVt−1)

− 1
2 Wm(u)

is a d-dimensional standard BM, where

Ωa=E(ata
′
t), Ωa1

=[Id,0d×r]Ωa[Id,0d×r]
′.

We now state our first result as follows.

Theorem 3.1. Suppose Assumptions 2.1-2.5 hold. Then

(a) n(Ċ−C)B̄′
⊥=nĊB̄′

⊥ −→L Ω−1
1 M∗,

(b)
√

nvec
[

(Ċ−C)B̄′,
(

Φ̇∗
1−Φ∗

1

)

,. . .,
(

Φ̇∗
s−1−Φ∗

s−1

)]

−→L N
(

0,Ω−1
2 Ω∗

2Ω−1
2

)

,

(c)
√

n(δ̇−δ) −→L N
(

0,Ω−1
δ Ω∗

δΩ−1
δ

)

,

where

Ω1=E
(

V−1
t−1

)

+
(

Γ−1⊙Γ+ Im

)

⊙
∞

∑
l=1

(

νlν
′
l ⊙E(Πlt)

)

,
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M∗=
(

∫ 1

0
Bd(u)dW∗

m(u)
′
)′(∫ 1

0
Bd(u)Bd(u)

′du

)−1

Ω
− 1

2
a1

ψ−1
11 ,

ψ11=[Id,0d×r]

( ∞

∑
k=0

ψk

)

[Id,0d×r]
′,

Ω2=−E(R2t), Ω∗
2 =E

(

∇α2 lt∇′
α2

lt

)

,

Ωδ=−E(St), Ω∗
δ =E

(

∇δlt∇′
δlt

)

.

Remark 3.2. The results are similar to [27, Theorem 2(a)], but with different def-

initions of Ω1 and M∗. When ηt ∼ N(0,Γ), the QMLE here boils down to a MLE

with normal error. In this case, the (Γ−1⊙Γ+ Im) in Ft or S11t in (3.5)-(3.6) may be

replaced by (∆−ιι′) and Ω∗
1=Ω1 and Ω∗

2=Ω2. The asymptotic distributions in (b)

and (c) are simplified, as Ω−1
2 Ω∗

2Ω−1
2 =Ω∗−1

2 =Ω−1
2 and Ω−1

δ Ω∗
δΩ−1

δ =Ω∗−1
δ =Ω−1

δ .

Remark 3.3. When the errors are conditional heteroskedastic, and hit−1’s are not

constant, Ċ is more efficient than the LSE of C in [1], in the sense discussed in [34].

4 Reduced rank estimation

We rewrite (2.5) in a reduced rank form as follows:

Wt=ABYt−1+
s−1

∑
j=1

Φ∗
j Wt−j+εt, (4.1)

where A and B are as defined in Section 2. This section considers the reduced
rank estimator for α = [α′

1,α′
2]
′ with α1 ≡ vec[B] and α2 ≡ vec[A,Φ∗

1 ,. . .,Φ∗
s−1]. We

first adopt Anderson [2,3] or Johansen [18] approach to obtain an initial estimator.
The asymptotic properties are shown in Section 4.1. In Section 4.2, we consider
the reduced rank QMLE.

4.1 Initial estimator for the “Mean” parameters

This initial estimator is essentially the QMLE which ignores the possible GARCH,
i.e. the maximizer of the LF in (3.1) with Vt−1(ϕ,δ) replaced by a constant matrix.
Alternatively put, we adopt Anderson [2, 3]’s or Johansen [18]’s estimator. De-
note this estimator as α̂ = [α̂′

1,α̂′
2]
′ with α̂1 = vec[B̂] and α̂2 = vec[Â,Φ̂∗

1 ,. . .,Φ̂∗
s−1].

Using the arguments in [27, Section 5] (see also [18, Lemma 13.2]), we obtain the
asymptotic distribution of the normalized α̂1 (B̂ is normalized by (B̂B̄′)−1) and
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that of the normalized α̂2 (Â is normalized by B̂B̄′). A sketchy proof can be found
in Appendix A.

Theorem 4.1. Suppose Assumptions 2.1-2.5 hold. Then

(a) n
(

(B̂B̄′)−1B̂−B
)

B̄′
⊥=n(B̂B̄′)−1B̂B̄′

⊥
−→L

(

A′(EVt−1)
−1A

)−1
A′(EVt−1)

−1(A⊥,A)M,

(b)
√

nvec
[(

Â(B̂B̄′)−A
)

,
(

Φ̂∗
1−Φ∗

1

)

,. . .,
(

Φ̂∗
s−1−Φ∗

s−1

)]

−→L N
(

0,Σ−1
2 Σ∗

2Σ−1
2

)

,

where

M=Ω
1
2
a

(

∫ 1

0
Bd(u)dBm(u)

′
)′(∫ 1

0
Bd(u)Bd(u)

′du

)−1

Ω
− 1

2
a1

ψ−1
11 ,

Bm(u)=(EVt−1)
− 1

2 Wm(u),

Σ2=E
(

Ut−1U′
t−1⊗ Im

)

, Σ∗
2 =E

(

Ut−1U′
t−1⊗Vt−1

)

,

and the remaining variables are as defined in Theorem 3.1.

Remark 4.1. The normalization factors (B̂B̄′)−1 and B̂B̄′ in (a) and (b) respectively

are adopted from [18]. And have been found very useful in deriving a lot of

hypothesis testing. Though we allow possible conditional heteroskedasticity, EVt

is a constant matrix and thus the asymptotic distributions in (a) and (b) are exactly

the same as those in [18, Lemma 13.2], regardless of the presence of conditional

heteroskedasticity (at least of that specified in (2.3)). Because of this, the test for

reduced rank in [18] has correct asymptotic size. See also [15, 25].

Remark 4.2. As in [1], if the components of Yt can be arranged so that the last d

components are non-cointegrated, then we can impose the structure B= [Ir,B0].
Decompose B̂=[B̂1,B̂2], where B̂1 is rxr and B̂2 is rxd. Provided that B̂1 is invert-

ible, it is easy to show that

n
(

B̂−1
1 B̂2−B0

)

−→L
(

A′(EVt−1)
−1A

)−1
A′(EVt−1)

−1(A⊥,A)MP−1
21 , (4.2)

√
nvec

[(

ÂB̂1−A
)

,
(

Φ̂∗
1−Φ∗

1

)

,. . .,
(

Φ̂∗
s−1−Φ∗

s−1

)]

−→L N
(

0,Σ−1
2 Σ∗

2Σ−1
2

)

, (4.3)

where P21 is a d×d matrix such that [0d×r, Id][B̄
′
⊥,B̄′]= [P21,P22]. The distribution

in (4.2) is exactly the same as that in [1], if their Jordan canonical form applies and

A= B̄′ up to an rxr invertible matrix.
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4.2 Reduced rank estimation that incorporates GARCH

This subsection uses the initial estimator α̂ in Section 4.1 and δ̂ suggested in Sec-
tion 3 to obtain a new reduced rank estimation that incorporates GARCH. The
LF based on the error-correction form (4.1) is similar to that in (3.1), but now it is
a function of (α,δ) instead. Conditional on the initial values Yt = 0 for t≤ 0, the
log-likelihood function, as a function of the true parameters, can be written as

lR(α,δ)=
n

∑
t=1

lt, lt=−1

2
ε′tV

−1
t−1εt−

1

2
ln|Vt−1|. (4.4)

As we argue in the proof of Theorem 4.2, α and δ can be estimated separately
without altering the asymptotic distributions. In the following, we confine our
attention to estimating α. The score function (with respect to α1 and α2), as a func-
tion of the true parameters, can be expressed as

∇α1
lt=−1

2
∇α1

ht−1

(

ι−w
(

εtε
′
tV

−1
t−1

))

⊙Ht−1+
(

Yt−1⊗A′)V−1
t−1εt,

∇α2 lt=−1

2
∇α2 ht−1

(

ι−w
(

εtε
′
tV

−1
t−1

))

⊙Ht−1+(Ut−1⊗ Im)V
−1
t−1εt,

where we recall that Ut−1 =[Y′
t−1B′,W ′

t−1,. . .,W ′
t−s+1]

′. For expositional sake, we
present the formulae for ∇α1

ht−1 and ∇α2 ht−1 in (B.3) and (B.4) of Appendix B.

Given the initial estimator (α̂, δ̂), we perform a one-step iteration

α̇1= α̂1−
( n

∑
t=1

R1t

∣

∣

α̂,δ̂

)−1( n

∑
t=1

∇α1
lt

∣

∣

α̂,δ̂

)

, (4.5)

α̇2= α̂2−
( n

∑
t=1

R2t

∣

∣

α̂,δ̂

)−1( n

∑
t=1

∇α2 lt

∣

∣

α̂,δ̂

)

, (4.6)

where, in terms of the true parameters,

R1t =−
(

Yt−1Y′
t−1⊗A′V−1

t−1A
)

− 1

4
(∇α1

ht−1)D
−2
t−1

(

Γ−1⊙Γ+ Im

)

D−2
t−1

(

∇′
α1

ht−1

)

, (4.7)

R2t =−
(

Ut−1U′
t−1⊗V−1

t−1

)

− 1

4
(∇α2 ht−1)D

−2
t−1

(

Γ−1⊙Γ+ Im

)

D−2
t−1

(

∇′
α2

ht−1

)

. (4.8)

Because of the symmetry assumption in Assumption 2.5, all the results in Sec-
tions 4 and 5 will not be affected if the initial estimator δ̃ satisfies the condition
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√
n(δ̃−δ)=Op(1). Note that α̇1=vec(Ḃ). To distinguish the reduced rank estima-

tor from the full rank estimator for Φ∗
1 ,. . .,Φ∗

s−1, we denote α̇2=vec[Ȧ,Φ̈∗
1 ,. . .,Φ̈∗

s−1].
That said, it is clear from the proofs of Theorem 3.1(b) and Theorem 4.2(b) that
for j=1,.. .,s−1, Φ̇∗

j −Φ̈∗
j = op(1). The asymptotic distribution of the normalized

α̇1 (normalized by (ḂB̄′)−1) and that of the normalized α̇2 (with Ȧ normalized by
(ḂB̄′)) are given in Theorem 4.2 below.

Theorem 4.2. Suppose Assumptions 2.1-2.5 hold. Then

(a) n
(

(ḂB̄′)−1Ḃ−B
)

B̄′
⊥=n(ḂB̄′)−1ḂB̄′

⊥ −→L
(

A′Ω1A
)−1

A′M∗,

(b)
√

nvec
[(

Ȧ(ḂB̄′)−A
)

,
(

Φ̈∗
1−Φ∗

1

)

,. . .,
(

Φ̈∗
s−1−Φ∗

s−1

)]

−→L N
(

0,Ω−1
2 Ω∗

2Ω−1
2

)

,

where M∗ and the remaining variables are as defined in Theorem 3.1.

Remark 4.3. The normalization factors (ḂB̄′)−1 and ḂB̄′ in (a) and (b) are adopted

such that (ḂB̄′)−1Ḃ−B=Op(n−1). This property plays an important role in prov-

ing Lemma 5.1, Theorems 5.1 and 5.2, see also for the discussion in [18, Sec-

tion 13.2]. The asymptotic distribution in (b) is exactly the same as that in The-

orem 3.1(b). Heuristically, the asymptotic distribution of the “stationary mean”

parameters is unaltered, regardless of we imposing the reduced rank. In contrast,

the asymptotic distribution in (a) (that of the “nonstationary mean” parameters)

is different from that in Theorem 3.1(a).

Remark 4.4. Decompose Ḃ= [Ḃ1,Ḃ2], where Ḃ1 is rxr and Ḃ2 is rxd. If the com-

ponents of Yt can be arranged as in [1] such that the last d components are non-

cointegrated, and Ḃ1 is invertible, it is easy to show that

n(Ḃ−1
1 Ḃ2−B0) −→L (A′Ω1A)−1A′M∗P−1

21 , (4.9)
√

nvec[(ȦḂ1−A),(Φ̈∗
1−Φ∗

1),. . .,(Φ̈
∗
s−1−Φ∗

s−1)] −→L N(0,Ω−1
2 Ω∗

2Ω−1
2 ), (4.10)

where P21 is defined around (4.3). The distribution in (4.9) is similar to that in [27],

with different definitions of Ω1 and W∗
m(u).

5 Testing for reduced rank

This section considers the null and the alternative hypotheses

H0 : rank(C)= r<m vs Ha : rank(C)=m. (5.1)
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The likelihood ratio (LR) test statistic is as follows:

LRG ≡2
[

lF(ϕ̇, δ̇)− lR(α̇, δ̇)
]

, (5.2)

where lF(.,.) is the (full-rank) LF as defined in (3.1) and lR(.,.) is the (reduced-
rank) LF as defined in (4.4). ϕ̇ and α̇ are respectively the full rank (see Section 3)
and the reduced rank (see Section 4) estimators for ϕ and α. δ̇ is as defined in
Theorem 3.1. The following lemma gives the asymptotic distribution of LRG.

Lemma 5.1. Suppose Assumptions 2.1-2.5 hold. Then under the null H0, we have

LRG −→L tr

[(

∫ 1

0
Bd(u)dV∗

d (u)
′
)′(∫ 1

0
Bd(u)Bd(u)

′du

)−1

×
(

∫ 1

0
Bd(u)dV∗

d (u)
′
)]

, (5.3)

where

V∗
d (u)=ΥBd(u)

+

[

(

A′
⊥Ω−1

1 A⊥
)− 1

2 A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥
(

A′
⊥Ω−1

1 A⊥
)− 1

2 −ΥΥ′
]

1
2

Vd(u),

Υ=
(

A′
⊥Ω−1

1 A⊥
)

1
2
(

A′
⊥(EVt−1)A⊥

)− 1
2 ,

and (B′
d(u),V

′
d(u))

′ is a 2d-dimensional standard Brownian motion.

Remark 5.1. When Vt is a constant matrix, Ω∗
1 =Ω1 =(EVt−1)

−1,Υ= Id,V∗
d (u)=

Bd(u). The distribution of LRG is exactly the same as that in [38] and that of

a special case in [18].

In principle, the critical value of the distribution in (5.3) can be simulated via
Monte Carlo method. However, the number of nuisance parameters equals d2+
(1+d)d/2. We only consider two special cases in Theorems 5.1 and 5.2 below.

Recall the full-rank estimator ϕ̇=vec[Ċ,Φ̇∗
1 ,. . .,Φ̇∗

s−1] (see (3.2)). We define an-

other estimator ϕ̈ ≡ vec[ȦḂ,Φ̇∗
1 ,. . .,Φ̇∗

s−1], where we recall that α̇1 = vec[Ḃ] is ob-

tained from (4.5) and Ȧ is obtained from (4.6). Expansions which are similar to
those standardly used in the likelihood theory give (see, for instance, [16, Sec-
tion 5.6])

LRG =(ϕ̇− ϕ̈)′
(

−
n

∑
t=1

Ft|ϕ̇,δ̇

)

(ϕ̇− ϕ̈)+op(1), (5.4)
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where in terms of the true parameters, Ft is as defined in (3.4). In ϕ̈, one may
use Φ̈∗

j (the reduced rank estimator) instead of Φ̇∗
j (the full rank estimator), since√

n(Φ̇∗
j −Φ̈∗

j ) = op(1). Eq. (5.4) gives us an asymptotically equivalent form of

the LRG , which is computationally easier. We use this form in the Monte Carlo
experiments as well as in the empirical example in Sections 7 and 8 below. On the
other hand, this form suggests a Hausman-type test, which renders a distribution
simpler than that in Lemma 5.1. (The crucial arguments can be found around
(A.27) in Appendix A.)

We define a Hausman-type test statistic as follows:

HG≡ (ϕ̇− ϕ̈)′
(

−
n

∑
t=1

FH
t

∣

∣

ϕ̇,δ̇

)

(ϕ̇− ϕ̈), (5.5)

where, in terms of the true parameters,

FH
t =−

(

Xt−1X′
t−1⊗A⊥

(

A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥
)−1

A′
⊥
)

. (5.6)

The following theorem gives the asymptotic distribution of HG.

Theorem 5.1. Suppose the assumptions in Lemma 5.1 hold. Then

HG −→L tr

{

[

ζ
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]′[
ζ(Id−ΛH

d )
1
2 +ΦΛ

H 1
2

d

]

}

, (5.7)

where ΛH
d is a diagonal matrix containing the d eigenvalues of (Id−ΥHΥH′

),

ΥH =
(

A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥
)− 1

2
(

A′
⊥Ω−1

1 A⊥
)(

A′
⊥(EVt−1)A⊥

)− 1
2 ,

Φ∼N(0, Id) and independent of

ζ=

[

∫ 1

0
Bd(u)Bd(u)

′du

]− 1
2
∫ 1

0
Bd(u)dBd(u)

′,

Bd(u) is a d-dimensional standard Brownian motion.

Remark 5.2. When Vt is a constant matrix, Ω∗
1=Ω1=(EVt−1)

−1. The distribution

of HG is exactly the same as that in [38] and that of a special case in [18].

When Ω∗
1 =Ω1, the distribution of LRG can be simplified as follows.
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Theorem 5.2. If the assumptions in Lemma 5.1 hold and Ω∗
1 =Ω1, then

LRG =HG+op(1)

−→L tr

{

[

ζ(Id−Λd)
1
2 +ΦΛ

1
2
d

]′[
ζ(Id−Λd)

1
2 +ΦΛ

1
2
d

]

}

, (5.8)

where Λd =ΛH
d is a diagonal matrix containing the d eigenvalues of (Id−ΥΥ′), Υ is as

defined in Lemma 5.1 while Φ and ζ are as defined in Theorem 5.1.

When Ω∗
1 =Ω1, we have ΥH =Υ and ΛH

d =Λd. Thus, the distributions in both
theorems in Theorems 5.1 and 5.2, are the same in this case.

We close this section with variants of Theorems 5.1 and 5.2, in which the AR
model contains a constant term. Modifying upon (4.1),

Wt =ABYt−1+
s−1

∑
j=1

Φ∗
j Wt−j+εt+µ, (5.9)

where µ is unknown but we do know B⊥µ = 0. This is a model used in many
empirical examples, including that in [38]. Denote the corresponding Hausman-
type test and LR test as HGµ and LRGµ, respectively.

The following two corollaries can be obtained straightforwardly from Theo-
rems 5.1 and 5.2, respectively. The proofs are thus omitted.

Corollary 5.1. Suppose the assumptions in Theorem 5.1 hold. Then the Hausman-type

test statistic (with an unknown constant estimated)

HGµ −→L tr

{

[

ζ̄
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]′[
ζ̄
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]

}

, (5.10)

where ΛH
d is as defined in Theorem 5.1, Φ∼N(0, Id) and independent of

ζ̄=

[

∫ 1

0
B̄d(u)B̄d(u)

′du

]− 1
2 ∫ 1

0
B̄d(u)dBd(u)

′, B̄≡
[

Bd(u)−
∫ 1

0
Bd(u)du

]

,

and Bd(u) is a d-dimensional standard Brownian motion.

Corollary 5.2. Suppose the assumptions in Theorem 5.2 hold. Then the LR test statistic

(with an unknown constant estimated)

LRGµ −→L tr

{

[

ζ̄(Id−Λd)
1
2 +ΦΛ

1
2
d

]′[
ζ̄(Id−Λd)

1
2 +ΦΛ

1
2
d

]

}

, (5.11)

where Λd is as defined in Theorem 5.2, Φ and ζ̄ are as defined in Corollary 5.1.
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6 Simulating critical values and estimating nuisance

parameters

As an illustration, this section simulates and tabulates the critical values of test
statistics for the cases d= 1 and d= 2. Cases of higher dimensions can be done
similarly. Then we show how to estimate the nuisance parameters in practice.

When there is no unknown constant in the mean part, LRG and HG are asymp-
totically distributed as

tr

{

[

ζ
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]′[
ζ
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]

}

, (6.1)

tr

{

[

ζ(Id−Λd)
1
2 +ΦΛ

1
2
d

]′[
ζ(Id−Λd)

1
2 +ΦΛ

1
2
d

]

}

, (6.2)

respectively. When there is an unknown constant in the mean part, LRGµ and
HGµ are asymptotically distributed as

tr

{

[

ζ̄
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]′[
ζ̄
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]

}

, (6.3)

tr

{

[

ζ̄(Id−Λd)
1
2 +ΦΛ

1
2
d

]′[
ζ̄(Id−Λd)

1
2 +ΦΛ

1
2
d

]

}

, (6.4)

respectively. If ΛH
d =Λd, the distributions of (6.1) and (6.3) reduce to those of (6.2)

and (6.4), respectively.
The critical values of the distribution in (6.1)-(6.4) can be simulated via Monte

Carlo method. For d= 1, we denote ΛH
1 =λ1 or Λ1 =λ1; while for d= 2, we de-

note ΛH
2 =diag(λ1,λ2) or Λ2=diag(λ1,λ2). For each independent replication, Φ

is generated from a d-dimensional standard normal distribution, while the n (the
sample size) ǫs’s are generated from n i.i.d. d-dimensional standard normal dis-
tribution, which is also independent of that of Φ, yt≡∑

n
s=1ǫs. When one considers

(6.1)-(6.2),

ζ≡
(

n−2
n

∑
t=1

yt−1y′t−1

)− 1
2
(

n−1
n

∑
t=1

yt−1ǫ′t

)

.

When one considers (6.3)-(6.4),

ζ̄≡
(

n−2
n

∑
t=1

(yt−1− ȳ)(yt−1− ȳ)′
)− 1

2
(

n−1
n

∑
t=1

(yt−1− ȳ)ǫ′t

)

, ȳ≡n−1
n

∑
t=1

yt−1.
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We simulate the critical values with d=1 and d=2 and (λ1, λ2) ranging from
0.0 to 0.9. For intermediate values of (λ1,λ2), the critical values could be obtained
by interpolation. The simulated critical values with 100,000 replications and n=
2,000 are tabulated in Tables 1-3.

When one applies Theorem 5.1 or Corollary 5.1, the d eigenvalues of

Id−
(

A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥
)− 1

2
(

A′
⊥Ω−1

1 A⊥
)(

A′
⊥(EVt−1)A⊥

)−1

×
(

A′
⊥Ω−1

1 A⊥
)(

A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥
)− 1

2

needs to be estimated. On the other hand, when one applies Theorem 5.2 or
Corollary 5.2, the d eigenvalues of

Id−
(

A′
⊥Ω−1

1 A⊥
)

1
2
(

A′
⊥(EVt−1)A⊥

)−1(
A′
⊥Ω−1

1 A⊥
)

1
2 .

Table 1: 90% simulated critical values.

HG or LRG (λ1, λ2) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d=1 2.995 2.978 2.964 2.941 2.914 2.883 2.845 2.811 2.782 2.746

0.0 10.479 10.386 10.312 10.234 10.119 10.003 9.906 9.796 9.680 9.551

0.1 10.295 10.217 10.125 10.018 9.919 9.808 9.679 9.561 9.455

0.2 10.116 10.028 9.916 9.819 9.691 9.579 9.453 9.322

0.3 9.931 9.816 9.693 9.565 9.442 9.310 9.163

d=2 0.4 9.707 9.576 9.440 9.313 9.176 9.018

0.5 9.444 9.310 9.177 9.030 8.866

0.6 9.153 9.015 8.857 8.698

0.7 8.847 8.688 8.520

0.8 8.526 8.345

0.9 8.166

HGµ or LRGµ (λ1, λ2) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d=1 6.588 6.327 6.051 5.767 5.457 5.113 4.715 4.272 3.794 3.270

0.0 15.842 15.578 15.270 14.955 14.630 14.277 13.913 13.537 13.132 12.712

0.1 15.264 14.977 14.650 14.326 13.984 13.616 13.219 12.808 12.393

0.2 14.661 14.341 13.985 13.630 13.259 12.861 12.457 12.034

0.3 14.000 13.658 13.310 12.919 12.515 12.087 11.666

d=2 0.4 13.306 12.961 12.572 12.152 11.709 11.264

0.5 12.595 12.191 11.774 11.309 10.850

0.6 11.780 11.356 10.897 10.412

0.7 10.921 10.456 9.956

0.8 9.963 9.466

0.9 8.942
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Table 2: 95% simulated critical values.

HG or LRG (λ1, λ2) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d=1 4.153 4.140 4.138 4.108 4.083 4.043 4.013 3.963 3.920 3.867

0.0 12.286 12.237 12.158 12.073 11.987 11.887 11.789 11.676 11.559 11.446

0.1 12.140 12.071 11.987 11.902 11.818 11.692 11.578 11.434 11.284

0.2 11.973 11.879 11.791 11.691 11.566 11.433 11.293 11.141

0.3 11.752 11.669 11.570 11.432 11.296 11.158 11.010

d=2 0.4 11.557 11.438 11.310 11.171 11.024 10.847

0.5 11.322 11.176 11.049 10.854 10.693

0.6 11.035 10.894 10.713 10.529

0.7 10.719 10.555 10.353

0.8 10.342 10.144

0.9 9.932

HGµ or LRGµ (λ1, λ2) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d=1 8.167 7.932 7.656 7.373 7.049 6.679 6.251 5.763 5.220 4.576

0.0 18.064 17.783 17.508 17.201 16.877 16.516 16.137 15.739 15.332 14.908

0.1 17.530 17.212 16.897 16.564 16.206 15.833 15.439 15.004 14.561

0.2 16.917 16.583 16.246 15.894 15.495 15.094 14.650 14.178

0.3 16.253 15.906 15.539 15.147 14.736 14.277 13.806

d=2 0.4 15.556 15.153 14.747 14.345 13.888 13.372

0.5 14.741 14.352 13.919 13.470 12.958

0.6 13.924 13.484 13.018 12.479

0.7 13.031 12.553 11.975

0.8 12.045 11.429

0.9 10.861

For this, we need to consistently estimate EVt−1, A⊥, Ω1 and Ω∗
1 .

EVt−1 can be consistently estimated by n−1∑
n
t=1

˙Vt−1. On the other hand, by
the term definition of A⊥ (see around (2.2) above), it can be consistently estimated
by (Im−cc′Ȧ(Ȧ′cc′ Ȧ)−1Ȧ′)c⊥, where c = (Ir,0rxd)

′ and c⊥ = (0d×r, Id)
′, see [18,

p. 48] for a similar estimator. It is not difficult to see that

(

Γ−1⊙Γ+ Im

)

⊙
∞

∑
l=1

(

νlν
′
l⊙E(Πlt)

)

=E

(

∞

∑
l=1

diag(νl⊙εt−l)D
−2
t

(

Γ−1⊙Γ+ Im

)

D−2
t

∞

∑
l=1

diag(νl⊙εt−l)

)

.

Denote ξt =∑
∞
l=1diag(νl⊙εt−l). With the initial values ξ̇0 = ξ̇−1= ···= ξ̇−p+1=0,

for t=1,.. .,n, we can recursively compute
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Table 3: 99% simulated critical values.

HG or LRG (λ1, λ2) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d=1 7.018 6.941 6.939 6.931 6.929 6.895 6.842 6.839 6.774 6.718

0.0 16.278 16.144 16.041 15.986 15.895 15.802 15.716 15.623 15.530 15.435

0.1 16.105 15.991 15.920 15.806 15.643 15.552 15.482 15.337 15.247

0.2 15.898 15.812 15.647 15.556 15.405 15.319 15.191 15.023

0.3 15.702 15.609 15.471 15.318 15.202 15.021 14.870

d=2 0.4 15.510 15.374 15.231 15.087 14.928 14.747

0.5 15.298 15.115 14.954 14.820 14.612

0.6 14.993 14.809 14.622 14.480

0.7 14.668 14.435 14.259

0.8 14.255 14.064

0.9 13.770

HGµ or LRGµ (λ1, λ2) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d=1 11.690 11.469 11.291 11.027 10.727 10.293 9.817 9.316 8.655 7.789

0.0 22.745 22.477 22.192 21.901 21.541 21.236 20.842 20.390 19.987 19.498

0.1 22.311 22.013 21.670 21.346 20.978 20.528 20.137 19.640 19.157

0.2 21.739 21.389 21.052 20.695 20.250 19.815 19.281 18.757

0.3 21.093 20.787 20.360 19.921 19.441 18.904 18.329

d=2 0.4 20.385 20.004 19.548 19.072 18.549 17.907

0.5 19.545 19.122 18.639 18.047 17.429

0.6 18.673 18.199 17.607 16.943

0.7 17.617 17.093 16.376

0.8 16.478 15.794

0.9 15.178

ξ̇t =
q

∑
l=1

diag(ȧl⊙ ε̇t−l)+
p

∑
l=1

ξ̇t−ldiag(ḃl).

Ω1 and Ω∗
1 can be consistently estimated by

1

n

n

∑
t=1

V̇−1
t−1+

1

n

n

∑
t=1

ξ̇tḊ
−2
t−1

(

Γ̇−1⊙ Γ̇+ Im

)

Ḋ−2
t−1ξ̇t,

1

n

n

∑
t=1

V̇−1
t−1+

1

n

n

∑
t=1

ξ̇tḊ
−2
t−1(∆̇− ιι′)Ḋ−2

t−1ξ̇t,

respectively, where

∆̇=n−1
n

∑
t=1

w
(

η̇tη̇
′
tΓ̇

−1
)

w
(

η̇tη̇
′
tΓ̇

−1
)′

.
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7 Monte Carlo experiments

This section examines the performance of the test statistic LRG in the finite sam-
ples through Monte Carlo experiments. We consider the case with rank(C) = 1
under the null H0. With Γ= Im, εt is generated by the following model:

εit =ηit

√

hit, hit =0.1+0.3ε2
it−1+0.6hit−1, ηit∼ i.i.d. N(0,1).

A tri-variate AR(1) model is considered and C in the error-correction form (4.1) is

DGP(a) C=AB, A=(−0.4,0.12,0.12)′, B=(1.0,−2.5,0.0).

DGP(b) C=κI3, κ=−0.1.

DGP(c) C=κI3, κ=−0.5.

For each DGP, the sample sizes n=200,400,800 are considered. Reduced rank es-
timation with and without GARCH are used. The empirical means and standard
deviations of the estimated A and B for DGP(a) (the null model) are reported in
Table 4. The biases of the estimators with GARCH are comparable to those with-
out GARCH, if not smaller than. The standard deviations and the mean squared
errors are definitely smaller, even when the sample size is as small as 200. That

Table 4: Empirical means and standard deviations for DGP(a).

A1=−0.4 A2=0.12 A3=0.12 B2=−2.5 B3=0.0

n=200 No GARCH Mean -0.4026 0.1244 0.1219 -2.5038 -0.0007

SD 0.0334 0.0343 0.0265 0.0717 0.0395

With GARCH Mean -0.4019 0.1219 0.1209 -2.5001 -0.0010

SD 0.0229 0.0265 0.0204 0.0589 0.0322

n=400 No GARCH Mean -0.4016 0.1228 0.1220 -2.5012 -0.0002

SD 0.0225 0.0268 0.0179 0.0351 0.0188

With GARCH Mean -0.4010 0.1211 0.1210 -2.5011 -0.0002

SD 0.0149 0.0176 0.0137 0.0283 0.0134

n=800 No GARCH Mean -0.4009 0.1210 0.1207 -2.5007 0.0000

SD 0.0165 0.0213 0.0126 0.0164 0.0095

With GARCH Mean -0.4002 0.1203 0.1204 -2.5006 -0.0002

SD 0.0103 0.0125 0.0094 0.0122 0.0065

number of replications =1,000.
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Table 5: Rejection frequency of testing H0 : r=1.

size = 0.05 size = 0.10

(DGP) (a) (b) (c) (DGP) (a) (b) (c)

n=200 LRNG 0.077 0.006 0.361 LRNG 0.151 0.020 0.545

LRG 0.079 0.023 0.641 LRG 0.135 0.076 0.767

n=400 LRNG 0.071 0.022 0.972 LRNG 0.127 0.062 0.995

LRG 0.078 0.114 0.997 LRG 0.139 0.230 0.998

n=800 LRNG 0.058 0.160 1.000 LRNG 0.107 0.329 1.000

LRG 0.051 0.603 1.000 LRG 0.107 0.774 1.000

number of replications =1,000.

said, as pointed out by a referee, one should be careful interpreting the standard
deviations of the estimators for B2 and B3, since their distributions have fat tails.

Rejection frequencies are summarized in Table 5, where LRNG is Johansen test
or Reinsel-Ahn test. Both LRNG and LRG are of the reasonably correct finite-
sample size, even when the number of observations is as small as 200. Both tests
slightly over-reject when the sample size is 200 or 400, and the over-rejections are
comparable. Moreover, it is clear that LRG is more powerful than LRNG.

8 An empirical example

In this section, we fit our model to the logarithms of three US monthly interest
rates. The series are the federal funds rate, the 90-day treasury bill rate, and the
one-year treasury bill rate, from January 1960 to December 1979 and thus we
have 240 observations. We first estimate a VAR(s) with different order s, where
s=1,.. .,6. VAR(4) attains the lowest AIC. The residuals are then applied to a test
for multivariate heteroskedasticity, along the lines in [30] (see also [21], who apply
a similar test to an entirely different set of data and find no heteroskedasticity).
The χ2

R test statistics with different numbers of terms R are reported in Table 6.

Table 6: Test statistics for multivariate heteroskedasticity.

R 1 2 3 4 5 6 7 8 9 10

30.35 40.08 49.77 51.08 67.34 93.83 108.56 134.11 138.06 139.30
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Table 6 clearly shows that the hypothesis of homoskedasticity is rejected and
suggests that εt is not i.i.d. In view of this, apart from Johansen estimation, we
also perform the full-rank as well as the reduced-rank estimation elucidated in
Sections 3-4, which incorporate a GARCH(1,1) model. Results of the LR tests for
reduced rank are summarized in Table 7. While we confine our discussion to the
case that s=4, only for completeness we report other cases of different s.

Table 7 shows the hypothesis that r=0 is rejected by both tests. While LRNG

can hardly reject or only marginally rejects the null of r=1, our LRG clearly rejects
it. As with the empirical findings in Stock and Watson [42] and Reinsel and Ahn
[38] who use the same dataset as ours (the former used the levels while the latter
used the logarithms), the LRNG does not reject the null of r= 2. Due to its high
power, LRG rejects the null of r = 2. All in all, unlike LRNG , the LRG strongly
rejects that the reduced rank is 1. Judging from the LRG, there is some evidence
that the rank is 3, i.e. the interest rates are stationary. Similar results are found
when we try GARCH models with different orders.

Table 7: LR test statistics.

H0 : r=0 H0 : r=1 H0 : r=2

s LRNG LRG LRNG LRG LRNG LRG

1 69.70(.000) 71.17(.000) 16.21(.084) 53.97(.000) 0.107(.939) 42.048(.000)

2 49.07(.000) 29.08(.003) 13.02(.210) 16.32(.009) 0.757(.801) 1.519(.259)

3 34.86(.019) 11.89(.381) 11.35(.320) 8.10(.147) 0.692(.814) 4.317(.056)

4 46.43(.000) 52.25(.000) 15.60(.101) 31.01(.000) 1.044(.748) 33.044(.000)

5 47.26(.000) 56.77(.000) 13.25(.197) 19.54(.003) 1.231(.714) 18.168(.000)

6 38.65(.006) 56.77(.000) 13.43(.188) 19.54(.003) 1.085(.741) 18.168(.000)

p-values are in brackets.

9 Conclusions

This paper studied a partially nonstationary AR model with vector GARCH noi-
ses. The asymptotic theory of the full rank and reduced rank QMLEs for the
model were established. Based on the two estimators, the LR and the modi-
fied LR tests are constructed for testing the cointegration rank and their asymp-
totic distributions are derived. The simulation results show that our test for the
reduced rank has substantial improvement upon the conventional LR test sug-
gested in [38]. We also apply our approach to an empirical example of three
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interest rates. In contrast to the empirical results in the existing literature, our LR
test shows evidence that the US monthly interest rates are stationary. This result
is more in line with the common belief that the US interest rates are controllable
under the stabilization mechanism of the US Federal Reserve Board.

Appendix A. Technical proofs

Consider the one-step iteration in (3.2)-(3.3). Denote

Q̄∗=diag(Q⊗ Im, I(s−1)m2),

D̄∗=diag
(

nIdm,
√

nIrm+(s−1)m2

)

,

where Q′=[B′
⊥,B′]. We first give the following lemma which is about the normal-

ized score D̄∗−1Q̄∗∇ϕlt and the normalized Hessian D̄∗−1Q̄∗FtQ̄
∗D̄∗−1. n−1/2∇δlt

and n−1St are also considered. The proof is similar to that of [27, Lemma 1] and
thus it is omitted.

Lemma A.1. Suppose Assumptions 2.1−2.5 hold. Then

(a)
n

∑
t=1

D̄∗−1Q̄∗∇ϕlt −→L

{

vec

[

(

∫ 1

0
Bd(u)dW∗

m(u)
′
)′

Ω
1
2
a1

ψ′
11

]′
,
[

N
(

0,Ω∗
2

)]′
}′

,

(b) −
n

∑
t=1

D̄∗−1Q̄∗FtQ̄
∗D̄∗−1

−→L diag

{[

ψ11Ω
1
2
a1

∫ 1

0
Bd(u)Bd(u)

′duΩ
1
2
a1

ψ′
11⊗Ω1

]

,Ω2

}

,

(c) n− 1
2

n

∑
t=1

∇δlt −→L N(0,Ω∗
δ), −n−1

n

∑
t=1

St −→p Ωδ,

where all the variables are as defined in Theorem 3.1.

Proof of Theorem 3.1. Following the lines in [27, Section 4], the full rank estimator

(ϕ̇, δ̇) admits an asymptotic expansion such that

D̄∗Q̄∗′−1(ϕ̇−ϕ)=−
( n

∑
t=1

D̄∗−1Q̄∗FtQ̄
∗′D̄∗−1

)−1( n

∑
t=1

D̄∗−1Q̄∗∇ϕlt

)

+op(1), (A.1)

√
n(δ̇−δ)=−

( n

∑
t=1

n−1St

)−1( n

∑
t=1

n−1/2∇δlt

)

+op(1). (A.2)

Theorem 3.1 then follows from (A.1)-(A.2) and Lemma A.1.
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Proof of Theorem 4.1. From the proof of [18, Lemma 13.2], in our notation,

n(B̂B̄′)−1B̂B̄′
⊥=

(

A′(EVt−1)
−1A

)−1
A′(EVt−1)

−1

(

n−1
n

∑
t=1

εtZ
′
1t−1

)

×
(

n−2
n

∑
t=1

Z1t−1Z′
1t−1

)−1

+op(1),

where Z1t−1 ≡ B⊥Yt−1. By the definition of at (see around (2.6)), εt = (A⊥,A)at.

Therefore, by the arguments similar to those for proving Lemma A.1(a),

n−1
n

∑
t=1

εtZ
′
1t−1=(A⊥,A)

(

n−1
n

∑
t=1

atZ
′
1t−1

)

−→L (A⊥,A)Ω
1
2
a

[

∫ 1

0
Bd(u)dBm(u)

′
]′

Ω
1
2
a1

Ψ′
11.

On the other hand, by Lemma A.1(b),

n−2
n

∑
t=1

Z1t−1Z′
1t−1 −→L Ψ11Ω

1
2
a1

[

∫ 1

0
Bd(u)Bd(u)

′du

]

Ω
1
2
a1

Ψ′
11.

Therefore, part (a) is proved. The proof of part (b) is straightforward and thus it

is omitted. This completes the proof.

The following lemma is useful for proving Theorem 4.2.

Lemma A.2. Under the assumptions in Theorem 4.2, it follows that

(a) (B̂B̄′)−1(Ḃ− B̂)=Op(n
− 1

2 ),

(b) Â(ḂB̄′)= Â(B̂B̄′)+Op(n− 1
2 )=A+Op(n− 1

2 ),

(c) (ḂB̄′)−1B̂P1=(B̂B̄′)−1B̂P1+Op(n
− 3

2 )=BP1+Op(n−1),

(d) (ḂB̄′)−1B̂P2=(B̂B̄′)−1B̂P2+Op(n
− 1

2 )=BP2+Op(n
− 1

2 ).

Proof. (a) We first denote Dα1
=diag(nIrd ,

√
nIr2) and Q̂∗∗=Q(Im⊗(B̂B̄′)′), with

Q= (Q⊗ Ir), where we recall that Q′ = [B′
⊥,B′]. Also denote α̂1 = vec(B̂), α̌1 =

vec((B̂B̄′)−1B̂) and α̇1 = vec(Ḃ). α̂2, α̌2, α̇2 are defined accordingly.α̂, α̌, α̇ are also

defined accordingly. Denote P≡Q−1. Since Q̂∗∗′−1 =(P′⊗ Ir)(Im⊗(B̂B̄′)−1), we

have
(

Im⊗(B̂B̄′)−1
)

(α̇1− α̂1)=Q′D−1
α1

Dα1
(P′⊗ Ir)

(

Im⊗(B̂B̄′)−1
)

(α̇1− α̂1)
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=Q′D−1
α1

[

Dα1
Q̂∗∗′−1(α̇1− α̂1)

]

.

As Q′D−1
α1

=O(n−1/2), it suffices to show Dα1
Q̂∗∗′−1(α̇1− α̂1) =Op(1). Since

Q̂∗∗=Q(Im⊗(B̂B̄′)′), by (4.5),

Dα1
Q̂∗∗′−1(α̇1− α̂1)=−

[ n

∑
t=1

D−1
α1

Q̂∗∗(R1t|α̂,δ̂)Q̂
∗∗′D−1

α1

]−1

×
[ n

∑
t=1

D−1
α1

Q̂∗∗(∇α1
lt|α̂,δ̂)

]

=−
[ n

∑
t=1

D−1
α1

Q(R1t|α̌,δ̂)Q′D−1
α1

]−1

×
[ n

∑
t=1

D−1
α1

Q(∇α1
lt|α̌,δ̂)

]

. (A.3)

By Theorem 4.1, n(α̌1−α1)=Op(1),
√

n(α̌2−α2)=Op(1), which are in addition to√
n(δ̂−δ)=Op(1). It is not difficult to see that

n

∑
t=1

D−1
α1

Q(R1t|α̌,δ̇)Q′D−1
α1

=
n

∑
t=1

D−1
α1

QR1tQ′D−1
α1

+op(1). (A.4)

On the other hand, by a Taylor expansion and (A.4), with R∗
1t and l∗t being evalu-

ated at a mid-point of (α̌, δ̇) and (α,δ),

n

∑
t=1

D−1
α1

Q(∇α1
lt|α̌,δ̇)=

n

∑
t=1

D−1
α1

Q∇α1
lt+

n

∑
t=1

D−1
α1

Q(R∗
1t)(α̌1−α1)

+
n

∑
t=1

D−1
α1

Q(∇α1α′2
l∗t )(α̌2−α2)

=
n

∑
t=1

D−1
α1

Q1∇α1
lt+

[ n

∑
t=1

D−1
α1

QR1tQ′D−1
α1

+op(1)

]

× 1

n
Dα1

(

P′⊗ Ir

)

[n(α̌1−α1)]

+

[

1√
n

n

∑
t=1

D−1
α1

Q
(

∇α1α′2
l∗t
)

]√
n(α̌2−α2). (A.5)

It is not difficult to see that (∑n
t=1 D−1

α1
Q(∇α1α′2

l∗t ))/
√

n is Op(1). So is the RHS of

(A.5). By Lemma (A.1)(a)-(b), (A.3)-(A.5), Dα1
Q̂∗∗′−1(α̇1− α̂1)=Op(1). Thus, (a)

holds.
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(b) By the
√

n-consistency of Â(B̂B̄′) for A, and (a) of this lemma,

Â(ḂB̄′)= Â(B̂B̄′)+ Â(B̂B̄′)(B̂B̄′)−1(Ḃ− B̂)B̄′= Â(B̂B̄′)+Op(1)Op

(

n− 1
2
)

.

Thus, (b) holds.

(c) and (d). Denote B̌=(B̂B̄′)−1B̂.

(ḂB̄′)−1B̂=
[

(B̂B̄′)−1ḂB̄′]−1
(B̂B̄′)−1B̂=

[

(B̂B̄′)−1ḂB̄′]−1
B̌. (A.6)

Using the formula dF−1=−F−1(dF)F−1 for the r×r matrix F with F(x)=[xB̄]−1,

and applying a Taylor expansion to [(B̂B̄′)−1ḂB̄′]−1 around B̌B̄′, we have

[

(B̂B̄′)−1ḂB̄′]−1
=[B̌B̄′]−1−[B∗B̄′]−1

[

(B̂B̄′)−1Ḃ− B̌
]

B̄′[B∗B̄′]−1,

where B∗ lies between (B̂B̄′)−1Ḃ and B̌. Therefore, the RHS of (A.6) equals

[

(B̂B̄′)−1B̂B̄′]−1
(B̂B̄′)−1B̂

−[B∗B̄′]−1
[

(B̂B̄′)−1Ḃ− B̌
]

B̄′[B∗B̄′]−1B̌

=(B̂B̄′)−1B̂−[B∗B̄′]−1
[

(B̂B̄′)−1Ḃ− B̌
]

B̄′[B∗B̄′]−1B̌. (A.7)

By (a) of this lemma, (B̂B̄′)−1Ḃ− B̌ = Op(n−1/2). From this, we can show that

[B∗B̄′]−1 =Op(1). B̄ and B̌ are also OP(1). By (A.7), (d) holds. By Theorem 4.1,

B̌P1=Op(n−1) because BP1=0. By (A.7),

[(B̂B̄′)−1B̂B̄′]−1(B̂B̄′)−1B̂P1−[B∗B̄′]−1[(B̂B̄′)−1Ḃ− B̌]B̄′[B∗B̄′]−1B̌P1

=(B̂B̄′)−1B̂P1+Op

(

n− 3
2
)

.

Thus, (c) holds. This completes the proof.

Proof of Theorem 4.2. Denote

D̄∗∗≡diag
(

nIrd,
√

nIrm+(s−1)m2

)

,

Q̄∗∗≡diag
(

(B⊥⊗ Ir), Irm+(s−1)m2

)

.

Using Assumptions 2.1-2.5 and the arguments around [27, Eq. (5.3)], we can show

that

n− 1
2 D̄∗∗−1Q̄∗∗

( n

∑
t=1

∇2
αδ′ lt

)

= op(1).
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Thus, α and δ can be estimated separately without altering the asymptotic dis-

tributions. In the following, we confine our attention to estimating α. Again,

using the arguments similar to those around [27, Eq. (5.5)], we can show that the

Hessian can be given as follows:

D̄∗∗−1Q̄∗∗
n

∑
t=1

∇2
αα′ ltQ̄

∗∗′D̄∗∗−1= D̄∗∗−1Q̄∗∗
n

∑
t=1

RtQ̄
∗∗′D̄∗∗−1+op(1), (A.8)

where Rt =diag(R1t,R2t), with R1t and R2t as defined in (4.7) and (4.8).

For any fixed positive constant K, let

Ξn≡
{

(α̃, δ̃) : ‖D̄∗∗Q̄∗∗′−1(α̃−α)‖≤K, ‖
√

n(δ̃−δ)‖≤K
}

,

where (α̃, δ̃) is a generic version of (α,δ). Using Assumptions 2.1-2.5 and a method

similar to that in [31], it is easy to see that on Ξn,

D̄∗∗−1Q̄∗∗
n

∑
t=1

(

Rt|α̃,δ̃−Rt

)

Q̄∗∗′D̄∗∗−1= op(1), (A.9)

D̄∗∗−1Q̄∗∗
n

∑
t=1

(

∇αlt|α̃,δ̃−∇αlt

)

= D̄∗∗−1Q̄∗∗
n

∑
t=1

Rt(α̃−α)+op(1), (A.10)

where Rt and ∇αlt are evaluated at the true parameters (α,δ).

Denote

Q̇∗∗
1 =(B⊥⊗ Ir)

(

Im⊗(ḂB̄′)′
)

, Q̇∗∗
2 =diag

(

(ḂB̄′)−1⊗ Im, I(s−1)m2

)

,

ὰ1=vec
(

(ḂB̄′)−1B̂
)

, ὰ2=vec
[

Â(ḂB̄′),Φ̂∗
1 ,. . .,Φ̂∗

s−1

]

, ὰ=
[

ὰ′
1,ὰ′

2

]′
.

It follows from the assertions (b), (c) and (d) of Lemma A.2 that (ὰ, δ̂)∈Ξn. Thus,

by (A.9) and the block-diagonality of Rt,

n−2
n

∑
t=1

Q̇∗∗
1

(

R1t|α̂,δ̂

)

Q̇∗∗′
1 =n−2

n

∑
t=1

(B⊥⊗ Ir)
(

R1t|ὰ,δ̂

)

(B′
⊥⊗ Ir)

=n−2
n

∑
t=1

(B⊥⊗ Ir)R1t(B
′
⊥⊗ Ir)+op(1), (A.11)

n−1
n

∑
t=1

Q̇∗∗
2

(

R2t|α̂,δ̂

)

Q̇∗∗′
2 =n−1

n

∑
t=1

(

R2t|ὰ,δ̂

)

=n−1
n

∑
t=1

R2t+op(1). (A.12)
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Refer to (A.8). By (A.9), (A.10) and the block-diagonality of Rt,

n−1
n

∑
t=1

Q̇∗∗
1

(

∇α1
lt|α̂,δ̂

)

=n−1
n

∑
t=1

(B⊥⊗ Ir)
(

∇α1
lt|ὰ,δ̂

)

=n−1
n

∑
t=1

(B⊥⊗ Ir)∇α1
lt+

[

n−1
n

∑
t=1

(B⊥⊗ Ir)R1t(B
′
⊥⊗ Ir)

]

×
(

B̄⊥⊗ Ir

)

(ὰ1−α1)+op(1),

n− 1
2

n

∑
t=1

Q̇∗∗
2

(

∇α2 lt|α̂,δ̂

)

=n− 1
2

n

∑
t=1

(

∇α2 lt|ὰ,δ̂

)

=n− 1
2

n

∑
t=1

∇α2 lt+

(

n−1
n

∑
t=1

R2t

)

(ὰ2−α2)+op(1). (A.13)

Recall that Q̇∗∗′−1
1 α̂1=(B̄⊥⊗ Ir)ὰ1. By (4.5), (A.11) and (A.13),

nQ̇∗∗′−1
1 α̇1=nQ̇∗∗′−1

1 α̂1−
[

n−2
n

∑
t=1

Q̇∗∗
1

(

R1t|α̂,δ̂

)

Q̇∗∗′
1

]−1[

n−1
n

∑
t=1

Q̇∗∗
1

(

∇α1
lt|α̂,δ̂

)

]

=n(B̄⊥⊗ Ir)ὰ1−
[

n−2
n

∑
t=1

(B⊥⊗ Ir)R1t(B
′
⊥⊗ Ir)

]−1

×
[

n−1
n

∑
t=1

(B⊥⊗ Ir)∇α1
lt

]

−n(B̄⊥⊗ Ir)(ὰ1−α1)+op(1)

=n(B̄⊥⊗ Ir)α1−
[

n−2
n

∑
t=1

(B⊥⊗ Ir)R1t(B
′
⊥⊗ Ir)

]−1

×
[

n−1
n

∑
t=1

(B⊥⊗ Ir)∇α1
lt

]

+op(1). (A.14)

Note that

Q̇∗∗′−1
1 α̇1−(B̄⊥⊗ Ir)α1=vec

[(

(ḂB̄′)−1Ḃ−B
)

B̄′
⊥
]

.

The item (a) now follows from (A.14) and the assertions (a), (b) of Lemma A.1.

On the other hand, by (4.6), (A.12) and (A.13),

√
nQ̇∗∗′−1

2 α̇2=
√

nQ̇∗∗′−1
2 α̂2−

[

n−1
n

∑
t=1

Q̇∗∗
2 (R2t|α̂,δ̂)Q̇

∗∗′
2

]−1[

n− 1
2

n

∑
t=1

Q̇∗∗
2 (∇α2 lt|α̂,δ̂)

]

=
√

nὰ2−
[

n−1
n

∑
t=1

R2t

]−1[

n− 1
2

n

∑
t=1

∇α2 lt

]

−
√

n(ὰ2−α2)+op(1)
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=
√

nα2−
[

n−1
n

∑
t=1

R2t

]−1[

n− 1
2

n

∑
t=1

∇α2 lt

]

+op(1). (A.15)

The item (b) now follows from (A.15) and the assertions (a), (b) of Lemma A.1.

This completes the proof.

Proof of Lemma 5.1. From (5.4),

LRG =(ϕ̇− ϕ̈)′
(

−
n

∑
t=1

Ḟt

)

(ϕ̇− ϕ̈)+op(1), (A.16)

where the full-rank estimator

ϕ̇=vec
[

Ċ,Φ̇∗
1 ,. . .,Φ̇∗

s−1

]

, ϕ̈≡vec
[

ȦḂ,Φ̇∗
1 ,. . .,Φ̇∗

s−1

]

,

Ḟt =−
(

Xt−1X′
t−1⊗V̇−1

t−1

)

− 1

4

(

∇ϕḣt−1

)

Ḋ−2
t−1

(

Γ̇−1⊙ Γ̇+ Im

)

Ḋ−2
t−1

(

∇′
ϕḣt−1

)

.

Denote Ä= Ȧ(ḂB̄′) and B̈=(ḂB̄′)−1Ḃ. Note ȦḂ= ÄB̈. Moreover,

ÄB̈−AB=(Ä−A)B+A(B̈−B)+(Ä−A)(B̈−B).

Recall that BB̄′
⊥ = 0rxd. By Theorem 4.2, (B̈−B)B̄′

⊥ = Op(n−1) and (Ä−A) =
Op(n−1/2) under H0. Hence,

n(ÄB̈−AB)B̄′
⊥=n(Ä−A)BB̄′

⊥+nA(B̈−B)B̄′
⊥+(Ä−A)n(B̈−B)B̄′

⊥

=nA(B̈−B)B̄′
⊥+Op

(

n− 1
2
)

. (A.17)

On the other hand, by Theorem 4.1(a) and the arguments in [18, Lemma 13.2],

(B̈−B)=Op(n−1). Therefore,

√
n(ÄB̈−AB)B̄′=

√
n(Ä−A)BB̄′+

√
nÄ(B̈−B)B̄′

=
√

n(Ä−A)+Op

(

n− 1
2
)

. (A.18)

But from the proofs of Theorem 4.2(b) and Theorem 3.1(b),

√
n(Ä−A)−

√
n(Ċ−C)B̄′= op(1). (A.19)

All in all, by (A.17)-(A.19), (A.16) can be rewritten as

LRG =vec
[

n(Ċ−AB̈)B̄′
⊥
]′
[

n−2
n

∑
t=1

L1t

]

vec
[

n(Ċ−AB̈)B̄′
⊥
]

+op(1), (A.20)
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where

L1t =
(

Z1t−1Z′
1t−1⊗V−1

t−1

)

+
t−1

∑
l=1

[

Z1t−1−lZ
′
1t−1−l⊗

((

Γ−1⊙Γ+ Im

)

⊙νlν
′
l⊙Πlt

)

]

,

Z1t−1=B⊥Yt−1.

By Lemma A.1(b), Theorem 3.1(a) and Theorem 4.2(a),

n−2
n

∑
t=1

L1t −→L Z⊗Ω1,

nĊB̄′
⊥ −→L Ω−1

1 M∗,

nAB̈B̄′
⊥ −→L A

(

A′Ω−1
1 A

)−1
A′M∗,

where

Z≡ψ11Ω
1
2
a1

[

∫ 1

0
Bd(u)Bd(u)

′du

]

Ω
1
2
a1

ψ′
11

and M∗ is as defined in Theorem 3.1. Therefore,

LRG −→L vec
[

(

Ω−1
1 −A

(

A′Ω1A
)−1

A′)M∗
]′
(Z⊗Ω1)

×vec
[

(

Ω−1
1 −A

(

A′Ω1A
)−1

A′)M∗
]

= tr
[

(

Ω−1
1 −A

(

A′Ω1A
)−1

A′)M∗ZM∗′
]

. (A.21)

Following the lines on [38, p. 359], we can rewrite Ω−1
1 −A(A′Ω1A)−1A′ as

Ω−1
1

(

Ω1−Ω1A
(

A′Ω1A
)−1

A′Ω1

)

Ω−1
1 =Ω−1

1 A⊥
(

A′
⊥Ω−1

1 A⊥
)−1

A′
⊥Ω−1

1 .

Therefore, the asymptotic distribution in (A.21) can be rewritten as

tr

[

(

∫ 1

0
Bd(u)dV∗

d (u)
′
)′(∫ 1

0
Bd(u)Bd(u)

′du

)−1(∫ 1

0
Bd(u)dV∗

d (u)
′
)

]

, (A.22)

where

V∗
d (u)≡

(

A′
⊥Ω−1

1 A⊥
)− 1

2 A′
⊥Ω−1

1 W∗
m(u).

By the definitions around (3.7), we can write Bd(u) as

(

Ā′
⊥(EVt−1)Ā⊥

)− 1
2 Ā′

⊥Wm(u)=
(

A′
⊥(EVt−1)A⊥

)− 1
2 A′

⊥Wm(u).
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Therefore,

E
[

Bd(u)V
∗
d (u)

′]=
(

A′
⊥(EVt−1)A⊥

)− 1
2 A′

⊥E
[

Wm(u)W
∗
m(u)

′]Ω−1
1 A⊥

×
(

A′
⊥Ω−1

1 A⊥
)− 1

2

=u
(

A′
⊥(EVt−1)A⊥

)− 1
2
(

A′
⊥Ω−1

1 A⊥
)

1
2 =uΥ′ .

Thus, we can rewrite V∗
d (u) as a linear combination of two independent d-dimen-

sional standard BMs

ΥBd(u)+
[

(

A′
⊥Ω−1

1 A⊥
)− 1

2 A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥

×
(

A′
⊥Ω−1

1 A⊥
)− 1

2 −ΥΥ′
]

1
2
Vd(u). (A.23)

The proof is complete.

Proof of Theorem 5.1. Similar to (A.20) in the proof of Lemma 5.1, we have

HG=vec
[

n(Ċ−AB̈)B̄′
⊥
]′
[

n−2
n

∑
t=1

LH
1t

]

vec
[

n(Ċ−AB̈)B̄′
⊥
]

+op(1), (A.24)

where by the construction of FH
t in (5.6),

LH
1t =

(

Z1t−1Z′
1t−1⊗A⊥

(

A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥
)−1

A′
⊥
)

.

By Lemma A.1(b),

n−2
n

∑
t=1

LH
1t −→L Z⊗A⊥

(

A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥
)−1

A′
⊥,

where Z is as defined in the proof of Lemma 5.1 and M∗ is as defined in Theo-

rem 3.1. Therefore, similar to (A.21),

HG −→L vec
[

(

Ω−1
1 −A(A′Ω1A)−1A′)M∗

]′
(Z⊗A⊥ΣA′

⊥)

×vec
[

(

Ω−1
1 −A(A′Ω1A)−1A′)M∗

]

,

where Σ≡(A′
⊥Ω−1

1 Ω∗
1Ω−1

1 A⊥)−1. However, as argued in the proof of Lemma 5.1,

Ω−1
1 −A

(

A′Ω1A
)−1

A′=Ω−1
1 A⊥

(

A′
⊥Ω−1

1 A⊥
)−1

A′
⊥Ω−1

1 .
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Therefore,

HG −→L tr[ΩM∗ZM∗′ ],

where

Ω≡
(

Ω−1
1 A⊥(A′

⊥Ω−1
1 A⊥)

−1A′
⊥Ω−1

1

)

(A⊥ΣA′
⊥)

×
(

Ω−1
1 A⊥(A′

⊥Ω−1
1 A⊥)

−1A′
⊥Ω−1

1

)

=Ω−1
1 A⊥ΣA′

⊥Ω−1
1 .

As a result, we can rewrite the asymptotic distribution in (A.25) as

tr

[

(

∫ 1

0
Bd(u)dVH

d (u)′
)′(∫ 1

0
Bd(u)Bd(u)

′du

)−1(∫ 1

0
Bd(u)dVH

d (u)′
)

]

, (A.25)

where VH
d (u) ≡ Σ−1/2 A′

⊥Ω−1
1 W∗

m(u). Therefore, contrast to E[Bd(u)V
∗
d (u)

′] in

Lemma 5.1,

E
[

Bd(u)V
H

d (u)′
]

=u
(

A′
⊥(EVt−1)A⊥

)− 1
2
(

A′
⊥Ω−1

1 A⊥
)

Σ
1
2 =uΥH′

.

Thus, we can rewrite VH
d (u) as a linear combination of two independent

d-dimensional standard BMs

ΥHBd(u)+
[

Σ
1
2 A′

⊥Ω−1
1 Ω∗

1Ω−1
1 A⊥Σ

1
2 −ΥHΥH′]

1
2
Vd(u)

=ΥHBd(u)+
[

Id−ΥHΥH′]
1
2
Vd(u). (A.26)

Thus, the asymptotic distribution can be simplified as

tr

{

[

∫ 1

0
ΥHBd(u)dBd(u)

′ΥH′
+
∫ 1

0
ΥHBd(u)dVd(u)

′(Id−ΥHΥH′) 1
2

]′

×
[

∫ 1

0
ΥHBd(u)Bd(u)

′ΥH′
du

]−1

×
[

∫ 1

0
ΥHBd(u)dBd(u)

′ΥH′
+
∫ 1

0
ΥHBd(u)dVd(u)

′(Id−ΥHΥH′
)

1
2

]

}

.

However, ΥHBd(u)∼ N(0,ΥH ΥH′
). Abusing the notation, we write ΥHBd(u)

as (ΥHΥH′
)1/2 Bd(u), where Bd(u) is (another) d-dimensional standard BM in-

dependent of Vd(u). Therefore, cancelling some of the (ΥHΥH′
)1/2 terms, the
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asymptotic distribution can be expressed as

tr

{

[

∫ 1

0
Bd(u)dBd(u)

′(ΥHΥH′) 1
2 +
∫ 1

0
Bd(u)dVd(u)

′(Id−ΥHΥH′) 1
2

]′

×
[

∫ 1

0
Bd(u)Bd(u)

′du

]−1

×
[

∫ 1

0
Bd(u)dBd(u)

′(ΥHΥH′) 1
2 +
∫ 1

0
Bd(u)dVd(u)

′(Id−ΥHΥH′) 1
2

]

}

.

Since (Id−ΥHΥH′
) is a real symmetric matrix, we can decompose it as ΘΛH

d Θ′,
where Θ is an orthogonal matrix such that Θ′Θ = Id. In view of (ΥHΥH′

)1/2 =
Θ(Id−ΛH

d )
1/2Θ′ and (Id−ΥHΥH′

)1/2 =ΘΛH1/2
d Θ′ and due to the orthogonality

of Θ, we can write the asymptotic distribution as

tr

{

[

∫ 1

0
Θ′Bd(u)dBd(u)

′Θ
(

Id−ΛH
d

)
1
2 Θ′+

∫ 1

0
Θ′Bd(u)dVd(u)

′ΘΛ
H 1

2
d Θ′

]′

×
[

∫ 1

0
Θ′Bd(u)Bd(u)

′duΘ

]−1

×
[

∫ 1

0
Θ′Bd(u)dBd(u)

′Θ
(

Id−ΛH
d

)
1
2 Θ′+

∫ 1

0
Θ′Bd(u)dVd(u)

′ΘΛ
H 1

2
d Θ′

]

}

.

Since Θ′Bd(u)∼N(0,Θ′Θ)=N(0, Id), similar to the previous arguments, and abus-

ing the notation, we can write Θ′Bd(u) and Θ′Vd(u) as two independent standard

BMs Bd(u) and Vd(u) respectively. Cancelling the orthogonal Θ, we have

tr

{

[

∫ 1

0
Bd(u)dBd(u)

′(Id−ΛH
d

)
1
2 +
∫ 1

0
Bd(u)dVd(u)

′Λ
H 1

2
d

]′

×
[

∫ 1

0
Bd(u)Bd(u)

′du

]−1

×
[

∫ 1

0
Bd(u)dBd(u)

′(Id−ΛH
d

)
1
2 +
∫ 1

0
Bd(u)dVd(u)

′Λ
H 1

2
d

]

}

= tr

{

[

ζ
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]′[
ζ
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]

}

. (A.27)

The proof is complete.
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Proof of Theorem 5.2. When Ω∗
1 =Ω1, ΥH =Υ and ΛH

d =Λd, then by Theorem 5.1,

LRG =HG+op(1) −→L tr

{

[

ζ
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]′[
ζ
(

Id−ΛH
d

)
1
2 +ΦΛ

H 1
2

d

]

}

= tr

{

[

ζ(Id−Λd)
1
2 +ΦΛ

1
2
d

]′[
ζ(Id−Λd)

1
2 +ΦΛ

1
2
d

]

}

.

This completes the proof.

Appendix B. Additional formulae

We first let~εt=(ε2
1t ,. . .,ε

2
mt)

′. Further let γl=(γ1l ,. . .,γml)
′, for each i=1,.. .,m, γil is

implicitly defined such that

(

1−
p

∑
l=1

bilL
l

)−1

=
∞

∑
l=0

γilL
l .

Refer to the discussion right before (3.3)-(3.4)

∇ϕht−1=−2
q

∑
l=1

(Xt−1−l⊗ Im)diag(al⊙εt−l)+
p

∑
l=1

(∇ϕht−1−l)diag(bl)

=−2
t−1

∑
l=1

(Xt−1−l⊗ Im)diag(νl⊙εt−l), (B.1)

∇δ1
ht−1=

(

∇′
a0

ht−1;∇′
a1

ht−1,. . .,∇′
aq

ht−1;∇′
b1

ht−1,. . .,∇′
bp

ht−1

)′
, (B.2)

where

∇a0ht−1= Im+
p

∑
l=1

(∇a0 ht−1−l)diag(bl)=
∞

∑
l=0

diag(γl),

∇aj
ht−1=diag(~εt−j)+

p

∑
l=1

(∇aj
ht−1−l)diag(bl)

=
∞

∑
l=0

diag(γl⊙~εt−l−j), j=1,.. .,q,

∇bj
ht−1=diag(ht−1−j)+

p

∑
l=1

(∇bj
ht−1−l)diag(bl)
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=
∞

∑
l=0

diag(γl⊙ht−1−l−j), j=1,.. .,p.

Next refer to the discussion right before (4.5)-(4.6),

∇α1
ht−1=−2

q

∑
l=1

(

Yt−1−l⊗A′)diag(al⊙εt−l)+
p

∑
l=1

(∇α1
ht−1−l)diag(bl)

=−2
t−1

∑
l=1

(

Yt−1−l⊗A′)diag(νl⊙εt−l), (B.3)

∇α2ht−1=−2
q

∑
l=1

(Ut−1−l⊗ Im)diag(al⊙εt−l)+
p

∑
l=1

(∇α2 ht−1−l)diag(bl)

=−2
t−1

∑
l=1

(Ut−1−l⊗ Im)diag(νl⊙εt−l). (B.4)

Refer to the discussion around (3.4). When m=2,

Ψ2=

(

1 0 0 0
0 0 0 1

)

, (B.5)

N2=











1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1











, L̃2=
(

0 1 0 0
)

. (B.6)

See respectively [36, pp.109, 48-49, 96-97] for details.
Refer to the discussion around (5.8)

∇α1
hH

t−1=−2
q

∑
l=1

(

Yt−1−l⊗AH′)
diag(al⊙εt−l)+

p

∑
l=1

(∇α1
ht−1−l)diag(bl)

=−2
t−1

∑
l=1

(

Yt−1−l⊗AH′)
diag(νl⊙εt−l). (B.7)
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