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Abstract. We study the (2+1)-dimensional nonlocal Fokas system by using the Hirota’s

bilinear method. Firstly, a general tau-function of Kadomtsev-Petviashvili (KP) hierar-

chy satisfied with the bilinear equation under nonzero boundary condition is derived by

considering differential relations and a variable transformation. Secondly, two Gram-

type solutions are utilized to the construction of multi-breather, high-order rogue wave,

and multi-bright-dark soliton solutions. Then the corresponding parameter restrictions

of these solutions are given to satisfy with the complex conjugation symmetry. Further-

more, we find that if the parameter pi I takes different values, the rogue wave solution

can be classified as three types of states, such as dark-dark, four-peak and bright-bright

high-order rogue wave. If the parameter ci takes different values, the soliton solution

can be classified as three type of states, including the multi-dark, multi-bright-dark and

multi-bright solitons. By considering third-type of reduced tau-function to the Hirota’s

bilinear equations, we give the collisions between the high-order rogue wave and the

multi-bright-dark solitons on constant (N is positive even) or periodic background (N is

positive odd). In order to understand the dynamics behaviors of the obtained solutions

better, the various rich patterns are theoretically and graphically analyzed in detail.
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1. Introduction

The parity (P ) and the time (T ) symmetries proposed by Bender and Boettcher [5]

as the one type of important discrete symmetries were used to replace the Hermiticity of

the Hamiltonians in quantum theory. In classic quantum theory, Hermiticity guarantees
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the real spectra of the Hamiltonians. The two researchers extended this condition to the

non-Hermitian Hamiltonian operators with P T -symmetric, where the linear operator P
satisfies x → −x and the antilinear operator T satisfies i→ −i. Replacing Hermiticity by

a P T -symmetry maintains a necessary property in quantum field — i.e. unity of the time

evolution [4]. Furthermore, the non-Hermitian Hamiltonian P T -symmetries have been

verified to exist in many important fields, including the Bose-Einstein condensates [7], the

electric circuits [40], the magnetics [20], and the population biology [30].

A lot of mathematical and physical properties have been found in nonlinear local mod-

els. Note that the nonlocal counterparts withP T symmetric potentials may have potential

application. As the most fundamental nonlocal model, a (1+1)-dimensional nonlocal NLS

equation

iut + ux x + 2u2u∗(−x , t) = 0 (1.1)

has been proposed by Ablowitz and Musslimani. It is generated as a symmetry reduc-

tion of Ablowitz-Kaup-Newell-Segur hierarchy by considering the self-induced potential

V [u, x , t] = uu∗(−x , t) satisfies the P T symmetric condition V [u, x] = V ∗[u,−x]. Al-

though it is only slightly different from the classic NLS equation, there exist both local and

nonlocal solutions in the nonlocal model (1.1). More exactly, the evolution of the local

model solution depends only on x , but in nonlocal models it also depends on −x . Ablowitz

and Musslimani [1,2] used the inverse scattering method to obtain the soliton solutions of

the Eq. (1.1). Feng et al. [13] applied the KP reduction method and constructed bright-dark

soliton solutions using the tau-function of Gram- and Wronskian-type.

After the work of Ablowitz and Musslimani, Fokas [19] proposed two integrable non-

local NLS equations, which are the multi-dimensional versions of the Eq. (1.1). The first

equation is the nonlocal Davey-Stewartson (NDS) equation

iAt = Ax x + ǫAy y + (εV − 2Q)A,

Q x x − ǫQ y y = εVx x , ε = ±1,
(1.2)

where ǫ = 1 corresponds to the NDSI equation, ǫ = −1 corresponds to the NDSII equation.

Here V [A, x , y, t] = AA∗(−x ,−y, t) satisfies the P T symmetric condition V [A, x , y, t] =

V ∗[A,−x ,−y, t]. Hereafter, the equation was reported by Ablowitz and Musslimani [3].

There are many important nonlocal examples, such as the nonlocal sine-Gordon equation,

the reverse space-time mKdV equation, and discrete version, multi component version of

the nonlocal NLS equation [3]. Rao et al. [39] derived rational and semi-rational solutions

for the Eq. (1.2), by using Hirota’s bilinear method. Furthermore, Ohta et al. [33, 34]

studied a local version of the Eq. (1.2) and reported the multi-fold or high-order rogue wave

solutions by virtue of the KP hierarchy reduction method and Gram-type determinant.

In this work, we focus on the second equation, known as the (2+1)-dimensional non-

local Fokas system — i.e.

iAt + Ax x + AQ = 0,

Q y = Vx ,
(1.3)
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where V [A, x , y, t] = AA∗(−x ,−y, t). It can also be written as the another form

iAt + Ax x + A

∫ y

−∞

�

A(x , y ′, t)A∗(−x ,−y ′, t)
�

x
d y ′ = 0.

For this equation, Cao et al. [6] obtained the rational and semi-rational solutions with

zero boundary condition, using the Hirota’s bilinear method. Liu et al. [28] constructed

bright-dark solitons by using the bilinear form with zero/nonzero boundary conditions and

the KP hierarchy reduction. To the best of our knowledge, the breather, rogue wave and

multi-bright-dark soliton interaction have not been reported so far. Thus, we consider the

derivation of these analytical solutions by using two important methods — i.e. the Hirota’s

bilinear method and the KP hierarchy reduction method. The former was proposed by

Hirota [22] in 2004. The latter was developed by Kyoto School. The original KP hierarchy

is also known as A-type KP hierarchy. Their sub-hierarchies, including the B-type KP, C-type

KP and D-type KP hierarchies have been classified by considering Lie algebra [23]. Based on

that, there are so many important results obtained by considering the classic NLS equation

[32], discrete NLS equation [35], the DS equation [33,34,39,42], the Mel’nikov equation

[26,29], the Boussinesq-Burgers system [27], the long-wave-short-wave resonance system

[8–10], and multi-component modified KP hierarchy [11, 24, 25]. In addition, our team

has reported some important work [12, 21, 36, 43, 45–47]. Since Feng et al. used the KP

reduction method to study the nonlocal NLS equations, the study on KP reduction of the

nonlocal equations has attracted more and more attention [13].

The main goal of this paper is to derive breather, rogue wave and multi-bright-dark soli-

ton interaction by using the Hirota’s bilinear method and KP hierarchy reduction method.

The objectives of our work are as follows:

(1) Under the bilinear KP hierarchy, the exact breather wave solution in terms of the cor-

responding tau-function will be derived. Under the complex conjugation symmetry

conditions, the parameter restriction for this solution will be also provided.

(2) When some parameters of the given Gram-type tau-function are chosen as the special

case, the rational solution reduces to three types of nonlinear behaviors, such as

the high-order rogue wave, multi-bright-dark soliton and their combinations. They

appear on plane or periodic wave background, when N is chosen as positive even or

positive odd.

The remainder of this paper is arranged as follows. In Section 2, the (2+1)-dimensional

nonlocal Fokas system admits the bilinear form by considering the dependent variable trans-

formation. This bilinear form can be reduced to the KP hierarchy under a suitable general

tau-function by using a C-type reduction method and an independent variable transforma-

tion. In Section 3, we use a tau-function to construct multi-breather wave solution and

derive a class of parameter conditions. In Section 4, we give a general tau-function, which

transfers to three types of reduced forms by setting the different parameter values. They

corresponds to the high-order rogue wave, multi-bright-dark soliton and their interaction

on the constant and periodic background. Finally, we summarize these results in the last

section.
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2. Bilinearization and KP Hierarchy Reduction

In this section, we use a lemma to present the bilinear form of the (2+1)-dimensional

nonlocal Fokas system and give another lemma to present the relation of the bilinear form

and KP hierarchy under the general tau-function and independent variable transformation.

Lemma 2.1. Using the dependent variable transformation

A=
p

2eikt g

f
, A∗(−x ,−y, t) =

p
2eikt h

f
, Q = k + 2(log f )x x ,

the Eq. (1.3) converts to the bilinear form

�

D2
x + iDt

�

g · f = 0, (2.1)

(Dx Dy + 2) f · f = 2gh (2.2)

with the nonzero boundary condition A=
p

2,Q = k, where D denotes Hirota’s bilinear differ-

ential operator [22], i.e.

Dn
x Dm

y f · g =
�

∂

∂ x
− ∂

∂ x ′

�n� ∂

∂ y
− ∂

∂ y ′

�m

f (x , y) · g(x ′, y ′)

�

�

�

�

x ′=x ,y′=y

.

As was already mentioned, the functions f (x , y, t) and g(x , y, t) satisfy the complex

conjugation symmetry
g∗(−x ,−y, t)

f ∗(−x ,−y, t)
=

h(x , y, t)

f (x , y, t)
, (2.3)

which can be considered as the two cases that

h(x , y, t) = g∗(−x ,−y, t), f (x , y, t) = f ∗(−x ,−y, t)

or

h(x , y, t) = −g∗(−x ,−y, t), f (x , y, t) = − f ∗(−x ,−y, t).

Lemma 2.2. Let m
(n)

i j
be associated with the functionsψ(n)(x1, x2, x−1),ϕ

(n)(x1, x2, x−1) and

satisfy the following differential relations:

∂x1
m
(n)

i j
=ψ

(n)

i
ϕ
(n)

j
,

∂x2
m
(n)

i j
=ψ

(n+1)

i
ϕ
(n)

j
+ψ

(n)

i
ϕ
(n−1)

j
,

∂x−1
m
(n)

i j
= −ψ(n−1)

i
ϕ
(n+1)

j
,

m
(n+1)

i j
= m

(n)

i j
+ψ

(n)

i
ϕ
(n+1)

j
,

∂xδ
ψ
(n)

i
=ψ

(n+δ)
i

, ∂xδ
ϕ
(n)

i
= −ϕ(n−δ)

i
,

where δ = −1,1,2. Then the tau-function

τn = det
1≤i, j≤N

�

m
(n)

i j

�
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satisfies the bilinear form

�

D2
x1
− Dx2

�

τn+1 ·τn = 0, (2.4)

(Dx1
Dx−1
− 2)τn ·τn + 2τn+1τn−1 = 0. (2.5)

Proof. We determine the derivatives of the tau-function as follows:

∂x1
τn =

�

�

�

�

�

m
(n)

i j
ψ
(n)

i

−ϕ(n)
j

0

�

�

�

�

�

, ∂x−1
τn =

�

�

�

�

�

m
(n)

i j
ψ
(n−1)

i

ϕ
(n+1)

j
0

�

�

�

�

�

,

∂x−1
∂x1
τn =

�

�

�

�

�

m
(n)

i j
ψ
(n−1)

i

−ϕ(n)
j

0

�

�

�

�

�

+

�

�

�

�

�

m
(n)

i j
ψ
(n)

i

ϕ
(n+1)

j
0

�

�

�

�

�

,

∂ 2
x1
τn =

�

�

�

�

�

m
(n)

i j
ψ
(n+1)

i

−ϕ(n)
j

0

�

�

�

�

�

+

�

�

�

�

�

m
(n)

i j
ψ
(n)

i

ϕ
(n−1)

j
0

�

�

�

�

�

,

∂x2
τn =

�

�

�

�

�

m
(n)

i j
ψ
(n+1)

i

−ϕ(n)
j

0

�

�

�

�

�

−
�

�

�

�

�

m
(n)

i j
ψ
(n)

i

ϕ
(n−1)

j
0

�

�

�

�

�

,

∂ 2
x1
τn+1 =

�

�

�

�

�

m
(n)

i j
ψ
(n+2)

i

−ϕ(n+1)

j
0

�

�

�

�

�

+

�

�

�

�

�

�

�

m
(n)

i j
ψ
(n)

i
ψ
(n+1)

i

−ϕ(n)
j

0 0

−ϕ(n+1)

j
1 0

�

�

�

�

�

�

�

,

∂x2
τn+1 =

�

�

�

�

�

m
(n)

i j
ψ
(n+2)

i

−ϕ(n+1)

j
0

�

�

�

�

�

−

�

�

�

�

�

�

�

m
(n)

i j
ψ
(n)

i
ψ
(n+1)

i

−ϕ(n)
j

0 0

−ϕ(n+1)

j
1 0

�

�

�

�

�

�

�

,

τn+1 =

�

�

�

�

�

m
(n)

i j
ψ
(n)

i

−ϕ(n+1)

j
1

�

�

�

�

�

, τn−1 =

�

�

�

�

�

m
(n)

i j
ψ
(n−1)

i

ϕ
(n)

j
1

�

�

�

�

�

,

∂x1
τn+1 =

�

�

�

�

�

m
(n)

i j
ψ
(n+1)

i

−ϕ(n+1)

j
0

�

�

�

�

�

, ∂x−1
τn+1 =

�

�

�

�

�

m
(n)

i j
ψ
(n−1)

i

−ϕ(n+1)

j
0

�

�

�

�

�

,

∂x1
∂x−1

τn+1 =

�

�

�

�

�

m
(n)

i j
ψ
(n)

i

−ϕ(n+1)

j
0

�

�

�

�

�

+

�

�

�

�

�

m
(n)

i j
ψ
(n−1)

i

ϕ
(n)

j
0

�

�

�

�

�

.

According to the definition of the Jacobi identity, these derivatives of tau-function satisfy

the equation

��

∂ 2
x1
− ∂x2

�

τn+1

�

τn +τn+1

�

∂ 2
x1
+ ∂x2

�

τn − 2
�

∂x1
τn+1

� �

∂x1
τn

�

= 0,
�

∂x1
∂x−1

τn+1

�

τn +τn+1

�

∂x1
∂x−1

τn

�

−
�

∂x−1
τn+1

� �

∂x1
τn

�

−
�

∂x1
τn+1

� �

∂x−1
τn

�

= 2τnτn − 2τn+1τn−1.

It is clear that the bilinear form (2.4)-(2.5) holds.
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We set the variable transformation x1 = x , x2 = it, x−1 = −y to (2.4)-(2.5) and obtain
�

D2
x + iDt

�

τn+1 ·τn = 0, (2.6)

(Dx Dy + 2)τn ·τn − 2τn+1τn−1 = 0, (2.7)

which converts to the bilinear form (2.1)-(2.2) with g = τ1, f = τ0,h = τ−1.

3. Multi-Breather Wave Solutions

In this section, based on the bilinear form (2.1)-(2.2), we derive multi-breather wave

solution for the (2+1)-dimensional nonlocal Fokas system. Assuming a special tau-function

of Gram-type, we establish the following theorem.

Theorem 3.1. The Eq. (1.3) admits the multi-breather wave solution

A=
p

2eikt g(x , y, t)

f (x , y, t)
, (3.1)

where g = τ1, f = τ0 and the tau-function τn, n= 0,1 is defined as

τn = det
1≤i, j≤N

�

m
(n)

i j

�

, (3.2)

m
(n)

i j
=

2
∑

α,β=1

1

piα + q jβ

�

− piα

q jβ

�n

eξiα+η jβ ,

ξiα = piαx + ip2
iα t − 1

piα

y + ξ
(0)

iα
,

η jβ = q jβ x − iq2
jβ t − 1

q jβ

y +η
(0)

jβ
.

We write the tau-function (3.2) as

τ̃n = Cτn,

where

C =

N
∏

j=1

e−ξi1−η j2 , τ̃n = det
�

m̃
(n)

i j

�

1≤i, j≤N
,

m̃
(n)

i j
=

2
∑

α,β=1

1

piα + q jβ

�

− piα

q jβ

�n

eξiα−ξi1+η jβ−η j2 . (3.3)

Proposition 3.1. Assume that the parameters of (3.3) satisfy the following relations:

q jβ = p∗
jβ , η

(0)

jβ
= ξ

(0)∗
jβ

, pN1+i,1 = −pi2,

pN1+i,2 = −pi1, p2N1+1,1 = −p2N1+1,2,

ξ
(0)

N1+i,1
= ξ

(0)

i2
, ξ

(0)

N1+i,2
= ξ

(0)

i1
, ξ

(0)

2N1+1,1
= ξ

(0)

2N1+1,2
,

(3.4)
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where i, j = 1,2, . . . , N1. Then the tau-function τ̃n satisfies the complex conjugation symmetry

relation

τ̃−n(x , y, t) = τ̃∗n(−x ,−y, t), (3.5)

τ̃−n(x , y, t) = −τ̃∗n(−x ,−y, t). (3.6)

Proof. It is easily checked that C(x , y, t) = C∗(−x ,−y, t). Simple calculations give

ξ j1 − ξ j2 = (p j1 − p j2)x + i
�

p2
j1 − p2

j2

�

t −
�

1

p j1

− 1

p j2

�

y +
�

ξ
(0)

j1
− ξ(0)

j2

�

,

η j1 −η j2 = (q j1 − q j2)x − i
�

q2
j1 − q2

j2

�

t −
�

1

q j1

− 1

q j2

�

y +
�

η
(0)

j1
−η(0)

j2

�

,

which indicates that

(ξN1+ j,1 − ξN1+ j,2)(−x ,−y, t) = (ξ j2 − ξ j1)(x , y, t),

(ηN1+ j,1 −ηN1+ j,2)
∗(−x ,−y, t) = (ξ j2 − ξ j1)(x , y, t),

(ξ2N1+1,1 − ξ2N1+1,2)(−x ,−y, t) = (ξ2N1+1,2 − ξ2N1+1,1)(x , y, t),

(η2N1+1,1 −η2N1+1,2)
∗(−x ,−y, t) = (ξ2N1+1,2 − ξ2N1+1,1)(x , y, t).

It follows from the parameter restrictions (3.4) that

m̃
(n)∗
N+i,N+ j

(−x ,−y, t)

=
1

p∗
N+i,2

+ q∗
N+ j,1

�

−
p∗

N+i,2

q∗
N+ j,1

�n

e
(ξ∗

N+i,2
−ξ∗

N+i,1
+η∗

N+ j,1
−η∗

N+ j,2
)(−x ,−y,t)

+
1

p∗
N+i,1

+ q∗
N+ j,2

�

−
p∗

N+i,1

q∗
N+ j,2

�n

+
1

p∗
N+i,2

+ q∗
N+ j,2

�

−
p∗

N+i,2

q∗
N+ j,2

�n

e
(ξ∗

N+i,2
−ξ∗

N+i,1
)(−x ,−y,t)

× 1

p∗
N+i,1

+ q∗
N+ j,1

�

−
p∗

N+i,1

q∗
N+ j,1

�n

e
(η∗

N+ j,1
−η∗

N+ j,2
)(−x ,−y,t)

=
−1

p j1 + p∗
i1

�

−
p∗

i1

p j1

�n

e(ξ
∗
i1
−ξ∗

i2
)(x ,y,t) +

−1

p j2 + p∗
i1

�

−
p∗

i1

p j2

�n

e(ξ j2−ξ j1+ξ
∗
i1
−ξ∗

i2
)(x ,y,t)

+
−1

p j1 + p∗
i2

�

−
p∗

i2

p j1

�n

+
−1

p j2 + p∗
i2

�

−
p∗

i2

p j2

�n

e(ξ j2−ξ j1)(x ,y,t)

= −m̃
(−n)

ji
(x , y, t), (3.7)

and

m̃
(n)∗
2N1+1,2N1+1

(−x ,−y, t) =
1

p∗
2N1+1,1

+ q∗
2N1+1,1

�

−
p∗2N1+1,1

q∗
2N1+1,1

�n

e
(η∗2N1+1,1−η∗2N1+1,2)(−x ,−y,t)



8 X.Y. Yan, Y. Chen, S.F. Tian and X.B. Wang

+
1

p∗
2N1+1,2

+ q∗
2N1+1,1

�

−
p∗2N1+1,2

q∗
2N1+1,1

�n

e
(ξ∗2N1+1,2−ξ∗2N1+1,1+η

∗
2N1+1,1−η∗2N1+1,2)(−x ,−y,t)

+
1

p∗
2N1+1,1

+ q∗
2N1+1,2

�

−
p∗2N1+1,1

q∗
2N1+1,2

�n

+
1

p∗
2N1+1,2

+ q∗
2N1+1,2

�

−
p∗2N1+1,2

q∗
2N1+1,2

�n

e
(ξ∗2N1+1,2−ξ∗2N1+1,1)(−x ,−y,t)

=
−1

p2N1+1,2 + p∗
2N1+1,2

�

−
p∗2N1+1,2

p2N1+1,2

�n

e(ξ2N1+1,2−ξ2N1+1,1)(x ,y,t)

+
−1

p2N1+1,2 + p∗
2N1+1,1

�

−
p∗2N1+1,1

p2N1+1,2

�n

e
(ξ2N1+1,2−ξ2N1+1,1+ξ

∗
2N1+1,1−ξ∗2N1+1,2)(x ,y,t)

+
−1

p2N1+1,1 + p∗
2N1+1,2

�

−
p∗2N1+1,2

p2N1+1,1

�n

+
−1

p2N1+1,1 + p∗
2N1+1,1

�

−
q2N1+1,1

p2N1+1,1

�n

e
(ξ∗2N1+1,1−ξ∗2N1+1,2)(x ,y,t)

= −m̃
(−n)

2N1+1,2N1+1
(x , y, t). (3.8)

Similar considerations lead to the following equations:

m̃
(n)∗
N1+i, j

(−x ,−y, t) = −m̃
(−n)

N1+ j,i
(x , y, t), (3.9)

m̃
(n)∗
i,N1+ j

(−x ,−y, t) = −m̃
(−n)

j,N1+i
(x , y, t), (3.10)

m̃
(n)∗
2N1+1, j

(−x ,−y, t) = −m̃
(−n)

N1+ j,2N1+1
(x , y, t), (3.11)

m̃
(n)∗
i,2N1+1

(−x ,−y, t) = −m̃
(−n)

2N1+1,N1+i,
(x , y, t), (3.12)

m̃
(n)∗
N1+i,2N1+1

(−x ,−y, t) = −m̃
(−n)

2N1+1,i
(x , y, t), (3.13)

m̃
(n)∗
2N1+1,N1+ j

(−x ,−y, t) = −m̃
(−n)

j,2N1+1
(x , y, t). (3.14)

When N = 1, by considering the complex symmetry relation (3.8), it is not difficult to find

that

τ∗n(−x ,−y, t) = e(ξ11+η12)
∗(−x ,−y,t)m̃

(n)∗
11
(−x ,−y, t)

= −e(ξ11+η12)(x ,y,t)m̃
(−n)

11
(x , y, t)

= −τ−n(x , y, t).

When N = 2N1, by considering the complex symmetry relations (3.7), (3.9)-(3.10), we

have

τ∗n(−x ,−y, t) = C∗(−x ,−y, t)

�

�

�

�

�

m̃
(n)∗
i j
(−x ,−y, t) m̃

(n)∗
i,N1+ j

(−x ,−y, t)

m̃
(n)∗
N1+i, j

(−x ,−y, t) m̃
(n)∗
N1+i,N1+ j

(−x ,−y, t)

�

�

�

�

�
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= C(x , y, t)

�

�

�

�

�

−m̃
(−n)

N1+ j,N1+i
(x , y, t) −m̃

(−n)

j,N1+i
(x , y, t)

−m̃
(−n)

N1+ j,i
(x , y, t) −m̃

(−n)

j,i
(x , y, t)

�

�

�

�

�

= τ−n(x , y, t).

When N = 2N1 + 1, using the complex symmetry relations (3.7)-(3.14), we can obtain

τ∗n(−x ,−y, t)

= C∗(−x ,−y, t)

�

�

�

�

�

�

�

m̃
(n)∗
i j
(−x ,−y, t) m̃

(n)∗
i,N1+ j

(−x ,−y, t) m̃
(n)∗
i,2N1+1

(−x ,−y, t)

m̃
(n)∗
N1+i, j

(−x ,−y, t) m̃
(n)∗
N1+i,N1+ j

(−x ,−y, t) m̃
(n)∗
N1+i,2N1+1

(−x ,−y, t)

m̃
(n)∗
2N1+1, j

(−x ,−y, t) m̃
(n)∗
2N1+1,N1+ j

(−x ,−y, t) m̃
(n)∗
2N1+1,2N1+1

(−x ,−y, t)

�

�

�

�

�

�

�

= C(x , y, t)

�

�

�

�

�

�

�

−m̃
(−n)

N1+ j,N1+i
(x , y, t) −m̃

(−n)

j,N1+i
(x , y, t) −m̃

(−n)

2N1+1,N1+i
(x , y, t)

−m̃
(−n)

N1+ j,i
(x , y, t) −m̃

(−n)

ji
(x , y, t) −m̃

(−n)

2N1+1,i
(x , y, t)

−m̃
(−n)

N1+ j,2N1+1
(x , y, t) −m̃

(−n)

j,2N1+1
(x , y, t) −m̃

(−n)

2N1+1,2N1+1
(x , y, t)

�

�

�

�

�

�

�

= −C(x , y, t)

�

�

�

�

�

�

�

m̃
(−n)

i, j
(x , y, t) m̃

(−n)

i,N1+ j
(x , y, t) m̃

(−n)

i,2N1+1
(x , y, t)

m̃
(−n)

N1+i, j
(x , y, t) m̃

(−n)

N1+i,N1+ j
(x , y, t) m̃

(−n)

N1+i,2N1+1
(x , y, t)

m̃
(−n)

2N1+1, j
(x , y, t) m̃

(−n)

2N1+1,N1+ j
(x , y, t) m̃

(−n)

2N1+1,2N1+1
(x , y, t)

�

�

�

�

�

�

�

= −τ−n(x , y, t).

Thus (3.5) is satisfied with N being positive even, whereas (3.6) is satisfied with N being

positive odd.

3.1. One-breather wave solution

In this part, one-breather wave solution is obtained by choosing the parameters N =

1, p11 = −p12,q11 = p∗11,q12 = p∗12 in (3.2). Then the exact one-breather wave solution is

given as

A=
p

2eikt p11(ip11RG1 + p11I G2 − p11I G3 − ip11R)

p∗
11
(ip11RG1 − p11I G2 + p11I G3 − ip11R)

,

where

G1 = cos

�

4p11I (|p11|2 x + y)

|p11|2

�

+ sinh

�

−4ip11I (|p11|2 x + y)

|p11|2

�

,

G2 = cos

�

−
2i(p2

11 x − y)

p11

�

− sinh

�

2p2
11 x − 2y

p11

�

,

G3 = cos

�

2i(p∗211 x − y)

p∗
11

�

+ sinh

�

2p∗211 x − y

p∗
11

�

.



10 X.Y. Yan, Y. Chen, S.F. Tian and X.B. Wang

3.2. Multi-fold breather wave solution

In order to study the dynamics of multi-breather wave solution, we firstly assume N = 2,

p21 = −p12, p22 = −p11,q11 = p∗11,q12 = p∗12,q21 = p∗21,q22 = p∗22. Then two-breather wave

solution can be expressed as

A=
p

2eikt g(x , y, t)

f (x , y, t)
(3.15)

with the corresponding functions

f (x , y, t) =

�

�

�

�

�

m̃
(0)

11
m̃
(0)

12

m̃
(0)

21
m̃
(0)

22

�

�

�

�

�

, g(x , y, t) =

�

�

�

�

�

m̃
(1)

11
m̃
(1)

12

m̃
(1)

21
m̃
(1)

22

�

�

�

�

�

, (3.16)

where m̃
(0)

i j
, m̃
(1)

i j
are given by

m̃
(0)

i j
=

e
ξi2−ξi1+ξ

∗
j1−ξ∗j2

pi2 + p∗
j1

+
e
ξ∗

j1−ξ∗j2

pi1 + p∗
j1

+
eξi2−ξi1

pi2 + p∗
j2

+
1

pi1 + p∗
j2

,

m̃
(1)

i j
=
−pi2e

ξi2−ξi1+ξ
∗
j1
−ξ∗

j2

p∗
j1
(pi2 + p∗

j1
)
+
−pi1e

ξ∗
j1
−ξ∗

j2

p∗
j1
(pi1 + p∗

j1
)
+
−pi2eξi2−ξi1

p∗
j2
(pi2 + p∗

j2
)
+

−pi1

p∗
j2
(pi1 + p∗

j2
)
,

ξi1 − ξi2 = (pi1 − pi2)x + i
�

p2
i1 − p2

i2

�

t −
�

1

pi1

− 1

pi2

�

y + ξ
(0)

i1
− ξ(0)

i2
, i, j = 1,2.

(3.17)

As shown in Fig. 1, we display the two-breather wave in x y-pane by choosing suit-

able parameters to the solution (3.15) with the corresponding functions (3.16). If we

choose p11 = 1.2 + i, p12 = (1.2 + 0.125i,2.2+ 0.125i,1.4+ 0.125i), there are x -periodic

two-breather wave, y-periodic two-breather wave and declining two-breather wave, re-

spectively. The upper row denotes stereoscopic pattern and the lower row denotes cor-

responding projection pattern. These two-breather wave phenomena can be seen as the

superposition of two one-breather waves with same velocity and amplitude.

By calculating the function m̃
(n)

i j
under the complex conjugation symmetry restriction

(3.6), we find that when p31 = −p32 is hold and other parameters are chosen the same

relations as the two-breather wave solution, it leads to three-breather solution with the

functions

f (x , y, t) =

�

�

�

�

�

�

�

m
(0)

11
m
(0)

12
m
(0)

13

m
(0)

21
m
(0)

22
m
(0)

23

m
(0)

31
m
(0)

32
m
(0)

33

�

�

�

�

�

�

�

, g(x , y, t) =

�

�

�

�

�

�

�

m
(1)

11
m
(1)

12
m
(1)

13

m
(1)

21
m
(1)

22
m
(1)

23

m
(1)

31
m
(1)

32
m
(1)

33

�

�

�

�

�

�

�

,

where the functions m̃
(0)

i j
, m̃
(1)

i j
are given by (3.17) with i, j = 1,2,3. In order to display the

three-breather wave behaviors in detail, we set the same parameter values as Fig. 1 except

p32 = 1+ 0.5i. Then the corresponding phenomena are presented in Figs. 2(a)-2(c), from

which we find an inclined single breather crossing the two-breather wave. Furthermore, we

also present four-breather wave behaviors. The parameters p11 and p12 are chosen the same
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(a) (b) (c)

(d) (e) (f)

Figure 1: Two-breather wave, N = 2,ξ
(0)

i j
= η

(0)

i j
= 0, 1 ≤ i, j ≤ 2. (a): p11 = 1.2+ i, p12 = 1.2 + 0.125i.

(b): p11 = 1.2+ i, p12 = 2.2+ 0.125i. (c): p11 = 1.2+ i, p12 = 1.4+ 0.125i.

(a) (b) (c)

(d) (e) (f)

Figure 2: Three-breather wave, N = 3,ξ
(0)

i j
= η

(0)

i j
= 0, 1 ≤ i, j ≤ 3. (a): p11 = 1.2 + i, p12 = 1.2 +

0.125i, p32 = 1 + 0.5i. (b): p11 = 1.2 + i, p12 = 2.2 + 0.125i, p32 = 1 + 0.5i. (c): p11 = 1.2 + i, p12 =

1.4+0.125i, p32 = 1+0.5i. Four-breather wave, N = 4,ξ
(0)

i j
= η

(0)

i j
= 0, 1 ≤ i, j ≤ 4. (d): p21 = 1.4+ i, p22 =

1.4+ 0.125i. (e): p21 = 1.3+ i, p22 = 2.5+ 0.125i. (f): p21 = 1.5+ i, p22 = 1.3+ 0.125i.
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values as Fig. 1. We choose suitable p21 and p22 in the four-breather wave solution. Then

the four-breather superposition phenomenon is also obtained. Actually, the four-breather

wave is superimposed on the basis of the two-breather in Fig. 1 with another two-breather

wave, which is distributed on outside of initial two-breather wave for Figs. 2(d)-2(e) and

corresponds to the wave sloping to the left for Fig. 2(f).

4. High-Order Rogue Wave and Multi-Bright-Dark Soliton Interaction

We have constructed the multi-breather wave solutions in above. In this section, we

prepare to derive high-order rogue wave, multi-bright-dark soliton and their coexistence

behavior. To this end, we firstly give the following lemma and introduce a general tau-

function.

Lemma 4.1. Assume that the tau-function of the bilinear form (2.6)-(2.7) has the form of

τn = det
1≤i, j≤N

�

m
(n)

i j

�

(4.1)

with

m
(n)

i j
= c jδi, j +

1

pi + q j

�

− pi

q j

�n

eξi+η j ,

where

ξi = pi x + ip2
i
t − 1

pi

y + ξ
(0)

i
,

η j = q j x − iq2
j t − 1

q j

y +η
(0)

j
.

Introducing a derivative operator to this tau-function yields that

A
(ni)

i
(pi)B

(n j )

j
(q j)m

(n)

i j
= c jδi, j +

�

− pi

q j

�n

eξi+η j

ni∑

k=0

aik(pi)(pi∂ pi + n+ ξ̃i)
ni−k

×
n j
∑

l=0

b jl(q j)(q j∂ q j − n+ η̃ j)
n j−l 1

pi + q j

,

where

A
(ni)

i
(p) =

ni∑

k=0

aik(p)(p∂ p)ni−k, B
(n j)

j
(q) =

n j
∑

l=0

b jl(q)(q∂ q)n j−l ,

ξ̃i = pi x + 2ip2
i t +

1

pi

y + ξ
(0)

i
, η̃ j = q j x − 2iq2

j t +
1

q j

y +η
(0)

j
.

For a given reduction condition

τn = Cτ̃n, C =

N
∏

j=1

eξ j+η j , (4.2)

we derive a reduced tau-function.
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Theorem 4.1. The Eq. (1.3) has the general solution

A=
p

2eikt g(x , y, t)

f (x , y, t)
, (4.3)

where

f (x , y, t) = τ̃0(x , y, t),

g(x , y, t) = τ̃1(x , y, t).

Under the reduction condition (4.2), the reduced tau-function is given by

τ̃n = det
1≤i, j≤N

�

m̃
(n)

i j

�

, (4.4)

and

m̃
(n)

i j
= c jδi je

−ξi−η j +

�

− pi

q j

�n ni∑

k=0

aik(pi)(pi∂ pi + n+ ξ̃i)
ni−k

×
n j
∑

l=0

b jl(q j)(q j∂ q j − n+ η̃ j)
n j−l 1

pi + q j

. (4.5)

Proposition 4.1. By considering the complex conjugation symmetry conditions (2.3), the con-

stant parameters in the Eq. (4.5) satisfy with the relations

ξ
(0)

i
+η

(0)

i
= real, rN1+i = ri, cN1+ j = −c∗j , aN1+i,k = b∗ik,

bN1+ j,l = a∗
jl
, pN1+i = −q∗i , qN1+ j = −p∗j , i, j = 1,2, . . . , N1,

ξ
(0)

i
= η

(0)

i
, ai,k = b∗

i,k
, b j,l = a∗

j,l
,

c j = −c∗j , pi = q∗i , i, j = 2N1 + 1.

Proof. The proof is similar to Proposition 3.1.

Remark 4.1. General solution (4.3) with (4.1) is nonsingular for any constant column

vector v = (v1, v2, . . . , vn)
T , if pi = q∗

i
such that the tau-function τ0 is positive definite, if

ci > 0, piR > 0; the tau-function τ0 is negative definite, if ci < 0, piR < 0; the tau-function

τ0 is nonzero, if ciI 6= 0, piR 6= 0.

Proof. In order to verify f = τ0 6= 0, we note M = (AiB jm
(0)

i j
). When ci > 0, piR > 0 is

hold, then we have

v†M v =

2N1∑

i, j=1

v∗i

�

AiB jm
(0)

i j

�

v j

=

2N1∑

i, j=1

v∗i

�

ciδi j + AiB j

1

pi + q j

eξi+η j

�

v j
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=

2N1∑

i=1

ci v
∗
i
δi j v j +

2N1∑

i, j=1

v∗
i
v jAiB j

1

pi + q j

eξi+η j

=

2N1∑

i=1

ci|vi|2 +
2N1∑

i, j=1

v∗i v jAiB j

1

pi + q j

eξi+η j

=

2N1∑

i=1

ci|vi|2 +
∫ x

−∞

2N1∑

i, j=1

v∗i v jAiB je
ξi+η j d x

=

2N1∑

i=1

ci|vi|2 +
∫ x

−∞

�

�

�

�

�

2N1∑

i=1

v∗i Aie
ξi

�

�

�

�

�

2

d x > 0.

Assuming that ci < 0, piR < 0, we have

v†M v =

2N1∑

i, j=1

v∗i
�

AiB jm
(0)

i j

�

v j

=

2N1∑

i, j=1

v∗i

�

ciδi j + AiB j

1

pi + q j

eξi+η j

�

v j

=

2N1∑

i=1

ci|vi|2 −
∫ +∞

x

2N1∑

i, j=1

v∗
i
v jAiB je

ξi+η j d x

=

2N1∑

i=1

ci|vi|2 −
∫ +∞

x

�

�

�

�

�

2N1∑

i=1

v∗i Aie
ξi

�

�

�

�

�

2

d x < 0.

Assuming that ciI 6= 0, piR 6= 0, we have

v†M v =

2N1∑

i, j=1

v∗i
�

AiB jm
(0)

i j

�

v j

=

2N1∑

i, j=1

v∗i

�

ciδi j + AiB j

1

pi + q j

eξi+η j

�

v j

=

2N1∑

i=1

ci v
∗
i
δi j v j +

2N1∑

i, j=1

v∗
i
v jAiB j

1

pi + q j

eξi+η j

=

2N1∑

i=1

ci|vi|2 +
2N1∑

i, j=1

v∗
i
v jAiB j

1

pi + q j

eξi+η j .

It is obvious that the second term of last expression is real, which leads to v†M v 6= 0, when

ciI 6= 0.

Function m̃i j contains exponential term and rational polynomial with respective to the

variables x , y, t. Then we can obtain a purely polynomial function (rational), a purely
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exponential function (soliton solution) and a mixed function (semi-rational solution) by

choosing the different values of ci , ni. We consider three special cases of this and present

their dynamics behaviors.

Case I. If we choose ci = 0, ni = 1, i = 1,2, . . . , 2N1, c2N1+1 6= 0, n2N1+1 = 0 in (4.5),

there exists rogue wave solution with the reduced function

m̃
(n)

i j
=







































�

− pi

q j

�n � piq j

(pi + q j)
2
+ Pi jQ i j

�

1

pi + q j

, i, j = 1,2, . . . , 2N1,

�

− pi

q j

�n

Pi j

1

pi + q j

, i = 1,2, . . . , 2N1, j = 2N1 + 1,

�

− pi

q j

�n

Q i j

1

pi + q j

, j = 1,2, . . . , 2N1, i = 2N1 + 1,

c je
−ξi−η j +

�

− pi

q j

�n
1

pi + q j

, i, j = 2N1 + 1,

Pi j =
−pi

pi + q j

+ ξ̃i + n+ ai1, Q i j =
−qi

pi + q j

+ η̃ j − n+ b j1.

(4.6)

If we let N = 2 in Theorem 4.1, the functions m̃
(n)

i j
in (4.5) reduce to (4.6). This solution

presents the second-order rogue wave on constant background. Then its expression can be

given as

A=
p

2eikt ϑ11ϑ21 + ϑ31ϑ41

ϑ10ϑ20 + ϑ30ϑ40

,

where

ϑ1n =
p1q1

(p1 + q1)
3
+

1

p1 + q1

� −p1

p1 + q1

+ p1 x + 2ip2
1 t +

1

p1

y + n+ a11

�

×
� −q1

p1 + q1

+ q1 x − 2iq2
1 t +

1

q1

y − n+ b11

�

,

ϑ2n =
q∗1p∗1

(q∗
1
+ p∗

1
)3
+

1

q∗
1
+ p∗

1

� −q∗1
q∗

1
+ p∗

1

− q∗1 x + 2iq∗21 t − 1

q∗
1

y + n+ b∗11

�

×
� −p∗1

q∗1 + p∗1
− p∗1 x − 2ip∗21 t − 1

p∗1
y − n+ a11

�

,

ϑ3n =
−p1p∗1
(p1 − p∗

1
)3
+

1

p1 − p∗
1

�

−p1

p1 − p∗
1

+ p1 x + 2ip2
1 t +

1

p1

y + n+ a11

�

×
�

p∗1
p1 − p∗

1

− p∗1 x − 2ip∗21 t − 1

p∗
1

y − n+ a∗11

�

,

ϑ4n =
−q1q∗1
(q1 − q∗

1
)3
+

1

q1 − q∗
1

�

q∗1
q1 − q∗

1

− q∗1 x + 2iq∗21 t − 1

q∗
1

y + n+ b∗11

�

×
�

−q1

q1 − q∗
1

+ q1 x − 2iq2
1
t +

1

q1

y − n+ b11

�

.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Dark, four-petal, bright rogue waves presented by the solution (4.3)-(4.4) with (4.6) on
constant background (a)-(c): N = 2, p1 = 2/3+(4/3)i (a), 2/3+(2/3)i (b), 2/3+(1/5)i (c), ξ(0)1 = ξ

(0)

2 =

0, a11 = b11 = 5 and periodic background (d)-(f): N = 3,ξ
(0)

3 = 0, a31 = 0, p3 = c3 = 2i.

Letting p1 = (2/3 + (4/3)i, 2/3 + (2/3)i, 2/3 + (1/5)i) in the second-order rogue wave

solution, Figs. 3(a)-3(c) present three types of different states, which are dark-dark, four-

petal and bright-bright rogue wave, respectively. If set p3 = c3 = 2i in third-order solution

with N = 3, other parameters are the same as second-order rogue wave solution. As shown

in Figs. 3(d)-3(f), there is no higher-order rogue wave, but the initial double rogue wave

appearing on the periodic background. Due to the complexity of the solution with N = 3,

we do not present its expression.

Case II. If we choose ci 6= 0, ni = 0, i = 1,2, . . . , N , the tau-function of soliton solution

possesses the element

m̃
(n)

i j
= c jδi, je

−ξi−η j +

�

− pi

q j

�n
1

pi + q j

, i, j = 1,2, . . . , N . (4.7)

Choosing the parameter N = 2 leads to the two-soliton solution

A=

p
2eikt

p∗
1
q1

p∗1q1ϕ1e−ξ1−η1−ξ2−η2 − |q1|2ϕ2e−ξ1−η1 − |p1|2ϕ3e−ξ2−η2 + p1q∗1ϕ4

ϕ1e−ξ1−η1−ξ2−η2 +ϕ2e−ξ1−η1 +ϕ3e−ξ2−η2 +ϕ4

,
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where

ϕ1 =
�

q∗21 p∗1p1 + q∗21 p∗1q1 − q∗21 p2
1 − q∗21 p1q1 + q∗1p∗21 p1 + q∗1p∗21 q1 − q∗1p∗1p2

1 − q∗1p∗1q2
1

− 2q∗
1
p∗

1
p1q1 + q∗

1
p2

1
q1 + q∗

1
p1q2

1
− p∗2

1
p1q1 − p∗2

1
q2

1
+ p∗

1
p2

1
q1 + p∗

1
p1q2

1

�

|c1|2,

ϕ2 =
�

q∗1p∗1p1 + q∗1p∗1q1 − q∗1p2
1 − q∗1p1q1 − p∗1p1q1 − p∗1q2

1 + p2
1q1 + p1q2

1

�

c1,

ϕ3 =
�

q∗21 p∗1 − q∗21 p1 + q∗1p∗21 − q∗1p∗1p1 − q∗1p∗1q1 + q∗1p1q1 − p∗21 q1 + p∗1p1q1

�

c∗1,

ϕ4 = q∗1p∗1 + q1q∗1 + p1p∗1 + p1q1.

In the second case, we suppose ci 6= 0, ni = 0, that is to say the tau-function contains the

exponential function without the partial derivative operators of pi,q j . We obtain the multi-

bright-dark soliton solution. In order to display the dynamics behavior of soliton solution,

we set p1 = 1+i, p2 = 1−i. As displayed in Fig. 4, the shape of soliton changes with the value

of c1. When c1 = (3− i,−1.6i,−3 − 1.2i), they corresponds to the dark-dark, bright-dark

and bright-bright solitons, respectively. Furthermore, these multi-solitons happen to collide

with each other and move to the opposite direction. Figs. 4-5 exhibit the propagation of

(a) (b) (c)

Figure 4: Dark-dark soliton, bright-dark soliton, bright-bright soliton presented by the solution (4.3)-
(4.4) with parameters: N = 2,ξ

(0)

1 = ξ
(0)

2 = 0, p1 = 1+ i, p2 = 1− i, c1 = 3− i (a), −1.6i (b), −3− 1.2i (c).

(a) (b) (c)

Figure 5: Periodic-type dark-dark soliton, bright-dark soliton, bright-bright soliton in the solution (4.3)

presented by the solution (4.3)-(4.4), N = 3,ξ
(0)

3 = 0, p3 = 3i, c3 = −5i.
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two-soliton at the time t = −5. Let p3 = 3i, c3 = −5i in the solution (4.7) with N = 3. Other

parameters are the same as Fig. 4. As shown in Fig. 5, it displays periodic-type dark-dark,

bright-dark and bright-bright solitons. The periodicity of the soliton background increases

followed by increasing |p3|.

Case III. For ci 6= 0, ni = 1, i = 1,2, . . . , N , the interaction solution admits the function

m̃
(n)

i j
=





































c jδi, je
−ξi−η j +

�

− pi

q j

�n � piq j

(pi + q j)
2
+ Pi jQ i j

�

1

pi + q j

, i, j = 1,2, . . . , 2N1,

�

− pi

q j

�n

Pi j

1

pi + q j

, i = 1,2, . . . , 2N1, j = 2N1 + 1,

�

− pi

q j

�n

Q i j

1

pi + q j

, j = 1,2, . . . , 2N1, i = 2N1+ 1,

c je
−ξi−η j +

�

− pi

q j

�n
1

pi + q j

, i, j = 2N1 + 1,

Pi j =
−pi

pi + q j

+ ξ̃i + n+ ai1, Q i j =
−qi

pi + q j

+ η̃ j − n+ b j1.

Choosing N = 2, we obtain the second-order interaction solution

A=
p

2eikt

�

c1e−ξ1−η1 − (p1/q1)θ11

� �

c∗
1
e−ξ2−η2 − (q∗

1
/p∗

1
)θ21

�

− ((p1q∗
1
)/(q1p∗

1
))θ31θ41

�

c1e−ξ1−η1 − θ10

� �

c∗
1
e−ξ2−η2 − θ20

�

− θ30θ40

,

where

θ1n =
p1q1

(p1 + q1)
3
+

1

p1 + q1

� −p1

p1 + q1

+ p1 x + 2ip2
1 t + n+

1

p1
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�
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+ q1 x − 2iq2
1 t − n+

1

q1
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�

,

θ2n =
q∗1p∗1

(p∗
1
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1
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1
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1
+ p∗

1
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�
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+ p∗1 x + 2ip∗21 t + n+
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p1
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�

,

θ3n = −
p1p∗1
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1
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− 1
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�
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.
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Choosing ci 6= 0, ni = 1, we obtain an interaction solution in the Case III. As shown in

Fig. 6, the interaction of rogue wave and bright, dark solitons is exhibited. From that, we

find that the three different rogue waves coexist with dark-dark soliton, bright-dark soliton

and bright-bright soliton. Fig. 6 presents the state at the time t = −5. When the rogue wave

approaches to the soliton, the latter happens to deform. Especially, the rogue wave exists in

the middle of two individual solitons, while the rogue waves are distributed to both sides of

the solitons. Similar to the phenomena in Fig. 6, if N = 3 is hold in the solution (4.4) and

the other parameters remain unchanged. Thus, an interesting coexistence phenomenon of

rogue waves with multi-bright-dark soliton on periodic background is displayed in Fig. 7.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Interactions of dark-dark, four-petal, bright-bright rogue wave and dark-dark, bright-dark and
bright-bright solitons presented by the solution (4.3)-(4.4), N = 2,ξ

(0)

1 = ξ
(0)

2 = 0, a11 = b11 = 0, p1 =

2/3+ (4/3)i, 2/3+ (2/3)i, 2/3+ (1/5)i, c1 = (3− i,−1.6i,−3− 1.2i).
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(a) (b) (c)

Figure 7: Interactions of dark-dark, four-petal, bright-bright rogue wave and bright-dark soliton on
periodic background presented by the solution (4.3)-(4.4), N = 3,ξ

(0)

3 = 0, p3 = c3 = 2i, c1 = −1.6i, a31 = 0.

5. Conclusion

In this paper, the (2+1)-dimensional nonlocal Fokas system has been systematically in-

vestigated by means of the Hirota’s bilinear method and the KP hierarchy reduction method.

Based on a given bilinear KP hierarchy, we have derived their various analytic solutions,

including a multi-breather wave solution, a rogue wave solution and a multi-bright-dark

soliton solution. These solutions are constructed by considering two classes of determi-

nant functions of Gram-type. Furthermore, the complex conjugation symmetry condition

is used to derive parameter restrictions in two Gram-type tau functions for the bilinear

form. Firstly, we have derived a multi-breather solution in Theorem 3.1. The dynamics be-

haviors of multi-breather waves have been displayed via suitable parameters. Theorem 4.1

provides a general solution with the tau-function (4.4)-(4.5). If ci and ni are chosen as the

different special values, respectively, then there exist three types of nonlinear phenomena,

such as the high-order rogue wave (Case I), multi-bright-dark soliton (Case II) and inter-

action of rogue wave and soliton (Case III). Actually, these phenomena appear on constant

or periodic background if N is positive even or odd.

The combination of the Hirota’s bilinear method and the KP reduction method is a very

effective tool to the study of soliton, breather wave and rogue wave solutions even dis-

cretization for nonlinear integrable systems. Ohta and Yang derived the high-order rogue

wave solution for the NLS equation and the Ablowitz-Ladik equation [32, 35]. The work

of Feng et al. mainly includes the construction of a general solution and an integrable

discretizations for the Yajima-Oikawa system [8–10], Degasperis-Procesi equation [15–17]

and classic Cammasa-Holm equation [14,31] and modified Cammasa-Holm equation [41].

He et al. have study the DS equation [38] and its nonlocal models [37]. Wu constructed

bilinear forms and obtained interesting analytical solutions of the Sasa-Satsuma equa-

tion [18, 44] and the nonlocal Mel’nikov equation [26]. Although known work has been

extended to the multi-component couple models, nonlocal models, there exist few works

to the study of the high-order, high-dimensional even more complicated integrable sys-

tems. For their bilinear forms and the relations with the KP hierarchy, there are still many

questions need to deal with.
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