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Abstract. In this work, we consider the Fokker-Planck equation of the Nonlinear Noisy
Leaky Integrate-and-Fire (NNLIF) model for neuron networks. Due to the firing events
of neurons at the microscopic level, this Fokker-Planck equation contains dynamic
boundary conditions involving specific internal points. To efficiently solve this prob-
lem and explore the properties of the unknown, we construct a flexible numerical
scheme for the Fokker-Planck equation in the framework of spectral methods that can
accurately handle the dynamic boundary condition. This numerical scheme is stable
with suitable choices of test function spaces, and asymptotic preserving, and it is eas-
ily extendable to variant models with multiple time scales. We also present extensive
numerical examples to verify the scheme properties, including order of convergence
and time efficiency, and explore unique properties of the model, including blow-up
phenomena for the NNLIF model and learning and discriminative properties for the
NNLIF model with learning rules.
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1 Introduction

In recent years, there has been a growing interest in studying large-scale neuron network
models, e.g. [3,13,24,27], placing a greater emphasis on the proper mathematical tools for
analyzing and simulating the dynamics of such networks. The underlying formulation of
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these models is based on deterministic or stochastic differential equations which describe
the activities of neuron ensembles.

In this article, we consider the Nonlinear Noisy Leaky Integrate-and-Fire (NNLIF)
model, which was originally proposed in the pioneering works [1, 2], and it is one of the
fundamental models in computational neuroscience. In the microscopic perspective, this
model takes the membrane potential v of neurons as the state variable, which is restricted
by a given threshold value VF [23,25,27,32]. A defining characteristic of this model is the
inclusion of firing events, which are described by a reset mechanism: when the mem-
brane potential v reaches the threshold value of VF, a spike occurs, and the membrane
potential is then reset to a lower value VR. Moreover, the neurons within an ensemble
interact with each other only through spikes. In the macroscopic perspective, this model
is related to the Fokker-Planck equation [21, 22, 24], as follows:

∂t p+∂v(hp)−a∂vv p=0, v∈ (−∞,VF]/{VR},
p(v,0)= p0(v), p(−∞,t)= p(VF,t)=0,
p(V−

R ,t)= p(V+
R ,t), ∂v p(V−

R ,t)=∂v p(V+
R ,t)+ N(t)

a ,

(1.1)

where the probability density function p(v,t) represents the probability of finding a neu-
ron at voltage v and given time t, and p0(v) is the initial condition. The spiking behavior
is described by the mean firing rate N(t), which is implicitly given by

N(t)=−a(N(t))
∂p
∂v

(VF,t). (1.2)

The drift coefficient h and diffusion coefficient a are typically expressed as functions of
the mean firing rate N(t)

h(v,N)=−v+bN, a(N)= a0+a1N, (1.3)

where −v models the leaky mechanism and b represents the connectivity of the network:
b>0 for excitatory-average networks and b<0 for inhibitory-average networks. The con-
nectivity of the network has an essential effect on the properties of (1.1), such as its steady
states and blow-up phenomenon. Besides, a stands for the amplitude of the noise, where
a0 >0 and a1 ≥0. The probability density function p(v,t) should satisfy the condition of
conservation of mass ∫ VF

−∞
p(v,t)dv=

∫ VF

−∞
p0(v)dv=1. (1.4)

In recent years, there have been significant progress in the numerical and analytical stud-
ies of the NNLIF models. [6,13,14] analyze the stability and asymptotic behavior from the
point of view of microscopic stochastic differential equation (SDE). From the macroscopic
perspective, [3, 11, 12] establish the existence theory of the Fokker-Planck equation (1.1),
and the classical solution exists only when the firing rate N(t) does not diverge. In [3], the
authors analyze the model’s steady states and blow-up phenomenon. In [16], aiming at
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investigating the solution structure in the presence of the blow-up phenomenon, a new
notion of generalized solution is proposed by introducing the dilated time scale.

Some variants of the model (1.1) have been studied to incorporate more biological
ingredients [9], including multi-species populations (excitatory and inhibitory) [8], the
refractory state [5, 28], the transmission delay between neurons [7, 19, 28] and the age of
the neuron [17]. Besides, there have also been multi-scale models with additional state
variables. For example, the kinetic voltage-conductance model for neuron networks has
been explored in [4, 10, 15]. In [18, 26], the authors consider the learning behavior of the
NNLIF model which is structured by the synaptic weights, and the distribution of the
weights evolve according to the Hebbian learning rule.

In this paper, we focus on the Fokker-Planck equation (1.1), and the primary goal is to
investigate its efficient numerical approximation and applications to other variants. This
Fokker-Planck equation is distinguished from other classical kinetic models due to its
complex nonlinearity through the boundary flux and the dynamic boundary conditions.
In spite of the existing results, the properties of this model are far from being fully un-
derstood, necessitating further numerical experiments to gain a deeper understanding.
In [4], the authors propose a numerical scheme combining the WENO-finite differences
and the Chang-Cooper method. The numerical tests are mainly concerned with the blow-
up phenomenon and the steady states. In [18, 19], the authors propose conservative and
conditionally positivity-preserving schemes and show that the corresponding discrete
entropy is dissipating in time. A maximum entropy method to approximate density func-
tion p(v,t) by solving the moment equation of the Fokker-Planck equation is presented
in [33]. Besides, the finite element method and discontinuous Galerkin method are also
applied to solve the Fokker-Planck type equations [28, 29]. Properly addressing the flux
shift terms in the Fokker-Planck equation is of essential significance in the numerical ap-
proximation. In most cases, the flux offset term is implicitly included in the equation,
requiring the modification of dynamic boundary conditions into equations with δ source
terms for better implementation of numerical methods. Then the original problem (1.1)
is transformed into the following boundary value problem:{

∂t p+∂v(hp)−a∂vv p=N(t)δ(v−VR), v∈ (−∞,VF],
p(v,0)= p0(v), p(−∞,t)= p(VF,t)=0,

(1.5)

where δ(v) stands for the Delta function. Dealing with flux variations in VR is a challenge
common to all numerical methods. Introduce the δ function to facilitate the construc-
tion of mesh-based numerical schemes, such as the difference method, the finite element
method, and the finite volume method. However, it also causes certain restrictions due
to the particularity of the δ function, such as requiring VR to fall on the grid point.

To achieve improved efficiency while properly handling the dynamic boundary con-
ditions, we aim to construct a spectral approximation for the Fokker-Planck equation
(1.1). The spectral method that we shall present relies on semi-globally differentiable and
integrable basis functions, which accurately capture the dynamic boundary conditions in
(1.1) rather than complicating the equation with a δ source as in (1.5).
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There are two key factors that enable our scheme to meet the desired properties. First,
the construction of the basis functions enforces the approximate solution to satisfy the
dynamic boundary conditions exactly. Second, the time evolution of the approximate
solution is determined by the Galerkin method, and there exist suitable choices of the
test function spaces that make the method stable and asymptotic preserving.

Beyond that, we perform systematic numerical tests to verify the convergence order
of the method and to investigate the diverse solution properties such as the blow-up phe-
nomenon and discrete relative entropy. Taking advantage of the scheme’s flexibility, we
apply it to the NNLIF model with learning rules proposed in [26], testing the discrimina-
tion property and further exploring the learning behavior of the model.

The paper is structured as follows. In Section 2, we define the weak solution of (1.1)
and establish its relationship to the classical solution. In Section 3, we introduce the nu-
merical scheme for the NNLIF model based on spectral methods in detail and analyze
the choices of different test functions in constructing the numerical solution. In Section
4, we introduce the NNLIF model with learning rules and apply the proposed method
to the model. In Section 5, we perform some numerical experiments, including the con-
vergence order of the scheme, comparison with existing numerical methods, and some
other numerical explorations.

2 Weak formulation

In this section, we introduce the weak formulation of the problem, which is the founda-
tion for constructing numerical solutions. The link between the classical solution and the
weak solution of this model will be analyzed as well.

For simplicity, we choose a finite interval [Vmin,VF] as the computation domain and
suppose Vmin is small enough such that the density function p(v,t) for v<Vmin is neg-
ligible. Then the semi-unbounded problem (1.1) can be truncated to boundary value
problem as follow:

∂t p+∂v(hp)−a∂vv p=0, v∈ [Vmin,VF]/{VR},
p(v,0)= p0(v), p(Vmin,t)= p(VF,t)=0,
p(V−

R ,t)= p(V+
R ,t), ∂v p(V−

R ,t)=∂v p(V+
R ,t)+ N(t)

a .

(2.1)

The truncated equation (2.1) should still satisfy the mass conservation, i.e.∫ VF

Vmin

p(v,t)dv=
∫ VF

Vmin

p0(v)dv=1. (2.2)

By integrating (2.1) and using the boundary conditions therein, this conservation implies
the following boundary condition.

∂

∂v
p(Vmin,t)=0. (2.3)
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In fact, (2.3) is never precisely satisfied, but as long as Vmin is chosen properly, ∂v p(Vmin,t)
is negligible.

We adopt the definition of the classical solution in [11, 22] for the truncated problem.

Definition 2.1 (Classical solution). For any given 0<T<+∞, p(v,t) is a classical solution
of (2.1) in the time interval (0,T] in the following sense:

1. N(t)=−a∂v p(V−
F ,t) is a continuous function for t∈ [0,T],

2. p(v,t) is continuous in the region {(v,t) : Vmin<v<VF, t∈ [0,T]},

3. pvv and pt are well defined in the region {(v,t) : v∈ [Vmin,VR)∪(VR,VF], t∈ (0,T]},

4. pv(V−
R ,t) and pv(V+

R ,t) are well defined for t∈ (0,T],

5. For t∈ (0,T], Eq. (2.1) is satisfied,

6. p(v,0)= p0(v) for v∈ [Vmin,VR)∪(VR,VF].

In this paper, we consider classical solutions of (2.1) which additionally satisfy (2.3).
Having explicitly defined the classical solution of (2.1), we can now move on to discuss
the weak solution.

If p(v,t) is the classical solution of (2.1), weak formulation of (2.1) is obtained by
multiplying (2.1) with some test function ϕ∈C∞([Vmin,VF]) and integrating over [Vmin,VF]∫ VF

Vmin

(∂t p+∂v(hp)−a∂vv p)ϕdv=0. (2.4)

Integrating by parts in intervals [Vmin,VR] and [VR,VF] respectively, we obtain∫ VF

Vmin

(∂t pϕ−hp∂vϕ+a∂v p∂vϕ)dv

+
(

hpϕ|V
−
R

Vmin
+hpϕ|VF

V+
R

)
−
(

a∂v pϕ|V
−
R

Vmin
+a∂v pϕ|VF

VV+
R

)
=0. (2.5)

By substituting the boundary conditions in (2.1) and (2.3), (2.5) can be simplified as∫ VF

Vmin

(∂t pϕ−hp∂vϕ+a∂v p∂vϕ)dv+a∂v p(VF)(ϕ(VR)−ϕ(VF))=0. (2.6)

The above derivation helps to formally introduce the definition of the weak solution of
(2.1).

Definition 2.2 (Weak solution). The variational space appropriate for the present case is

H1
0(Vmin,VF)={p∈H1(Vmin,VF) : p|Vmin = p|VF =0}. (2.7)

We say p(v,t)∈C1([0,T]; H1
0(Vmin,VF)) is a weak solution of (2.1) if for any test function

ϕ(v)∈H1(Vmin,VF), (2.6) holds for ∀t∈ (0,T] and p(v,0)= p0(v).
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The weak solution in Definition 2.2 still inherits the essence of the original problem
(2.1), and the relation between the weak solution and the classical solution is established
in the following.

Theorem 2.1 (Relation with the classical solution). If p(v,t) is a classical solution of (2.1) in
the time interval (0,T] which also satisfies (2.3), then it is a weak solution of (2.1) in the same
time interval. Conversely, if p(v,t) is a weak solution of (2.1) in the time interval (0,T] and
additionally we assume that

p(v,t)∈C1((0,T];C2([Vmin,VR)∪(VR,VF])
)

satisfies p(V−
R ,t)= p(V+

R ,t) and the one-sided derivatives of p(v,t) exist at each side of VR for all
t∈ (0,T], then it is a classical solution of (2.1) in the same time interval and it satisfies (2.3).

Proof. The first part of the theorem can obviously be proved by the derivation of the weak
solution.

For the other direction, let p(v,t) be a weak solution of (2.1) in the time interval (0,T],
and p satisfies all the additional assumptions in the statement. We aim to prove that
p(v,t) is a classical solution in Definition 2.1, and satisfies (2.3).

By the definition of the weak solution and the additional conditions it satisfies, it is
straightforward to show that the solution p meets the first four and the last criteria laid
out in Definition 2.1. In particular, the smoothness assumption at VF (from the left-hand
side) implies the continuity of N(t). In the following, we will thoroughly demonstrate
that p conforms to the fifth item of Definition 2.1 and (2.3). By integration by parts, (2.6)
can be rewritten as∫ VF

Vmin

(∂t p+∂v(hp)−a∂vv p)ϕdv−
(

hpϕ|V
−
R

Vmin
+hpϕ|VF

V+
R

)
+

(
a∂v pϕ|V

−
R

Vmin
+a∂v pϕ|VF

VV+
R

)+a∂v p(VF)(ϕ(VR)−ϕ(VF)

)
=0. (2.8)

The definition of H1
0(Vmin,VF) states that p(Vmin)= p(VF)=0, thus∫ VF

Vmin

(∂t p+∂v(hp)−a∂vv p)ϕdv−h(VR)ϕ(VR)
(

p(V−
R )−p(V+

R )
)

+aϕ(VR)
(
∂v p(V−

R )−∂v p(V+
R )+∂v p(VF)

)
−a∂v p(Vmin)ϕ(Vmin)=0. (2.9)

The key to the proof is selecting different test function spaces to simplify (2.9), such
that the equations identified in (2.1) and the boundary conditions delineated in (2.1) and
(2.3) are successively established. First, taking the test functions ϕ∈V1(Vmin,VF)= {ϕ∈
H1(Vmin,VF) : ϕ(VR)=ϕ(Vmin)=0}, (2.9) reduce to∫ VF

Vmin

(∂t p+∂v(hp)−a∂vv p)ϕdv=0. (2.10)
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Since p ∈ C2([Vmin,VR)∪(VR,VF]), ∂t p+∂v(hp)−a∂vv p is continuous on the interval
(Vmin,VR)∪(VR,VF), and it can be inferred from the arbitrariness of ϕ that p satisfies

∂t p+∂v(hp)−a∂vv p=0, ∀v∈ (Vmin,VR)∪(VR,VF). (2.11)

This verifies that the equation in (2.1) holds for p(v,t) within the interval, and the next
step in the proof is that the weak solution satisfies the boundary conditions in (2.1) and
(2.3). By the definition of trial function space H1

0(Vmin,VF), it is easy to see that p(v,t)
satisfies the following boundary conditions

p(Vmin,t)= p(VF,t)=0. (2.12)

Changing the test functions ϕ∈V2(Vmin,VF)= {ϕ∈H1(Vmin,VF) : ϕ(VR)= 0} and using
(2.11), (2.9) can be written as

a∂v p(Vmin)ϕ(Vmin)=0. (2.13)

Since the arbitrariness of ϕ(Vmin), we obtain

∂v p(Vmin)=0. (2.14)

Similarly, changing the test functions ϕ∈V3(Vmin,VF)= {ϕ∈H1(Vmin,VF) : ϕ(Vmin)= 0}
again and using (2.11), (2.9) is reduced into

−h(VR)ϕ(VR)
(

p(V−
R )−p(V+

R )
)
+aϕ(VR)

(
∂v p(V−

R )−∂v p(V+
R )+∂v p(VF)

)
=0. (2.15)

Since p(V−
R )= p(V+

R ) and the arbitrariness of ϕ(VR), we deduce

∂v p(V−
R )−∂v p(V+

R )+∂v p(VF)=0. (2.16)

By the definition of trace, p(v,t) satisfies boundary conditions in (2.1) and (2.3). Now, we
have proved that p(v,t) satisfies the fifth item in Definition 2.1. To conclude, we have
shown that p(v,t) is a classical solution of Eq. (2.1).

3 Numerical scheme and analysis

In this section, we present a spectral approximation for the weak solution to the Fokker-
Planck equation (2.1) and construct a fully discrete numerical scheme. Numerical solu-
tions are sought in a specific function space in which the functions satisfy the boundary
conditions and can be determined by solving the derived equation system after specify-
ing the test function space.
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3.1 A fully discrete numerical scheme based on Legendre spectral method

In this part, we construct the numerical scheme of the Fokker-Planck equation (2.1),
which is implemented in two steps. First, the spectral approximation is used for space
discretization, resulting in a system of ordinary differential equations; second, a semi-
implicit scheme is applied for time discretization. The spectral method is established
such that the numerical solution inherently satisfies the boundary conditions. Formally,
the approximate variational problem is{

Find p∈W such that∫ VF
Vmin

(∂t p+∂v(hp)−a∂vv p)ϕ=0, ∀ϕ∈V,
(3.1)

where W is the trial function space and V is the test function space. Compared to Def-
inition 2.2, the variational problem (3.1) requires a more complex trial function space,
which will be further described below. The specific form of the test function space will
be introduced in Section 3.2.

3.1.1 Construction of trial function space and space discretization

A challenging aspect of the spectral method is constructing the trial function space W
so as to satisfy the complex boundary conditions, including the discontinuous derivative
of the density function and the dynamic boundary. To that end, the trial function space
should be a subset of H1

0 wherein strong boundary derivatives can be defined. Specifi-
cally, the polynomial space that fulfills the boundary conditions in (2.1) and (2.3) can be
used as the trial function space. That is W⊆P∞(Vmin,VR)+P∞(VR,VF) and for all p∈W,
it holds that 

p(Vmin)=∂v p(Vmin)=0,
p(VF)=0,
p(V−

R )= p(V+
R ),

∂v p(V−
R )=∂v p(V+

R )−∂v p(VF),

(3.2)

where P∞(a,b) is the set of all real polynomials defined on the interval (a,b). With integra-
tion by parts and the boundary conditions (3.2) in the trial function space, the solution to
the above variational problem (3.1) agrees with the weak solution specified in Definition
2.2.

Let {ψk}∞
k=0 be a set of basis functions of W. The approximate solution of problem

(2.1) can be expanded as

p(v,t)=
∞

∑
k=0

ûk(t)ψk(v). (3.3)

The essence of constructing the trial function space W is to determine the specific form of
its basis functions {ψk}∞

k=0. This is accomplished by dividing the interval into two seg-
ments by the discontinuity point VR, utilizing a fixed number of basis functions to meet
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the dynamic boundary conditions, and employing basis functions with homogeneous
boundary conditions for each segment to improve accuracy. That is

W=W1+W2, (3.4)

where W1 is a finite-dimensional space that handles the conditions in (3.2), and W2 en-
hances accuracy within the interval and satisfies the homogeneous conditions of points
Vmin, VR, and VF, which is

p(Vmin)=∂v p(Vmin)=0,
p(V−

R )=∂v p(V−
R )=0,

p(V+
R )=∂v p(V+

R )=0,
p(VF)=∂v p(VF)=0,

∀p∈W2, (3.5)

For simplicity, it is preferable to keep the dimension of W1 as low as possible. In the
case of taking into account the function value and first derivative value, there are eight
degrees of freedom at the boundary, comprising of the function value and derivative
value at Vmin, VF, and both sides of VR. Since the five conditions in (3.2) have to be
satisfied, there are three degrees of freedom remaining. Therefore, W1 can be spanned by
three basis functions

W1=span{g1, g2, g3}, (3.6)

where

g1⇒


g1(Vmin)=0,
g1(VR)=1,
∂vg1(Vmin)=0,
∂vg1(VR)=0,

v∈ (Vmin,VR),


g1(VR)=1,
g1(VF)=0,
∂vg1(VR)=0,
∂vg1(VF)=0,

v∈ (VR,VF). (3.7)

g2⇒


g2(Vmin)=0,
g2(VR)=0,
∂vg2(Vmin)=0,
∂vg2(VR)=1,

v∈ (Vmin,VR),


g2(VR)=0,
g2(VF)=0,
∂vg2(VR)=1,
∂vg2(VF)=0,

v∈ (VR,VF). (3.8)

g3⇒


g3(Vmin)=0,
g3(VR)=0,
∂vg3(Vmin)=0,
∂vg3(VR)=0,

v∈ (Vmin,VR),


g3(VR)=0,
g3(VF)=0,
∂vg3(VR)=1,
∂vg3(VF)=1,

v∈ (VR,VF). (3.9)

The specific form of the basis functions in W1 are presented in the Appendix.
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Figure 1: The basis functions of p3 with Equation parameters Vmin =−1, VR =0, VF =1. Here, g1 and g2 are
measured using the left axis, while g3 is measured with the right axis.

The specific illustration of g1,g2, g3 are shown in Fig. 1. After the basis function of W1
is determined in this way, we set

p3=
3

∑
k=1

λkgk ∈W1. (3.10)

The boundary conditions can be well satisfied by adjusting the coefficients of g1, g2, g3 in
the following way,{

p(V−
R )= p3(V−

R )=λ1,
p(V+

R )= p3(V+
R )=λ1,


∂v p(V−

R )=∂v p3(V−
R )=λ2,

∂v p(V+
R )=∂v p3(V+

R )=λ2+λ3,
∂v p(VF)=∂v p3(VF)=λ3,

(3.11)

where p denotes the numerical solution mentioned in (3.3).
The construction of the W2 space is motivated by spectral methods for solving general

homogeneous boundary value problems. According to (3.5), the interval (Vmin,VF) is
divided into two segments by VR naturally. Assuming IL =(Vmin,VR) and IR =(VR,VF),
we further denote

X(a,b)=
{

φ∈P∞(a,b) : φ(a)= φ(b)= φ′(a)= φ′(b)=0
}

. (3.12)

X(a,b) represents the set of real polynomials defined on the interval (a,b), where the func-
tion value and derivative are zero at boundary points. So we can divide W2 into two
parts

W2=X(Vmin,VR)+X(VR,VF). (3.13)
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In the spectral methods, in order to minimize the interaction of basis functions in the
frequency space, the basis functions should take the form of adjacent orthogonal polyno-
mials [30]. Therefore, it is reasonable to use a compact combination of Legendre polyno-
mials as basis functions of X(a,b), namely,

ĥk =Hk+αkHk+1+βkHk+2+γkHk+3+ηkHk+4, k=0,1,2,··· , (3.14)

where Hk is the scaling of the kth-degree Legendre polynomial Lk

Hk(v)=Lk(x), x=
v−
(

a+b
2

)
b−a

2

, (3.15)

and the parameter {αk, βk,γk,ηk} are chosen to satisfy the boundary conditions in (3.12)

αk =0, βk =−4k+10
2k+7

, γk =0, ηk =
2k+3
2k+7

. (3.16)

After constructing the trial function space, spatial discretization will be discussed, yield-
ing the system of ordinary differential equations for the coefficients. Let {hk}∞

k=0 be the
basis functions of W2. Then the approximate solution (3.3) can be rewritten as

p(v,t)=
∞

∑
k=0

uk(t)hk(v)+
3

∑
k=1

λk(t)gk(v). (3.17)

The basis functions in (3.17) correspond to ones in (3.3) in the following way

{ψk}∞
k=0={gk}3

k=1+{hk}∞
k=0. (3.18)

And the expansion coefficients {uk(t)}∞
k=0,{λk(t)}3

k=1 are to be determined. Assuming
the initial value is to satisfy the boundary conditions (3.2), the initial expansion coeffi-
cients {uk(0)}∞

k=0, {λk(0)}3
k=1 can be obtained by the best squares approximation,

∫ VF

Vmin

(
∞

∑
k=0

uk(0)hk(v)+
3

∑
k=1

λk(t)gk(v)

)
ϕjdv=

∫ VF

Vmin

p0(v)ϕjdv, ∀ϕj ∈V. (3.19)

For a properly defined test function space, the solvability of the (3.19) is guaranteed by
the Gram-Schmidt orthogonalization of the basis functions. Note again that the specific
form of the test function space is discussed in Section 3.2. We denote the initial value
vector as

P0 =(λ1(0),λ2(0),λ3(0),u1(0),u2(0),···)T. (3.20)

It should be noted that while constructing the basis functions, we assume that the value
of N(t) is already known. In fact, N(t) is self-consistently determined in the dynamic
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process, and N(t) is part of the degrees of freedom of the solution. It follows from (3.11)
that

∂v p(VF,t)=λ3(t). (3.21)

One can rewrite the mean firing rate using (1.3) and (1.2)

N(t)=− a0λ3(t)
1+a1λ3(t)

. (3.22)

Define

Lp(v,t)=∂t p−∂v(vp)−
(

b
a0λ3(t)

1+a1λ3(t)

)
∂v p−

(
a0−a1

a0λ3(t)
1+a1λ3(t)

)
∂vv p. (3.23)

The expansion coefficients {uk(t)}∞
k=0,{λk(t)}3

k=1(t > 0) in (3.17) can be determined by
variational problem (3.1) with using the mean firing rate N(t) in (3.22):{

Find p∈W such that
(Lp,ϕj)=0, ∀ϕj ∈V,

(3.24)

where (·,·) is the inner product of the usual L2 space.
The nonlinear system of ordinary differential equations of the above scheme is ob-

tained by substituting (3.17) into (3.24). More precisely, setting

P=(λ1(t),λ2(t),λ3(t),u1(t),u2(t),···)T,

sjk =

{
(gk,ϕj), 1≤ k≤3,
(hk−4,ϕj), k≥4,

S=(sjk)j,k=1,2,···,

ajk =

{
(∂v(vgk),ϕj), 1≤ k≤3,
(∂v(vhk−4),ϕj), k≥4,

A=(ajk)j,k=1,2,···,

bjk =

{
(∂vgk,ϕj), 1≤ k≤3,
(∂vhk−4,ϕj), k≥4,

B=(bjk)j,k=1,2,···,

cjk =

{
(∂vvgk,ϕj), 1≤ k≤3,
(∂vvhk−4,ϕj), k≥4,

C=(cjk)j,k=1,2,···.

(3.25)

The nonlinear system (3.24) becomes

S∂tP=

(
A+

(
b

a0λ3(t)
1+a1λ3(t)

)
B+

(
a0−a1

a0λ3(t)
1+a1λ3(t)

)
C
)

P. (3.26)

After the spatial discretization, the solution of problem (2.1) converts into the solution of
the nonlinear ordinary differential equation system of initial value problem (3.26), (3.20).
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3.1.2 Fully discrete numerical scheme

To finish the construction of the numerical scheme, we need to truncate the approximate
solution (3.17) to a finite-dimensional one and perform time discretization. The finite-
dimensional form of (3.12) is denoted as

XN(a,b)=
{

φ∈PN+3(a,b) : φ(a)= φ(b)= φ′(a)= φ′(b)=0
}

, (3.27)

where PN(a,b) is the set of all real polynomials of degree no more than N and the dimen-
sion of PN(a,b) is N+1. It is evident that a non-trivial polynomial with the homogeneous
boundary conditions in (3.27) must be of at least fourth degree, thus leading to a reduced
dimension of the set in (3.27). The polynomial space in (3.27) is selected as PN+3(a,b) so
that the dimension of the XN(a,b) space is N. Then the trial function space can be truncated
as

WN =XN(Vmin,VR)+XN(VR,VF)+W1. (3.28)

Assuming {hL
k }

N−1
k=0 is a set of basis functions of XN(Vmin,VR) and {hR

k }
N−1
k=0 is a set of basis

functions of XN(VR,VF). {ψk}2N+3
k=1 = {hL

0 ,··· ,hL
N−1,hR

0 ,··· ,hR
N−1,g1,g2,g3} is a basis of WN .

Then the numerical solution pN(v,t) can be expressed as

pN(v,t)=
N−1

∑
k=0

uL
k (t)h

L
k (v)+

N−1

∑
k=0

uR
k (t)h

R
k (v)+

3

∑
k=1

λk(t)gk(v)=
2N+3

∑
k=1

ûk(t)ψk(v). (3.29)

The initial condition for the expansion coefficients {ûk(0)}2N+3
k=0 can be obtained by the

least square approximation,

∫ VF

Vmin

2N+3

∑
k=1

ûk(0)ψk(v)ϕjdv=
∫ VF

Vmin

p0(v)ϕjdv, ∀ϕj ∈VN . (3.30)

Suppose the truncated test function space is denoted by VN , which shall be specified later.
The expansion coefficients {ûk(t)}2N+3

k=0 (t > 0) can be determined by the semi-discrete
variational formulation {

Find pN ∈WN such that
(LpN ,ϕj)=0, ∀ϕj ∈VN .

(3.31)

For time discretization, we use a semi-implicit method. The interval [0,Tmax] is divided
into nt equal sub-intervals with size

∆t=
Tmax

nt
, (3.32)

and the grid points can be represented as follows

tn =n∆t, n=0,1,2,··· ,nt. (3.33)
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The semi-implicit scheme of (3.23) is denoted by

L̃pN(v,tn+1)=
pN(v,tn+1)−pN(v,tn)

∆t
−∂v(vpN(v,tn+1))+bN(tn)∂v pN(v,tn+1)

−a(N(tn))∂vv pN(v,tn+1)=0, n=0,1,··· ,nt−1. (3.34)

Note that, the mean firing rate N(tn) is treated explicitly, but the rest of the terms are
implicit. Such a time discretization naturally avoids the use of a nonlinear solver. Then
we can obtain the fully discrete scheme of the variational formulation (3.31): for each
time step {

Find pN ∈WN such that
(L̃pN ,ϕj)=0, ∀ϕj ∈VN .

(3.35)

More precisely, setting

P̂n =(û1(tn),û2(tn),··· ,û2N+3(tn))T,

ŝjk =(ψk,ϕj), Ŝ=(ŝjk)k=1,···,2N+3

âjk =(∂v(vψk),ϕj), Â=(âjk)k=1,···,2N+3

b̂jk =(∂vψk,ϕj), B̂=(b̂jk)k=1,···,2N+3

ĉjk =(∂vvψk,ϕj), Ĉ=(ĉjk)k=1,···,2N+3,

(3.36)

the variational formulation (3.35) reduces to(
Ŝ
∆t

− Â+bN(tn)B̂−a(N(tn))Ĉ

)
P̂n+1=

Ŝ
∆t

P̂n. (3.37)

3.2 Stability and the choice of test functions

The dynamic boundary conditions also give rise to challenges in choosing proper finite
dimensional test function spaces. As we shall elaborate below, the construction of the
trial function is so delicate that we can not simply choose the test functions only out of
accuracy. Our goal is to find test functions that result in a stable evolution system in the
discrete setting, and we hope the total mass is conserved with satisfactory accuracy.

To this end, two propositions are introduced that relate the test functions to the con-
servation and stability of the semi-discrete scheme (3.31) in the linear case. However, the
spectral method is often not able to completely ensure the conservation of mass, there-
fore it is not serving as a rigid criterion. The stability of the numerical solution is instead
analyzed through its long-term asymptotic behavior in the linear regime, which will be
discussed in greater detail below. Following this, three different test function spaces are
analyzed respectively.

When analyzing the impact of the test function space, we are to consider the semi-
discrete system (3.31). Thanks to the definition in (3.36), the system can reduce to

Ŝ∂tP̂=
(

Â−(bN(t)) B̂+(a(N(t)))Ĉ
)

P̂, P̂(0)= P̂0, (3.38)
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where P̂ = (û1(t),û2(t),··· ,û2N+3(t))T, P̂0 = (û1(0),û2(0),··· ,û2N+3(0))T. For simplicity,
we study the case of a linear equation that is b = 0 and a(N) = 1. Then the nonlinear
system (3.38) becomes a linear system

Ŝ∂tP̂=(Â+Ĉ)P̂, P̂(0)= P̂0. (3.39)

Considering the unique solvability of ordinary differential equations, we assume that the
matrices Ŝ, Â, and Ĉ are square matrices of order 2N+3 and the matrix Ŝ is invertible.
Let K̂= Ŝ−1(Â+Ĉ), then the system (3.39) can be rewritten as

P̂t = K̂P̂. (3.40)

Let P̂∞ =(û∞
1 ,û∞

2 ,··· ,û∞
2N+3)

T be the steady-state solution of the equation. It holds that

K̂P̂∞ =0. (3.41)

The steady-state equation (3.41) has a nonzero solution if and only if the matrix K̂ has
at least one zero eigenvalue. With a prescribed test function space, the properties of
the scheme can be assessed by inspecting the elements of matrix K̂, allowing us to fully
characterize the system’s behavior. The following propositions serve to elucidate this
connection.

Proposition 3.1 (Mass conservation). Consider the Fokker-Planck equation (2.1) with a=
1, b= 0 and the semi-discrete scheme (3.40) where the dimension of test function space
VN is 2N+3. The following relations hold:

1. Matrix K̂ has zero eigenvalue if and only if the test function space VN contains
constant functions.

2. If the matrix K̂ has zero eigenvalue, then the total mass of the numerical solution
solved by system (3.39) does not change with time. That is∫ VF

Vmin

∂t pN(v,t)dv=0, (3.42)

where pN(v,t) is defined in (3.29).

Proof. Proof of (1). If the test function space VN contains constants, without loss of gen-
erality, let ϕj =1. Using the definition in (3.36), ∀φi ∈WN , we can derive that

∫ VF

Vmin

∂v(vψi)dv=vψi|
V−

R
Vmin

+vψi|VF
V+

R
=0,

∫ VF

Vmin

∂vvψidv=∂vψi|
V−

R
Vmin

+∂vψi|VF
V+

R
=0.

(3.43)
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So the elements of the jth row of the matrices A and C are all zeros. Since Ŝ is invertible,
S−1 is a full-rank matrix. Then

rank(K̂)= rank(Ŝ−1(Â+Ĉ))= rank(Â+Ĉ)<2N+3. (3.44)

So K̂ has a zero eigenvalue.
If matrix K̂ has a zero eigenvalue, then matrix (Â+Ĉ) has zero eigenvalue for Ŝ is

invertible. Therefore, the matrix (Â+Ĉ) can make the elements in the jth row all zero
through the matrix transformation. Notice that, performing matrix row transformation
on matrix (Â+Ĉ) corresponds to replacing the test function in linear system (3.39) with
the linear combination of the original test function. Without loss of generality, we assume
that the elements in the jth row of matrix (Â+Ĉ) are all zeros and the corresponding test
function is ϕ. Using the definition in (3.36), ∀φi ∈WN , it holds that

∫ VF

Vmin

(∂v(vψi)+∂vvψi)ϕdv=−
∫ VF

Vmin

(vψi+∂vψi)∂vϕdv=0. (3.45)

Since the above formula holds for all ψi ∈WN , so ∂vϕ=0, that is ϕ=constant.

Proof of (2). From (1), we know that when the matrix K̂ has a zero eigenvalue, the
constant function C1∈VN . Substituting ϕj =1 into (3.31) with a=1, b=0,

∫ VF

Vmin

∂t pNdv−
∫ VF

Vmin

(∂(vpN)+∂vv pN)dv
(3.43)
= ∂t

∫ VF

Vmin

pNdv=0. (3.46)

So the total mass does not change over time.

Proposition 3.2 (Stability). Consider the Fokker-Planck equation (2.1) with a=1, b=0 and
the semi-discrete scheme (3.40). A necessary condition for the stability of the method is
that all the eigenvalues of the matrix K̂ are non-positive.

Note that a modified stability criterion is proposed here because the traditional stabil-
ity conclusion cannot be applied due to the complexity of the equation. In the linear case,
the equation has a unique steady state [3], and the solution of the equation will converge
exponentially to the steady state, so the discretized kinetic equation can only have non-
positive eigenvalues. When there are positive eigenvalues, it means that the numerical
scheme is unstable.

Following the theoretical analysis, we can now discuss the specific test function space.
Our goal is to select suitable test function spaces such that the constructed numerical
scheme is stable and preserves the original properties of the Fokker-Planck equation (2.1)
to the greatest extent, such as mass conservation. The Galerkin method is widely used in
spectral methods [31]. Consequently, Legendre-Galerkin Method is proposed below.
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Figure 2: When the test function space is ṼN (3.48), the numerical method might be unstable. Left: The
maximum eigenvalue of matrix K̂ at di�erent N. Right: A typical unstable solution. Equation parameters
a=1, b=0 with Gaussian initial condition v0 =−1, σ2

0 =0.5 and N=11, ∆t=0.001.

Legendre-Galerkin Method (LGM). The test function space is chosen to be the same
as the trial function space. Applied to the semi-discrete method (3.31) or its fully discrete
version (3.35) as

VN =WN , (3.47)

where VN is test function space, and WN is trial function space defined in (3.28), we
obtain a Legendre-Galerkin Method (LGM for short) for the model (1.1).

The LGM method is numerically stable but total mass is not well conserved in dynam-
ics. When constructing the trial function space, some low-order polynomials, especially
constants, are discarded in order to satisfy the boundary conditions. For the LGM, the
test function space does not contain constants, which fails to ensure mass conservation
as stated in Proposition 3.1. Hence, this method can be used for finite-time simulations,
yet it is unsuitable for capturing long-time behavior or multiscale problems.

According to Proposition 3.1, to improve the mass conservation property of the LGM,
it seems that we may replace one of the basis functions in the test function space with the
constant function 1. Say, we may consider the modified test function space

ṼN =WN−{ψk}+{1}, (3.48)

where {ψk}(k=1,··· ,2N+3) is the basis function of the WN space.
In this case, the mass of the numerical solution appears invariant. However, the pres-

ence of positive eigenvalues for some N in the matrix K̂ as depicted in Fig. 2, renders the
method unstable. This observation agrees with Proposition 3.2. In fact, Fig. 2 shows that
the maximum eigenvalue of the matrix K̂ is significantly positive large for when N is odd
and when the modified test function space ṼN is used. Hence, we need to resort to other
strategies for enhancing mass conservation.
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Figure 3: Equation parameters a=1, b=0 with Gaussian initial condition v0 =−1, σ2
0 =0.5 and N=10, ∆t=

0.001, Tmax=5. Left: Variation of total mass with time by the LGM. Right: Variation of total mass with time
by the MPGM.

Modified Petrov-Galerkin Method (MPGM). We propose an alternative formulation
of the test function space by extending the test function space with one additional basis
function 1. As a consequence, the dimension of the test function space is larger than that
of the trial function space, which results in an overdetermined system, and we solve such
a system using the Least-Squares method.

More precisely, for the semi-discrete method (3.31) or its fully discrete version (3.35),
constants are added to form an augmented test function space

VN =WN+{1}. (3.49)

where WN is trial function space defined in (3.28), and we thus obtain the modified
Petrov-Galerkin Method (MPGM for short).

Note that, the dimension of the test function space is higher than that of the trial
function space by 1. Multiplying (3.39) from the left by ŜT, the least square solution
satisfies

ŜT Ŝ∂tP̂= ŜT(Â+Ĉ)P̂. (3.50)

The matrix K̂ in (3.40) can be written as

K̂=(ŜT Ŝ)−1(ŜT(Â+Ĉ)). (3.51)

The numerical solution is not completely mass-conserving due to the use of the least-
squares method. But compared with the LGM, the mass of the numerical solution of the
MPGM changes very little over time, as shown in Fig. 3. With extensive tests, the matrix
K̂ has no positive eigenvalues, and the MPGM is numerically stable.

In conclusion, we have proposed two methods, i.e. the LGM and the MPGM, for
the model problem (1.1), each possessing different advantages and therefore should be
used in a flexible manner. The MPGM is preferred for simulating long-time behavior and
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testing the asymptotic preserving properties of the model, as the mass of the numerical
solution from the LGM is significantly diminished in a long time. On the other hand, the
LGM can be utilized for O(1) time simulations with verifiable order of convergence, and
it does not involve the error due to the least square approximation.

4 NNLIF with learning rules

In this Section, we consider the NNLIF model with a learning rule which is an extension
of the Fokker-Planck equation (1.1), involving synaptic weights and the Hebbian learning
rule. This is a novel and intriguing model and the dynamics of the membrane potential
v and the synaptic weight w are on different time scales, making numerical simulation
far more challenging. In order to better understand this model and verify the generality
of the method proposed in Section 3, we further explore this model from a numerical
perspective.

4.1 Model introduction

Compared with the simplest form of NNLIF model, the NNLIF model with learning
rules introduces a new variable, the synaptic weight w, which is also the connectivity
of the network b mentioned in (1.3). Furthermore, an external input function I(w,t) is
added to the drift coefficient h

h(w,N(t))=−v+ I(w,t)+wσ(N(t)). (4.1)

The function σ(·) represents the response of the network to the total activity, usually
taking σ(N)=N. Then the Fokker-Planck equation without learning rules can be written
as 

∂t p+∂v((−v+ I(w,t)+wσ(N̄(t)))p)−a∂vv p=0, v∈ (−∞,VF]/{VR},
p(v,w,0)= p0(v,w), p(−∞,w,t)= p(VF,w,t)=0,
p(V−

R ,w,t)= p(V+
R ,w,t), ∂v p(V−

R ,w,t)=∂v p(V+
R ,w,t)+ N(w,t)

a ,

(4.2)

where, p(v,w,t) describes the probability of finding a neuron at voltage v, synaptic weight
w and given time t. The diffusion coefficient a is the same as in (1.3). The subnetwork
activity N(w,t) and total activity N̄(t) are defined as

N(w,t)=−a
∂p
∂v

(VF,w,t)≥0, N̄(t)=
∫ +∞

−∞
N(w,t)dw. (4.3)

Then we define the probability density of finding a neuron at synaptic weight w and
given time t by

H(w,t)=
∫ VF

−∞
p(v,w,t)dv,

∫ ∞

−∞
H(w,t)dw=1. (4.4)
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In this case of no learning rule, the function H(w,t) is time-independent because the
distribution of synaptic weights in (4.2) is fixed. The input signal I(w,t) can be reflected
by an output signal related to network activity N(w,t). Next, we employ the learning
rules of [26] to modulate the distribution of synaptic weights H, enabling the network to
discriminate specific input signals I by choosing an apposite synaptic weight distribution
H that is adapted to the signal I.

In [26], the authors choose learning rules inspired by the seminal Hebbian rule and
assume synaptic weights described with a single parameter w and the subnetworks in-
teract only via the total rate N̄. They elucidate that all subnetworks parameterized by w
can vary their intrinsic synaptic weights w according to a function Φ that is based on the
intrinsic activity N(w) of the network and the total activity of the network N̄. Then, they
give the generalization choice of Hebbian rule

Φ(N(w),N̄)= N̄N(w)K(w), (4.5)

where K(·) represents the learning strength of the subnetwork with synaptic weight w.
Adding the above choice of learning rule, the Fokker-Planck equation with learning rules
is given by

∂p
∂t

+
∂

∂v
[(−v+ I(w,t)+wσ(N̄(t)))p]+ε

∂

∂w
[(Φ−w)p]−a

∂2 p
∂v2 =N(w,t)δ(v−VR). (4.6)

In order to better apply the numerical scheme and study the learning behavior of the
model, we consider Eq. (4.6) for time rescaling t→ t/ε and convert δ-function to dynamic
boundary condition such as:

∂p
∂t

+
∂

∂w
[(N̄(t)N(w,t)K(w)−w)p]=

1
ε

{
a

∂2 p
∂v2 −

∂

∂v
[(−v+ I(w,t)+wσ(N̄(t)))p]

}
,

p(v,w,0)= p0(v,w),p(VF,w,t)= p(−∞,w,t)= p(v,±∞,t)=0,
p(V−

R ,w,t)= p(V+
R ,w,t), ∂

∂v p(V−
R ,w,t)= ∂

∂v p(V+
R ,w,t)+ N(w,t)

a .
(4.7)

Here, p0(v,w) is initial condition and the probability density function p(v, t) should sat-
isfy the condition of conservation of mass

∫ ∞

−∞

∫ VF

−∞
p(v,w,t)dvdw=

∫ ∞

−∞

∫ VF

−∞
p0(v,w)dvdw=1. (4.8)

Despite some research on model (4.7) as indicated by the theoretical properties presented
in [26] and the numerical analysis and experiments in [18], it is still a relatively new model
with limited established knowledge. In this paper, the numerical method proposed in
Section 3 is used to further investigate the learning behaviors of this model numerically.
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4.2 Numerical scheme

Now, we describe the numerical scheme for (4.7). We choose the calculation interval as
[Vmin,VF]×[Wmin,Wmax]×[0,Tmax] and suppose the density function is practically neg-
ligible out of this region. The spectral method is employed for discretization in the
context of v, the finite volume method is utilized for w-wise discretization, and the fi-
nite difference method is applied for t-wise discretization. So we divide the interval
[Wmin,Wmax],[0,Tmax] into nw,nt equal sub-intervals with size

∆w=
Wmax−Wmin

nw
,∆t=

Tmax

nt
. (4.9)

Then the grid points can be represented as follows

wj =Wmin+ j∆w, j=0,1,2,··· ,nw,

tn =n∆t, n=0,1,2,··· ,nt.
(4.10)

For the v-direction discretization, we take the same scheme as in Section 3.1. The approx-
imate solution is expanded as

pN(v,w,t)=
2N+3

∑
k=1

ûk(w,t)ψk(v). (4.11)

The initial condition for the expansion coefficients {ûk(w,0)}2N+3
k=0 can be obtained by the

least square approximation,

∫ VF

Vmin

2N+3

∑
k=1

ûk(wj,0)ψk(v)ϕidv=
∫ VF

Vmin

p0(wj,v)ϕidv, j=0,1,2,··· ,nw, ∀ϕi ∈VN . (4.12)

From the properties of the basis functions (3.11), subnetwork activity N(w,t) can be ex-
pressed as

Nn
j =N(wj,tn)=−aû2N+3(wj,tn). (4.13)

And we apply the simplest rectangular numerical integration rule to discretize the total
activity N̄(t)

N̄n =∆w
nw

∑
j=0

Nn
j . (4.14)

For the w-direction discretization, we inherit the idea from [18] which takes the following
explicit flux construction adapted from Godunov’s Method

Φn
i,j+ 1

2
=


min

{
Φn

i,j,Φ
n
i,j+1

}
, P̂n

i,j ≤ P̂n
i,j+1,

max
{

Φn
i,j,Φ

n
i,j+1

}
, P̂n

i,j > P̂n
i,j+1,

j=0,··· ,nw−1,

0 j=−1,nw,

(4.15)
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where
Φn

i,j =
(

N̄nNn
j K
(
wj
)
−wj

)
P̂n

i,j for j=0,··· ,nw. (4.16)

P̂n
i,j is the coefficients of the basis functions in (4.11)

P̂n
i,j = ûi(wj,tn). (4.17)

Define

pn
N,j =

2N+3

∑
k=1

ûk(wj,tn)ψk(v),

qn
N,j+ 1

2
=

2N+3

∑
k=1

Φn
k,j+ 1

2
ψk(v).

(4.18)

After using a semi-implicit method for time discretization, we obtain the fully discrete
scheme as follows:

pn+1
N,j −pn

N,j

∆t
+

qn
N,j+ 1

2
−qn

N,j− 1
2

∆w
=

1
ε

{
a

∂2 pn+1
N,j

∂v2 − ∂

∂v

[
(−v+ I(wj)+wjσ(N̄(tn)))pn+1

N,j

]}
.

(4.19)
When the test function space VN is given, the coefficients of the approximate solution
(4.11) for each t and w step can be obtained by the following linear system

Ŝ(P̂n+1
j −P̂n

j )

∆t
+

Ŝ(Φn
j+ 1

2
−Φn

j− 1
2
)

∆w

+
1
ε

{
−ÂP̂n+1

j +
(

I(wj,tn)+wjσ(N̄(tn))
)

B̂P̂n+1
j −aĈP̂n+1

j

}
=0, (4.20)

where
P̂n

j =
(
û1(wj,tn),û2(wj,tn),··· ,û2N+3(wj,tn)

)T ,

Φn
j+ 1

2
=(Φn

1,j+ 1
2
,Φn

2,j+ 1
2
,··· ,Φn

2N+3,j+ 1
2
)T,

(4.21)

and the matrix Ŝ, Â,B̂,Ĉ are defined in (3.36).
This numerical scheme is conserved naturally in the w direction, however, strict con-

servation of mass in the v direction is not achieved when the test function space is selected
based on Section 3.2. When ε is small enough, the asymptotic preserving properties of
the model can only be verified through the use of MPGM.

5 Numerical tests

In this section, we give numerical tests to verify the properties of the proposed schemes
and demonstrate some explorations of the model. Numerical solutions for the initial
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three subsections are obtained by LGM; results for the MPGM approach are similar ex-
cept for Section 5.1, which are thus omitted, and numerical solutions for Section 5.4 are
obtained by MPGM, as variations in the time scale require the scheme to be asymptotic
preserving.

The tests are structured as follows. In Section 5.1, the convergence order of the
method is tested in both the NNLIF model and the NNLIF model with learning rules.
In Section 5.2, we validate the efficiency of the spectral method by comparing it to exist-
ing methods. In Section 5.3, we test a few properties of the NNLIF model. In Section 5.4,
we test the learning and discrimination abilities of NNLIF model with learning rules for
the periodic input function.

5.1 Order of accuracy

In this part, we test the order of accuracy of the proposed scheme based on the NNLIF
model and the NNLIF model with learning rules. Since the exact solution is unavailable,
we choose the numerical solution pe of the finite difference method [19] with sufficient
accuracy to replace the exact solution. Then, we calculate the order of the error by

Oh,Lp = log2

∥ph−pe∥p∥∥∥p h
2
−pe

∥∥∥
p

, (5.1)

where ph is the numerical solution with step length h.
For NNLIF model (2.1), we choose VF = 2, VR = 1, Vmin =−4, a = 1, b = 3 and the

Gaussian distribution

pG(v)=
1√

2πσ0M0
e
− (v−v0)

2

2σ2
0 , (5.2)

as the initial condition with v0=−1 and σ2
0 =0.5, M0 is a normalization factor such that

∫ VF

Vmin

pG(v)dv=1. (5.3)

The numerical solution is computed till time t=0.2. Errors in both L∞ and L2 norm are ex-
amined with fixed N=12 and different ∆t in Table 1. It should be noted that the number
of basis functions is not N, but rather 2N+3, as shown in Eq. (3.29). For the order of ac-
curacy in the v direction, we choose the time step size ∆t=10−5. Errors in the L2 norm are
examined with different N. The logarithm of the error versus N is plotted in Fig. 4. We
remark that when testing the order of spatial convergence, the results present a zig-zag
decreasing profile as N increases, which is a common phenomenon for spectral methods.
We thus plot the errors for odd and even numbers of N, respectively. For each scenario,
we clearly observe the spectral convergence as the number of spatial basis functions in-
creases. We remark that we have also repeated the tests for non-constant a(a0=1,a1=0.1),
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Table 1: Error and order of accuracy of the proposed numerical scheme for NNLIF model with di�erent temporal
sizes. The parameter N is �xed as N=12.

∆t ∥pN−pe∥∞ O∆t,L∞ ∥pN−pe∥2 O∆t,L2

0.04 3.880e-03 0.9520 1.868e-03 0.9508
0.02 2.005e-03 0.9792 9.662e-04 0.9617
0.01 1.017e-03 0.9926 4.961e-04 0.9287

0.005 5.111e-04 - 2.606e-04 -

Figure 4: Logarithm of the error of the proposed numerical scheme for NNLIF model with di�erent N. The
temporal size is �xed as ∆t=10−5. Left: N is odd; Right: N is even.

and the numerical performances in the convergence tests are very similar, hence we omit
these results.

For NNLIF with learning rules model (4.7), we choose VF=2, VR=1, Vmin=−4, a=1,
ε=0.5, Wmin=−1.1, Wmax=0.1, σ(N̄)= N̄, I(w)=0 and initial condition

pinit=

 1√
2πσ0

e
− (v−v0)

2

2σ2
0 sin2(πw), −1<w<0,

0, otherwise,
(5.4)

with v0=−1 and σ2
0 =0.5.

The numerical solution is computed till time t= 0.1. For t direction and w direction,
we fix ∆w

∆t = 1, N = 16. Considering that both the t direction and the w direction are
theoretically first-order accurate, as well as the stability factor, it is reasonable to jointly
test the order of accuracy. Errors in both L1 and L2 norm are examined with different
∆t and ∆w in Table 2. For v direction, we fix ∆w=∆t= 10−5. Errors in the L2 norm are
examined with different N. The logarithm of the error versus N is plotted in Fig. 5.

The results indicate that the scheme shows first-order accuracy in time and exponen-
tial convergence in space for the NNLIF model; first-order accuracy in the w, t direction
and exponential convergence in the v direction for the NNLIF model with learning rules.
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Table 2: Error and order of accuracy of the proposed numerical scheme for NNLIF model with learning rules
with di�erent ∆w and ∆t. The parameter N is �xed as N=16.

∆t ∆w ∥pN−pe∥1 O∆t,L1 ∥pN−pe∥2 O∆t,L2

0.02 0.02 1.599e-03 1.04 3.234e-03 1.07
0.01 0.01 7.755e-04 0.99 1.536e-03 0.97

0.005 0.005 3.893e-04 1.01 7.812e-04 1.05
0.0025 0.0025 1.926e-04 - 3.757e-04 -

Figure 5: Logarithm of the error of the proposed numerical scheme for NNLIF model with learning rules with
di�erent N. The temporal size is �xed as ∆t=10−5. Left: N is odd; Right: N is even

5.2 Simulation time comparison

In this part, we compare the CPU time between the proposed spectral method and the
finite difference method [19], to show that our scheme has a significant computational
time advantage with the same level of accuracy.

We choose NNLIF model with parameters VF = 2, VR = 1, Vmin =−4, a = 1, b = 0.5,
∆t = 5×10−4 and the Gaussian initial condition with v0 = 0, σ2

0 = 0.25. The numerical
solution is computed till time t = 0.5. The results of the spectral method and the finite
difference method are shown in Table 3 and Table 4.

Table 3: Errors using the spectral method with di�erent numbers of basis functions.

N ∥·∥∞ ∥·∥1 CPU Time (s)
5 5.15e-02 1.58e-02 0.026
10 3.33e-03 2.85e-04 0.030
15 9.71e-05 2.51e-05 0.053
20 1.30e-06 3.76e-07 0.071
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Table 4: Errors using the �nite di�erence method with di�erent spatial grid sizes.

h ∥·∥∞ ∥·∥1 CPU Time (s)
1/4 3.01e-03 7.09e-04 0.031
1/8 9.69e-04 2.18e-04 0.073

1/16 2.79e-04 6.18e-05 0.157
1/32 7.54e-05 1.64e-05 0.348
1/64 1.97e-05 4.21e-06 2.801
1/128 4.41e-06 1.12e-06 11.971

These tables clearly indicate that to achieve the same level of accuracy, the spectral
method is more efficient in terms of the simulation time, and the advantage is more no-
ticeable when the accuracy level is higher.

5.3 Global solution and blow-up in NNLIF model

5.3.1 Blow up

In [3], the authors find the solution may blow up in finite time with the suitable initial
conditions for the excitatory network. They show that whenever the value of b > 0 is,
if the initial data is concentrated enough around v=VF, then the defined weak solution
in Definition 2.1 of [3] does not exist for all times. In the numerical simulation, we take
VF=2, VR=1, Vmin=−4. Fig. 6 demonstrates the blow-up phenomenon in the scenario of
large connectivity, while Fig. 7 depicts the same phenomenon with the initial condition
concentrated at VF. It can be seen that when the blow-up phenomenon is about to occur,
the density function p(v,t) is increasingly concentrated and sharp at reset point VR and
the firing rate N(t) is growing rapidly.

Figure 6: Equation parameters a=1, b=3 with Gaussian initial condition v0 =−1, σ2
0 =0.5. Left: evolution of

�ring rate N(t). Right: density function p(v,t) at t=2.95,3.15,3.35.
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Figure 7: Equation parameters a=1, b=1.5 with Gaussian initial condition v0=1.5, σ2
0 =0.005. Left: evolution

of �ring rate N(t). Right: density function p(v,t) at t=0.0325,0.0365,0.0405.
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Figure 8: Changes of the coe�cients of the �rst few terms in the expansion formula (3.29) during blow up.
Left: evolution of the coe�cients {uL

k ,uR
k }

2
k=0. Right:evolution of the coe�cients {λk}3

k=1.

For spectral methods, the approximate solution of the density function is dependent
on the coefficients of the basis functions. We aim to further investigate how the coeffi-
cients change when the blow-up phenomenon is about to occur. We choose VF=2, VR=1,
Vmin=−4, a=1, b=1.5 in equation and N=20, ∆t=10−5.

Recall that

λ3(t)=∂v p(VF,t)=−N(t)
a

, ∂v p(V+
R ,t)=λ2(t)+λ3(t). (5.5)

Therefore, λ2 and λ3 are directly influenced by the firing rate. Due to the use of global
basis functions, as the firing rate N(t) increases, all the basis functions are affected. In
response to the change of λ3, λ2 and the coefficients of the basis functions in W2 change
accordingly, respectively controlling the derivative value on both sides of point VR and
the function value in the interval. Fig. 8 show the change of coefficients {uL

k ,uR
k }2

k=0,
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{λk}3
k=1 in (3.29) as time involves. It can be seen from the figure that the changes in

λ2 and λ3 are most obvious, while the coefficients of all basis functions in W2 space are
affected but the changes are relatively small.

5.3.2 Relative entropy

As we have mentioned, since little is known about the properties of the solutions of the
Fokker-Planck equation (1.1), there is a lack of complete understanding of the long-time
asymptotic behavior in the continuous case. In [3], they studied relative entropy theory
for linear problem a1=b=0, which implies exponential convergence to equilibrium. The
relative entropy is given by

Ie =
∫ VF

−∞
G
(

p(v,t)
p∞(v)

)
p∞(v)dv, (5.6)

which can be shown to be decreasing in time, where G(·) is a smooth convex function and
p∞(v) represents the stationary solution. In this part, we numerically verify the relative
entropy theory. The numerical relative entropy is given by

S(t)=
∫ VF

VL

G
(

pN(v,t)
p∞(v)

)
p∞(v)dv. (5.7)

We take VF=2, VR=1, Vmin=−4 and consider nonlinear cases with a0=1, a1=0, b=−0.5
and a0=1, a1=0.1, b=0. We choose the numerical solution of a sufficiently long time as
the stationary solution p∞(v) and the Gaussian initial condition v0=−1, σ2

0 =0.5. Figs. 9
and 10 show the time evolution of the firing rate and the numerical relative entropy for
these cases.

As shown in [3], there may be two stationary solutions for the system of b> 0. For
example, when a(N(t))=1 and b=1.5, there are two different steady states whose firing

Figure 9: Equation parameters a=1, b=−0.5 with Gaussian initial condition v0=−1, σ2
0 =0.5. Left: evolution

of �ring rate N(t). Right: evolution of relative entropy S(t) with G(x)= (x−1)2

2 .
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Figure 10: Equation parameters a0 =1, a1 =0.1, b=0 with Gaussian initial condition v0 =−1, σ2
0 =0.5. Left:

evolution of �ring rate N(t). Right: evolution of relative entropy S(t) with G(x)= (x−1)2

2 .

Figure 11: Equation parameters a= 1, b= 1.5 with Gaussian initial condition v0 =−1, σ2
0 = 0.5. In this case,

the model has two stationary states with �ring rates N∞ =0.1924 and N∞ =2.319. Left: evolution of relative

entropy S(t) with G(x)= (x−1)2

2 for stable state with N∞ = 0.1924. Right: evolution of relative entropy S(t)

with G(x)= (x−1)2

2 for unstable state with N∞ =2.319.

rates are N∞=2.319 and N∞=0.1924. Given the firing rate N∞, the expression of p∞(v)is
given by

p∞(v)=
N∞

a(N∞)
e−

h(v,N∞)2

2a(N∞)

∫ VF

max{v,VR}
e

h(ω,N∞)2

2a(N∞) dω, (5.8)

which is the stationary solution when we calculate the relative entropy for multiple
steady-state problems. The results are shown in Fig. 11 with other parameters VF=2, VR=
1, Vmin=−4, where the steady state with a larger firing rate N∞=2.319 is unstable while
the stationary solution with a lower firing rate N∞ = 0.1915 is stable. We see that the
relative entropy decreases with time for the stable state, while the other one does not.
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5.4 Learning and testing in NNLIF model with learning rules

In this part, we consider the learning and discrimination abilities in NNLIF model with
learning rules. In [26], the authors proposed a two-phase test to illustrate the discrimina-
tion property:

Learning phase

1. An heterogeneous input I(w) is presented to the system, when the learning process
is active. The initial data is supported on inhibitory weights and the learning rule is
determined for the present weights by −N(w)N̄ by taking K(w)=−1 if w≤0.

2. After some time, the synaptic weight distribution H(w,t) converges to an equilib-
rium distribution H∗

I (w), which depends on I.

Testing phase

1. The learning process is now switched off, i.e. there is no w-direction convection,
and a new input J(w) is presented to the system.

2. After some time, the solution pJ(v,w,t) reaches an equilibrium p∗J (v,w), which is
characterized by the output signal N∗

J (w) which is the neural activity distribution across
the heterogeneous populations.

Some numerical explorations of the learning behavior and discriminative properties
of the model have been done in [18, 26]. When the learning phase is over, in addition to
the synaptic weight distribution H(w,t), the equilibrium state NI(w) of the sub-network
activity N(w,t) can also be obtained, which we call the prediction signal. In the previous
work on the time-independent input function I(w) for the learning phase [18, 26], the
prediction signal NI(w) is like a triangle depending on the input function I(w) of the
learning phase. After the testing phase when the learning input I(w) and testing input
J(w) are the same, the output signal N∗

J (w) is like a triangle that matches the prediction
signal NI(w); but when I(w) and J(w) are different, the output signal is not in a regular
shape.

They explore learning and discriminative power in the model only if the input func-
tion is constant in time. In our work, we plan to explore how the model would react to
a time-varying input signal through numerical experiments, and there have been studies
in the field of neuroscience surrounding time-varying input [20]. Especially, we consider
input functions that are time-periodic and explore the effect of oscillation periods on the
learning ability of the model. To this aim, we have designed 4 sets of experiments, pro-
gressively revealing the nature of its learning behavior.

Test 1. Synchronizing with oscillating inputs. We choose the testing input functions

I1=π− 1
4 e−

1
2 (10w+5)2

+2,

I2=π− 1
4
√

2(10w+5)e−
1
2 (10w+5)2

+2,
(5.9)
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Figure 12: Equation parameters a=1 and ε=0.1. The evolution of total �ring rate N̄. Left: the input function
period D=1. Middle: the input function period D=0.5. Right: the input function period D=0.2.

and the learning input function is periodically switching between those two

I(w,t)= a(t)I1(w)+b(t)I2(w), (5.10)

where

a(t)=
1+cos( 2πt

D )

2
,

b(t)=1−a(t).
(5.11)

For other parameters, we choose VF = 2, VR = 1, Vmin = 1, a = 1, ε = 0.1, Wmin =−1.1,
Wmax=0.1, Tmax=4, σ(N̄)= N̄, ∆t=2.5×10−4, ∆w=0.01 and the initial condition

pinit=

{
sin2(πv)sin2(πw), −1<w<0 and −1<v<1,
0, otherwise.

(5.12)

In the learning phase, the input function changes periodically in time; the smaller the
period is, the greater the rate of change of the input function is. The total network activity
N̄ is an intuitive response to the input function, so we first observe the change in the total
network activity. First, we choose period D=1,0.5,0.2.

Fig. 12 shows the evolution of the total firing rate at different periods. As we ex-
pected, except for the initial transient evolutionary phase, the total activity of the network
changes periodically over time and its period is the same as the input function.

Test 2. Adapting to fast oscillating inputs. Since the prediction signal is determined
by the learning input function and reflects the model’s learning of the learning input
function I(w,t), observing the prediction signal in different periods helps us explore the
learning behavior of the model. We compare numerical results for different periods D=
4,0.4,0.2,0.1,0.01. In this case, the last input function learned by the model is I(w,tmax)=
I1.

Fig. 13 shows the prediction signal at different periods. When the period is large, the
prediction signal is like a triangle. As the period gets smaller, the shape of the predic-
tion signal is getting more and more irregular. However, as the period is getting further
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Figure 13: Equation parameters a=1 and ε=0.1. The prediction signal at t=4 with di�erent input function
periods. Top: the input function period D= 4,0.4,0.2 from left to right. Bottom: the input function period
0.1,0.05,0.01 from left to right.

Figure 14: (Output signal for the large period learning input) The �nal �ring rate N(w) with di�erent testing
input J(w). Equation parameters a=1 and ε=0.1, and the period of the input function in the learning phase is
D=4. Left: Output signal with testing input function J= I1. Middle: Output signal with testing input function

J= I2. Right: Output signal with testing input function J= I1+I2
2 .

smaller, the shape of the prediction signal is becoming triangular again. In previous ex-
periments [18, 26], for the time-independent learning input signal I(w), the test signal
always resembles a triangle. So we speculate from Fig. 13 that for sufficiently large or
sufficiently small periods, the predicted signal looks like a triangle, and the model has
effectively learned a signal of a certain form.

Test 3. Learning from oscillating inputs. In order to verify the above conjecture, we
choose a relatively large period with D=4 and a small period with D=0.01 in (5.11). In
the testing phase, we choose testing input functions J= I1, J= I2, and J= I1+I2

2 .
Fig. 14 shows the output signal of period D=4 with testing input function J= I1, J= I2

and J= I1+I2
2 . When J= I1 = I(w,tmax), the output signal N∗

J (w) is like a triangle. Fig. 15
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Figure 15: Output signal for the small period learning input) The �nal �ring rate N(w) with di�erent testing
input J(w). Equation parameters a=1 and ε=0.1, and the period of the input function in the learning phase
is D= 0.01. Left: Output signal with testing input function J = I1. Middle: Output signal with testing input

function J= I2. Right: Output signal with testing input function J= I1+I2
2 .

shows the output signal of period D= 0.01 with testing input function J = I1, J = I2 and
J = I1+I2

2 . When J = I1+I2
2 , the output signal N∗

J (w) is like a triangle. Numerical results
show that when the period is relatively large, the signal learned by the model matches I1,
and when the period is relatively small, it matches I1+I2

2 .
The experimental results can be interpreted as follows. When the period is large, the

model has enough time to learn, so the learned signal is the input function at the last
moment. And when the period is small, neither I1 nor I2 can be learned well, but the
result of learning is the average of the two. Because when the switching process is too
fast, the effect of the model on the learning of either I1 or I2 is poor. Instead, the average
signal I1+I2

2 is captured by the time averaging of the learning process.

Test 4. Phase diagram for leaning. There are multiple typical time scales in this model:
the time scale for the voltage activities, the time scale for learning by redistributing the
synaptic weights and the time period in the external input. When introducing the model,
we perform a time rescaling for (4.7), where the parameter ε reflects the ratio between
the time scales of voltage activities and learning. In the next numerical experiment, we
choose ε = 1,0.5,0.25,0.125 and periods D = 22,21,··· ,2−7 to compare the results of the
output signal under different parameters. After the testing phase, we choose the total
activity N̄(t) to quantify the output signal:

Eε,D
J =

∣∣∣N̄ε,D
J −N̄ε

J

∣∣∣. (5.13)

Here, N̄ε,D
J denotes the total activity when the equation parameter is ε, the learning input

function is given by (5.10) with period D, while the testing input function is J. N̄ε
J rep-

resents the total activity where the equation parameter is ε and both the learning input
function and the testing input function are J. Eε,D

J can roughly measure the output signal.
The closer the value of Eε,D

J is to zero, the superior the model’s learning efficacy.
As shown in Fig. 16, as the period becomes smaller, the testing indicator becomes less

significant with respect to the testing input function J= I1, and the test indicator becomes
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Figure 16: Equation parameter a=1. Left: The value of Eε,D
J under di�erent D and ε with input function J= I1.

Right: The value of Eε,D
J under di�erent D and ε with input function J= I1+I2

2 .

more significant with respect to the testing input function J= I1+I2
2 . Besides, the numerical

results also suggest that when ε is small, the transition in learning takes place at a smaller
time period, whereas such a trend is not prominent. Although the experiments are not
fully conclusive yet, they show a lot of promise for using the proposed numerical method
to simulate large-scale tests.

6 Conclusion

In this work, we have proposed a numerical scheme for approximating the Fokker-Planck
equation using spectral methods for spatial discretization and successfully applied it to
models with multiple time scales. Specific trial function space can guarantee that dy-
namic bounds are always satisfied, and suitable test function space is essential for ensur-
ing stability and asymptotic-preserving. This method shows clear advantages regarding
computational efficiency for high accuracy compared to existing methods. Besides essen-
tial convergence tests and assessments of computational efficiency, we execute assorted
numerical examples exploring the response of various solutions. Subsequent to simulat-
ing the blow up phenomenon and relative entropy decay of the NNLIF model, we have
studied the learning and discriminating behavior of the NNLIF model with learning rules
when the input signal is time-dependent. The experimental results demonstrate that the
learning behavior of the model obeys the general trend and provides clues for further
research. Moving forward, we can still probe new numerical schemes for unbounded
domains as well as explore more complex Fokker-Planck equations from neuroscience.
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Appendix

A.1 The basis functions of W1 space

For simplicity, the basis functions of W1 can be selected as 3rd-degree piecewise polyno-
mials, which is

g1=


2

(Vmin−VR)3 v3− 3(Vmin+VR)

(Vmin−VR)3 v2+
6VminVR

(Vmin−VR)3 v−
V2

min(3VR−Vmin)

(Vmin−VR)3 , v∈ [Vmin,VR),

2
(VF−VR)3 v3− 3(VF+VR)

(VF−VR)3 v2+
6VFVR

(VF−VR)3 v−
V2

F (3VR−VF)

(VF−VR)3 , v∈ [VR,VF],

g2=


1

(Vmin−VR)2 v3− 2Vmin+VR

(Vmin−VR)2 v2+
Vmin(Vmin+2VR)

(Vmin−VR)2 v−
V2

minVR

(Vmin−VR)2 , v∈ [Vmin,VR),

1
(VF−VR)2 v3− 2VF+VR

(VF−VR)2 v2+
VF(VF+2VR)

(VF−VR)2 v−
V2

F VR

(VF−VR)2 , v∈ [VR,VF],

g3=


0, v∈ [Vmin,VR),

2
(VF−VR)2 v3− 3(VF+VR)

(VF−VR)2 v2+
(VF+VR)

2+2VRVF

(VF−VR)2 v−VFVR(VR+VF)

(VF−VR)2 , v∈ [VR,VF].

(A.1)
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