
CSIAM Trans. Appl. Math.
doi: 10.4208/csiam-am.SO-2022-0030

Vol. 5, No. 1, pp. 1-17
March 2024

Pricing Stocks with Trading Volumes

Ben Duan1, Yutian Li2, Dawei Lu3, Yang Lu4 and Ran Zhang1,*

1 School of Mathematics, Jilin University, Changchun, Jilin 130012, China.
2 School of Science and Engineering, Chinese University of Hong Kong, Shenzhen,
Guangdong 518172, China.
3 School of Mathematical Sciences, Dalian University of Technology, Dalian,
Liaoning 116024, China.
4 Botong Investment, Chaoyang, Beijing 100029, China.

Received 25 August 2022; Accepted 10 August 2023

Abstract. The present paper proposes a new framework for describing the stock price
dynamics. In the traditional geometric Brownian motion model and its variants, vola-
tility plays a vital role. The modern studies of asset pricing expand around volatility,
trying to improve the understanding of it and remove the gap between the theory
and market data. Unlike this, we propose to replace volatility with trading volume
in stock pricing models. This pricing strategy is based on two hypotheses: A price-
volume relation with an idea borrowed from fluid flows and a white-noise hypothesis
for the price rate of change (ROC) that is verified via statistic testing on actual market
data. The new framework can be easily adopted to local volume and stochastic volume
models for the option pricing problem, which will point out a new possible direction
for this central problem in quantitative finance.
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1 Introduction

The equity (stocks) and their derivatives (options, futures, etc.) are the most traded fi-
nancial products in markets. Developing effective mathematical models for stock and
option prices plays a vital role in the financial industry and the quantitative finance re-
search. Using stochastic processes to model stock returns has a long history, and it dates
back to Bachelier’s pioneer work in 1900 [2], where the Brownian motion was used for
describing the uncertainty of the stock price dynamics. In 1965, Samuelson [16] adopted
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Bachelier’s idea with a modification to evaluate the warrant, a financial derivative prod-
uct. Samuelson introduced the geometric Brownian motion (GBM) for the dynamics of
a stock price

dS=µSdt+σSdB, (1.1)

where S=S(t) is the stock price, B=B(t) is the standard Brownian motion, and µ and σ
are two parameters standing for the drift rate and the volatility respectively. In 1973, the
GBM is used by Black-Scholes [4] and Merton [15] in their celebrated model (known as
the Black-Scholes or Black-Scholes-Merton model, BS or BSM) for option pricing. The
BS model gained tremendous success in the option market and dominated this area for
decades, and the GBM and its variants have been the fundamentals for asset pricing ever
since. The GBM (1.1) can be rewritten as

dS

S
=µdt+σdB, (1.2)

and if letting ∆S denote the change of S in a small time interval ∆t, we have the discrete-
time version of (1.2)

∆S

S
∼N (µ∆t,σ2

∆t), (1.3)

where N is the normal distribution, and thus this model is also known as the log-normal
model, see [6, 12].

The volatility σ plays a unique role in the BS model, and its nature and calculation
methods receive much attention in the studies and financial practice. Roughly speaking,
σ measures how large the stock price S fluctuates around its mean value in the statistical
sense. Larger volatility indicates the stock price is less predictable and thus is riskier.
Though the importance of volatility, there are different understandings and calculation
methods. For instance, there are two often-used terminologies, the historical volatility,
which is calculated based on the historical stock prices and represents the degree of vari-
ability; and the implied volatility, which is calculated by the inverse problem of finding
this parameter in the BS equation with knowing the option price.

The above observations suggest that volatility may not be as essential as assumed,
though seemingly important and widely accepted in practice. A more in-depth investi-
gation of the stock price dynamics could improve our understanding of its nature and
benefit stock trading strategies and the option pricing modeling. The present work is our
first attempt in this direction, and we propose to use the trading volume as an alternative
for the volatility. There are several reasons for doing so:

(i) The trading volume is a more explicit factor than volatility, its magnitude and
meaning are self-explanatory, and no confusion or different values should be involved.

(ii) There are extensive theoretical and empirical studies on the volume-volatility re-
lation, it is shown that the return volatility and the trading volume are positively corre-
lated [1, 3, 13, 18].
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(iii) The price and volume are the only two essential quantities that associates to the
stock trading, we believe the market is efficient, and all the information, participants’
behavior, liquidity and other factors that affects the stock price dynamics should be re-
flected and encoded in these two factors.

Therefore, we propose a new approach of modeling stock price by taking the trading
volume as the central ingredient.

The rest of this paper is organized as follows. In Section 2, we first give two hy-
potheses of the model, the first one is the price-volume relation by making an analogy
between the cash flow of stock transactions and the flow of a fluid, and the second one
is that the price rate of change (ROC) is a white-noise process, which we examined by
statistic testing on actual market data. Under the two hypotheses, we derived the model
for stock price dynamics. Our model includes the classical GBM as a particular case. In
Section 3, we discuss the applications of the new model to the option pricing problems.
The proposed model is easily adapted to the local and stochastic volume models for op-
tions. The empirical studies and statistical testing for the Hypothesis (H2) are given in
the Appendix A.

2 Modeling stock price with trading volume

2.1 Trading volume and net cash flow

The market capitalization of a company is the market price multiplied by the number
of outstanding shares. There are two different kinds of shares for a listed company, re-
stricted shares that are non-transferable and free-float shares that are tradable in the stock
exchange

Free float=Outstanding shares−Restricted shares.

We shall assume the numbers of outstanding, restricted and free-float shares are not
changed in the time period under consideration, namely, there is no share splits or con-
solidation.

Our approach is to make an analogue of the stock trading with the fluid flow. We
may regard the market capitalization as a tank of fluid, and the transaction will drive the
change of the stock price and thus the change of the market capitalization. The trading
volume of the transactions can be regarded as the volume of the fluid that is exchanged
between the tank and its environment.

The market price is driven by the cash flow, and thus we consider the net cash flow
of a stock in the time period [t,t+∆t). Assume the transactions take place continuously
over time, and let S(t) denote the stock price and v(t) denote the average volume, i.e.
instantaneous trading volume per unit time. If ṽ(t) denotes the trading volume over
[0,t], we then have

v(t)= lim
∆t→0

ṽ(t+∆t)− ṽ(t)

∆t
. (2.1)
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A related and vital quantity is the trading intensity defined as

v̂(t) := lim
∆t→0+

ṽ(t+∆t)− ṽ(t)√
∆t

= lim
∆t→0+

1√
∆t

∫ t+∆t

t
v(τ)dτ. (2.2)

We shall assume the trading volume ṽ(t) is a C1/2 function, that is a Hölder continuous
function of 1/2 order. Hence, v is in the Sobolev space H−1/2 and v̂(t) is a continuous
function. Noting that from Eqs. (2.1)-(2.2), we have

v̂(t)= lim
∆t→0+

[

√
∆tv(t)

]

, (2.3)

which is a bounded function of t according to the above assumption of v(t) and ṽ(t). The
cash outflow is the total capital of the seller taking from the stock

cash outflow=
∫ t+∆t

t
S(τ)v(τ)dτ.

After these transactions, the stock price becomes S(t+∆t), and the wealth of the stock
buyer is the product of this price and the number of traded shares, which is the cash
inflow,

cash inflow=S(t+∆t)
∫ t+∆t

t
v(τ)dτ.

Therefore, the net cash flow in the interval [t,t+∆t) is given by the amount of cash inflow
subtracts the outflow, which is

net cash flow=
∫ t+∆t

t
[S(t+∆t)−S(τ)]v(τ)dτ. (2.4)

2.2 Model hypotheses

The stock price S(t) varies due to the time-value as well as driven by the cash-flow. The
time value can be evaluated as an exponential growth with the return rate µ, and the
effect of the cash-flow should be calculated per-share. Based on the analysis in the pre-
vious section, we shall make the following and our main hypothesis on the stock price
dynamics:

(H1) The stock price satisfies

S(t)=S(t0)e
µ(t−t0)+

1

V0

∫ t

t0

[S(t)−S(τ)]v(τ)dτ, (2.5)

where V0 denotes the number of free-float shares.

The second hypothesis concerns the price rate of change (ROC), a commonly-used
indicator in stock investment, for which we shall assume
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(H2) The price rate of change (ROC) follows a white noise process

lim
∆t→0+

S(t+∆t)−S(t)

S(t)
√

∆t
=

dB(t)

dt
. (2.6)

The study of the stock dynamics is the central theme in asset pricing and has received
great attention. Granger and Morgenstern [10] showed that the short-run movements of
stock price obey the simple random walk hypothesis. Later on, Fama’s seminal work [9]
proved the validity of the Efficient Markets Hypothesis, which became the foundation
of the asset pricing theory. These suggest that stochastic processes can be used to model
the short-run stock changes. In 1963, Mandelbrot [14] pointed out that the stock changes
do not follow a Gaussian but a steady process with an unbounded variation. The white
noise in our hypothesis (H2) is indeed such a process. We conducted an empirical study
of this hypothesis using actual market data and tested the hypothesis through statistical
hypothesis testing procedures. Details are provided in Appendix A.

2.3 The model

To establish our model for the stock price, we need the following result.

Lemma 2.1. Under the hypothesis (H2), we have

lim
∆t→0

∫ t+∆t

t

(

S(t+∆t)−S(τ)
)

v(τ)dτ

V0∆t
=

v̂(t)

V0
S(t)

dB(t)

dt
(2.7)

in the sense of distribution.

Proof. Let I[t,t+∆t](·) denote the indicator (or, characteristic) function of the interval [t,t+
∆t]. Assume f (x) is a continuous function, we shall show that

lim
∆t→0

∫

∞

0
f (x)

I[t,t+∆t](x)

∆t
dx= f (t), ∀t>0. (2.8)

Note that
∣

∣

∣

∣

∫

∞

0
f (x)

I[t,t+∆t](x)

∆t
dx− f (t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∞

0
[ f (x)− f (t)]

I[t,t+∆t](x)

∆t
dx

∣

∣

∣

∣

≤
∫

∞

0
| f (x)− f (t)|

I[t,t+∆t](x)

∆t
dx.

Since f (x) is continuous at t, for any ε>0 there exists a δ>0 such that | f (x)− f (t)|< ε for
|x−t|≤∆t<δ. Therefore,

∣

∣

∣

∣

∫

∞

0
f (x)

I[t,t+∆t](x)

∆t
dx− f (t)

∣

∣

∣

∣

< ε, ∀∆t<δ,
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and Eq. (2.8) follows. An application of this equation yields

lim
∆t→0

∫ t+∆t

t

(

S(t+∆t)−S(τ)
)

v(τ)dτ

V0∆t

= lim
∆t→0

S(t+∆t)

V0∆t

∫

∞

−∞

v(τ)I[t,t+∆t](τ)dτ

− lim
∆t→0

1

V0∆t

∫

∞

−∞

S(τ)v(τ)I[t,t+∆t](τ)dτ

=
1

V0
lim

∆t→0

{

v(t)
[

S(t+∆t)−S(t)
]}

.

Now, by the Hypothesis (H2), we have

lim
∆t→0+

{

v(t)[S(t+∆t)−S(t)]
}

=S(t) lim
∆t→0+

{

[

v(t)
√

∆t
] [S(t+∆t)−S(t)]

S(t)
√

∆t

}

=S(t) lim
∆t→0+

[

v(t)
√

∆t
]

lim
∆t→0+

S(t+∆t)−S(t)

S(t)
√

∆t

= v̂(t)S(t)
dB(t)

dt
,

where we used the trading intensity given in (2.3). In the above, we assumed ∆t>0 and
taking ∆t→0+, and the case ∆t→0− is similar by writing −∆t=(

√
−∆t)2. A combination

of the last two equations yields (2.7), which completes the proof.

Using Lemma 2.1, we shall establish our major result, the model for stock price dy-
namics.

Theorem 2.1. Under the hypotheses (H1)-(H2), the stock price satisfies

dS=µSdt+
v̂

V0
SdB, (2.9)

where v̂= v̂(t) is the trading intensity defined in (2.2), V0 is the number of free-float shares, and
B denotes the standard Brownian motion.

Proof. First, replacing t0 with t and replacing t with t+∆t in (2.5) of hypothesis (H1), we
have

S(t+∆t)=S(t)eµ∆t+
1

V0

∫ t+∆t

t
[S(t+∆t)−S(τ)]v(τ)dτ, (2.10)

which, by subtracting S(t) and then dividing ∆t to both sides, gives

S(t+∆t)−S(t)

∆t
=S(t)

eµ∆t−1

∆t
+

1

V0∆t

∫ t+∆t

t

(

S(t+∆t)−S(τ)
)

v(τ)dτ.
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Then, sending ∆t→0 and making use of Lemma 2.1, we get

dS(t)

dt
=µS(t)+

v̂

V0
S(t)

dB(t)

dt
,

or equivalently

dS=µSdt+
v̂

V0
SdB,

competing the proof.

Compared with the GBM (1.1), in the model process (2.9), the volatility σ is replaced
with the trading volume, which is another stochastic process. In this regard, our model is
similar to stochastic volatility models, and the difference lies in replacing the volatility σ
with the volume v, a much easier measurable quantity.

By the Itô calculus

dlnS(t)=
dS(t)

S(t)
− d〈S(t),S(t)〉

2S2(t)
=

dS(t)

S(t)
− v̂2(t)

2V
2
0

dt,

substituting this into (2.9), we get

dlnS(t)=

(

µ− v̂2(t)

2V2
0

)

dt+
v̂(t)

V0
dB(t). (2.11)

Integrating the above equation on [0,T] and taking the exponential to the resulting equa-
tion, we obtain

S(T)=S(0)exp

{

∫ T

0

(

µ− v̂2(t)

2V2
0

)

dt+
∫ T

0

v̂(t)

V0
dB(t)

}

. (2.12)

Remark 2.1. When v̂(t)/V0 :=σ is a constant, the above price equation (2.12) reduces to
the classical GBM

S(T)=S(0)exp

{(

µ− σ2

2

)

T+σB(T)

}

, (2.13)

thus the classical GBM model could be regarded as a special case of our model.

3 Applications to option pricing

An accurate description of stock price dynamics is the fundamental basis in the valuation
of options. The widely used BS model assumes the stock price follows the GBM

dS=µSdt+σSdB, (3.1)



8 B. Duan et al. / CSIAM Trans. Appl. Math., 5 (2024), pp. 1-17

where the volatility σ is considered as a constant. Based on this hypothesis and the
Delta-hedge strategy, Black-Scholes-Merton [4, 6, 12, 15] shows the option value obeys
a parabolic equation

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+rS

∂V

∂S
−rV=0, (3.2)

where V =V(S,t) is the price of an option writing on the stock S. The value of a Euro-
pean call (resp. put) option can then be determined uniquely with the terminal condition
V(S,T)=max{S−K,0} (resp. V(S,T)=max{0,K−S}). Here, T is the expiry date and K is
the strike price. Therefore, V=V(S,t;r,σ;K,T), and when fitting the predicted price with
the actual trading price in market, it seems the only adjustable parameter is the volatility:
σ = σ(V,S,t;r;K,T) can be solved by the inverse problem and is termed by the implied
volatility. The famous volatility smile and the term structure indicate the implied volatil-
ity is not a constant, which contradicts the basic assumption of the BS model. Many other
models are proposed to accommodate this market feature – the volatility should not be
a constant. The local and stochastic volatility models are two mainly used kinds among
them. Dupire [7] proposed the local volatility model to resolve the volatility smile, where
he assumed σ= σ(S,t) is a function of the stock price and time. On the other hand, the
stochastic volatility model considers σ = σ(t) follows a stochastic process, for instance,
the celebrated Heston model [11] assumes that σ2(t) follows a CIR process

dσ2(t)=κ
(

θ−σ2(t)
)

dt+ξσ(t)dB̃(t), (3.3)

where θ is the long-run average of the volatility, κ is the reverting rate, ξ is the volatility
of volatility, and B̃(t) is another Brownian motion that is correlated with B(t).

In our description of the stock price dynamics, trading volume plays a vital role in-
stead of volatility. Inspired by the previous works, we may develop a local volume model
as Dupire did and a stochastic volume model as Heston did for the option value. For in-
stance, if the stock price follows

dS(t)= rS(t)dt+
v̂(t)

V0
S(t)dB(t), (3.4)

dv̂2(t)=κ
(

θ− v̂2(t)
)

dt+ξv̂(t)dB̃(t). (3.5)

The option price V =V(S,v̂,t) satisfies a two-dimensional parabolic PDE. The theoreti-
cal analysis, numerical methods and empirical studies for such models will benefit the
option pricing research and practice.

In our study, we have developed a general framework for pricing stocks based on
trading volume dynamics without specifying a particular model for trading volumes.
Note that our framework is not restricted to any specific choice of trading volume mod-
els. For instance, alternative models like jump-diffusion processes or those with regime-
switching structures could also be considered. This flexibility in our approach allows for
the exploration of various trading volume models and their potential impact on stock
pricing.
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Appendix A. Hypothesis testing for (H2)

Our central hypothesis (H2) states that the price’s instantaneous rate of change (ROC)
follows a white noise process, as shown in (2.6). This appendix presents an empirical
study and verification of this hypothesis via hypothesis testing based on actual market
data.

The data used in this paper are from actual A-share transactions, including 50 stocks
from 2016 to 2017, which are obtained from the Wind Financial Terminal and are not
disclosed here due to privacy policies. We will use graphs and hypothesis tests to exam-
ine the Gaussian and white noise properties of relative rates. Specifically, we apply the
Shapiro-Wilk test [17] and the Kolmogorov-Smirnov test [8] to investigate the Gaussian
property and use the Q-statistic to test for the autocorrelation. The details and the results
of the experiments are presented below. The price rate of change (ROC) is given as

ROC=
S(t+∆t)−S(t)

S(t)
, (A.1)

where ∆t is a small time interval with ∆t = 1500,2000,3600,4000,5000,6000,7200,9000,
14400 seconds, and the time t is chosen as t = k∆t,k = 0,1,2,3,.. . . Noting that the unit
of time in finance is one year, thus the above time interval can be regarded as small, for
instance, ∆t=3600s=1/1000 if 250 trading days annually and 4 trading hours per day.

Fig. 1 presents the histogram of the ROC for Vanke (000002.SZ) from 2016 to 2017.
From the histograms shown in Fig. 1, we may conjecture that the ROC sequence satisfies
the properties of normality or white noise. To obtain the general law of stocks, we use
a box diagram to remove outliers from the ROC, following the basic steps of statistical
testing. We present the box diagram for the Vanke example in Fig. 2.

Then we test the Gaussian and white noise properties of the ROC. We employ the S-W
and K-S tests, commonly used in statistics to test Gaussian properties. Table 1 presents
the hypothesis test results of Vanke (000002.SZ) from 2016 to 2017. Both tests reject the
null at the 5% level for the ROC of Vanke. Hence, it is reasonable to conclude that the
ROC does not satisfy Gaussian properties. We further check the white noise properties of
the ROC. The top panels of Figs. 3-11 present a sequential chart of the ROC, the middle
panels present its autocorrelation chart, and the bottom panels are partial autocorrelation
diagrams. Figs. 3-11 use different ∆t to draw pictures with delay order log(n)+1 and
sample size n. The sequential charts in the top panels of Figs. 3-11 show that the ROC
fluctuates around 0, and the upper and lower distributions are uniform. In addition, the
autocorrelation and partial autocorrelation coefficients after order 0 are within the upper
and lower boundaries of the blue confidence interval, so the ROC can be considered
white noise with 95% confidence. Barlett proved that if a time series is purely random,
for a sequence with m observation periods, the autocorrelation coefficient of the delay
non-zero order sample of the sequence will approximately obey a normal distribution
with mean of zero and variance of 1/m

ρ̂k ∼N (0,1/m), k=1,2,3,.. . .
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Table 1: Hypothesis test of Gaussian property about the difference quotient for Vanke from 2016 to 2017.

∆t (s) p-value (S-W) p-value (K-S)

1500 1.96E-12 0

2000 3.27E-10 0

3600 1.32E-06 2.51E-270

4000 1.37E-06 9.63E-241

5000 2.46E-06 3.07E-192

6000 1.96E-05 9.17E-160

7200 8.43E-05 2.83E-134

9000 0.000219571 1.89E-107

14400 0.040090751 2.46E-66

Figure 1: Histogram of the ROC for Vanke from 2016 to 2017.
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Table 2: The Q-statistic about the difference quotient for Vanke.

∆t (s)

lag 1500 2000 3600 4000 5000 6000 7200 9000 14400

1 0.0370 0.0898 0.0712 0.2643 0.5299 0.9131 0.1913 0.4476 0.2347

2 0.0838 0.0937 0.0986 0.4438 0.7221 0.1906 0.1285 0.5173 0.4073

3 0.1506 0.1663 0.1223 0.5741 0.8092 0.3124 0.1654 0.6213 0.5742

4 0.2247 0.2606 0.0864 0.6042 0.8008 0.4207 0.2462 0.6754 0.6987

5 0.2346 0.2654 0.1409 0.4498 0.7988 0.4307 0.3412 0.5787 0.4660

6 0.3258 0.3348 0.1609 0.0777 0.8625 0.4009 0.3901 0.6915 0.2682

7 0.2965 0.4357 0.1680 0.1191 0.9182 0.4821 0.4958 0.7009

8 0.3457 0.4996 0.1051

Figure 2: Box diagram of the ROC for Vanke from 2016 to 2017.
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Figure 3: ∆t=1500s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.

Figure 4: ∆t=2000s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.
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Figure 5: ∆t=3600s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.

Figure 6: ∆t=4000s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.
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Figure 7: ∆t=5000s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.

Figure 8: ∆t=6000s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.
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Figure 9: ∆t=7200s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.

Figure 10: ∆t=9000s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.
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Figure 11: ∆t=14400s. Top: Sequential chart of the ROC. Middle: Autocorrelation chart. Bottom: Partial
autocorrelation diagrams.

Based on the above argumentation, Box and Pierce [5] derived the Q-statistic for checking
the pure randomness of sequences. Table 2 presents the hypothesis test results of the Q-
statistic for Vanke (000002.SZ), and we draw similar conclusions to the graphical test.
All H0 with different ∆t can not be rejected at the 1% level and can be accepted at the 5%
level except for ∆t = 1500s and lag = 1. Therefore, both graphical and hypothesis test
results confirm that the ROC is a white-noise sequence.
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