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Abstract. This paper considers the case of a firm’s dynamic pricing problem for a non-
perishable product experiencing surging demand caused by rare events modelled by
a marked point process. The firm aims to maximize its running revenue by selecting
an optimal price process for the product until its inventory is depleted. Using the dy-
namic program and inspired by the viscosity solution technique, we solve the resulting
integro-differential Hamilton-Jacobi-Bellman (HJB) equation and prove that the value
function is its unique classical solution. We also establish structural properties for our
problem and find that the optimal price always decreases with initial inventory level
in the absence of surging demand. However, with surging demand, we find that the
optimal price could increase rather than decrease at the initial inventory level.
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1 Introduction

In many settings, the occurrence of unexpected rare events may result in surging de-
mand. This has been highlighted by the COVID-19 outbreak, which imposed an unex-
pected demand surge for a range of consumer goods, and such a surge often has a major
impact on commodity prices. In April 2020, the price index for meats, poultry, and fish
as well as the index for cereal and bakery products both rose from the month preceding,
the first month of the global quarantine [21]. During this time, demand rose to an unex-
pected level in numerous sectors from disposable medical supplies to groceries, thereby
placing upward pressure on prices. In a vivid example of this, products like face masks
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saw markups as high as 582% during the pandemic [24]. In this paper, we aim to for-
mally understand how surging demand affects a firm’s pricing decisions. To this end, we
model two types of demands: continuous and surging. We first introduce the continuous
demand model (see, e.g. [18, 32]) and then use a marked point process to describe the
surging demand. From this, we model the cumulative demand process as a drift-jump
process, with the price process as a control variable in which the forecast demand rate is
a deterministic known function.

From there, we investigate the impact of the key factor – surging demand – on the
firm’s price policies. To the best of our knowledge, the existing literature on the dy-
namic price-based revenue management problem in the absence of surging demand has
always showcased how optimal price decreases with respect to initial inventory level
([11, 18, 38]). In our paper, however, we can prove that for the linear demand rate func-
tion with surging demand it may occur that the optimal price can in fact increase with the
initial inventory level. Intuitively speaking, if one considers a surge in demand, the firm
with more inventory may need to adopt the opposite price strategy and adjust prices in
order to make the maximal expected profit.

We then extend the demand model by introducing Brownian random fluctuations to
assist in describing the demand variability. Several studies in the traditional literature
have focused on the Poisson demand model, for which the uncertainty in demand is in
the form of a discrete shock. In contrast, our model incorporates uncertainty via Brown-
ian motion, letting us capture the variability right around the expected level [27]. There
has also recently been an increased interest in the Brownian-demand model in the con-
text of dynamic pricing, such as how [12] consider a diffusion demand model with the
Brownian demand-forecast variability. For their part, [35] studies a stochastic produc-
tion/inventory system with finite production capacity and random demand, where the
cumulative production and demand are jointly described as a two-dimensional Brown-
ian motion, while [34] explores a case where the consumer’s cumulative utility for a new
product is characterized by a diffusion process. We follow suit to incorporate a Brownian
motion in a surging demand model.

Under the above model settings with and without Brownian motion, we seek an op-
timal pricing policy that maximizes expected profit by solving the associated Hamilton-
Jacobi-Bellman (HJB) equation (see [26]) and arrive at a class of integro-differential HJB
equations by using the dynamic program. The works [9, 10] prove that a kind of linear
ordinary integro-differential equations (OIDEs) can be transformed into a homogeneous
linear high-order ordinary differential equation (ODE), thereby having an explicit solu-
tion. Integro-differential HJB equations, however, are fully nonlinear for which no an-
alytical solution can usually be expected, in which case the value function is typically
verified as the unique solution to the HJB equation in terms of the viscosity solution (see,
e.g. [4, 29]). Inspired by the viscosity solution technique (see, e.g. [15, 16]), we first estab-
lish the existence of the viscosity solutions of our integro-differential HJB equation via
the study of a few important structural properties of the value function. Next, by apply-
ing the theory of degenerate and non-degenerate quasilinear differential equations [31],
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we further improve the smoothness of the viscosity solution by treating the (non-local)
integral part of the HJB equation as nonhomogeneous in terms of the value function [17].
One of the main difficulties in studying this stems from the continuity of the value func-
tion with a stochastic exit time at the zero-initial inventory level, particularly under the
Brownian motion demand model. To overcome this difficulty, we develop a stochas-
tic integral argument to prove that the value function is indeed continuous at the zero-
initial inventory level. In turn, the unique viscosity solution indicates that our value
function is continuous at all initial inventory levels and satisfies an important regular
property that serves as an improvement in the smoothness of the viscosity solution to
our integro-differential HJB equation in the subsequent stage. Then we identify the op-
timal (feedback) price implied by the HJB equation and prove that the viscosity solution
(or equivalent value function) analyzed above is, in fact, the unique classical solution of
our integro-differential HJB equation. We refer the reader interested in stochastic exit
times for control problems to [5, 6, 8].

Our paper has three main contributions. The first one lies in the formulation of the
problem and modeling of the surging demand. The second is that we prove the exis-
tence and uniqueness of smooth solutions to associated integro-differential HJB equa-
tion, which helps us establish structural properties of the value function and optimal
price policy. The third is, interestingly, for the linear demand rate function, we prove that
the optimal price could increase rather than decrease with respect to the initial inventory
level under a surging demand model.

The remainder of the paper is organized in the following manner. Section 2 introduces
the continuous demand model, studies the well-posedness of the HJB equation, and char-
acterizes the structural property of the optimal price. Section 3 extends the continuous
model by incorporating the surging demand, and establishes the well-posedness of the
resulting (integro-differential) HJB equation as well as the structural property for optimal
price with the linear demand rate function. Section 4 provides the extension to the con-
tinuous/surging model by taking into account Brownian random fluctuations. Section 5
presents the concluding remarks. All proofs are presented in the Appendices A and B.

2 Continuous demand

Consider a firm that sells a single nonperishable product to a stream of price-sensitive
customers over the sales horizon until the item has sold out. Following the classical liter-
ature [18], we consider a continuous time framework. At any time t≥0, the cumulative
demand quantity up to time t is described in the following manner:

Dt=
∫ t

0
λ(ps)ds, (2.1)

where we assumed that there is no demand at the initial time, that is, D0=0. In (2.1), pt is
the price charged by the firm at time t, and so the demand rate for continuous demand is
given by λ(pt) at time t, with the demand rate function p→λ(p) being known to the firm.
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Assumption 2.1. There is a one-to-one correspondence between the price p and the de-
mand rate λ(p) so that λ(p) has an inverse, denoted by p(λ). Moreover, p → λ(p) is
continuous and non-increasing.

Let K> 0 be a price ceiling, the maximum price that can be charged for the product.
Then, the only price interval at which the product can be traded is I :=[0,K]. In view of
Assumption 2.1, the demand rate λ(p)∈ IK := [λ(K),λ(0)] for all p∈ I. Throughout this
paper, it is assumed that λ(K)> 0. The firm is initially endowed with X0 ∈R+ :=(0,∞)
product units and so its inventory level at time t≥0 becomes

Xt=X0−Dt. (2.2)

Then, the time taken for all items to sell out is defined as

τo := inf{t≥0;Xt ≤0}= inf{t≥0;Dt ≥X0}, (2.3)

where we define τo =+∞ by convention if the time set {t≥0;Xt ≤0}=∅.
Let

PK :={p=(pt)t≥0; p is measurable, pt ∈ I, ∀t≥0}
be the set of all allowable pricing policies. With an initial inventory of x∈R+ units (i.e.
X0= x) and a price function p∈PK, the cumulative revenue generated until all items are
sold out (i.e. before τo) is

J(x,p) :=
∫ τo

0
e−ρs psdDs, (2.4)

where ρ> 0 is the discount rate. In contrast to the traditional revenue management lit-
erature (see, e.g. [18, 38]), as the product is assumed to be nonperishable, we consider
an infinite-horizon stochastic control problem with the exit time τo (see, e.g. [3, 22, 37])
rather than a fixed finite horizon. The stopping time τo implies that the firm would not
stop selling the product until it is completely sold out.

It must also be noted that if the firm has an initial inventory of zero units, then it
obviously cannot sell anything and so its revenue is zero, formulated thusly

J(0,p)=0, ∀p∈PK . (2.5)

The firm’s optimal pricing problem is to find an allowable pricing policy p∗∈PK (if it ex-
ists) that maximizes the total revenue J(x,p) over p∈PK. In other words, this p∗ satisfies
that, for the initial inventory units of x∈R+,

V(x)= J(x,p∗)= sup
p∈PK

J(x,p)= sup
p∈PK

∫ τo

0
e−ρs psdDs. (2.6)

The boundary condition of the value function from (2.5) is given as V(0)=0.
Using the dynamic programming principle, we formally obtain the HJB equation sat-

isfied by the value function V

sup
λ∈IK

[−λV ′(x)+r(λ)]=ρV(x), x∈R+ (2.7)

with the boundary condition V(0) = 0. Here, r(λ) := λp(λ) is defined as revenue rate.
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The next lemma can help us characterize the value function and optimal policy.

Lemma 2.1. Under Assumption 2.1, the value function V∈C1(R+)∩C(R+) is a unique clas-
sical solution of the HJB equation (2.7), where R+ :=[0,∞). There exists a measurable function
λ∗ :R+→ IK such that

H1

(
x;λ∗(x)

)
= sup

λ∈IK

H(x;λ) := sup
λ∈IK

[−λV ′(x)+r(λ)], x∈R+.

Moreover, if λ→H1(x;λ) is concave, then λ∗ is unique.

To the extent of our reading, the traditional literature (e.g. [7, 18, 38]) focuses on the
Poisson-demand model where optimal price drops as initial inventory increases. The fol-
lowing proposition shows that under some minimal assumption regarding the revenue
rate function λ→ r(λ), our continuous demand model yields a similar result.

Proposition 2.1. Let Assumption 2.1 hold. Assume that the revenue rate function r(·)∈C1(IK)
is strictly concave. Then, under the continuous demand model (2.1), the value function V is
concave on R+, and the optimal price p∗(x) decreases in the initial inventory level x.

The linear demand rate function is rather common in the literature on dynamic pric-
ing (see, e.g. [1, 13, 20]). For our purposes, it will help us to obtain qualitative insights
without too much analytical complexity. The linear demand rate function considered in
this section assumes the following form:

λ(p)=M−mp, p∈ [0,K(ǫ)], (2.8)

where M > 0 denotes the demand rate when the price p is zero, with a higher value
of M representing a higher overall potential for demand, while m>0 represents the price
sensitivity of the demand rate ([28]). Here, K(ǫ) := (M−ǫ)/m is the price ceiling with
ǫ∈ [0,M].

For the continuous linear demand model, the resulting HJB equation from (2.7) be-
comes that

sup
λ∈[ǫ,M]

[

−λV ′(x)+
(M−λ)λ

m

]

=ρV(x). (2.9)

It follows from Lemma 2.1 that the corresponding Hamiltonian is read in the following
manner:

H1(x;λ)=−λV ′(x)+
(M−λ)λ

m
, (x,λ)∈R+× IK.

It is clear here that λ→H1(x;λ) is concave and this yields the unique optimal (feedback)
demand rate

λ∗(x)=
1

2

(
M−mV ′(x)

)
∨ǫ, x∈R+. (2.10)

From Assumption 2.1, the optimal (feedback) price is accordingly given as

p∗(x)=
1

2m

(
M+mV ′(x)

)
∧K(ǫ), x∈R+. (2.11)
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Note that both of the optimal price and demand depend on the solution of Eq. (2.9). By
solving Eq. (2.9) in terms of (2.10) (or (2.11)), we obtain the following result.

Lemma 2.2. Under the continuous demand model with the linear demand rate (2.8), the optimal
price and demand rate are given by, respectively

p∗(x)=







M−ǫ

m
, 0< x< x∗,

M

m
−
√

ρV(x)

m
, x≥ x∗,

λ∗(x)=

{

ǫ, 0< x< x∗,
√

ρmV(x), x≥ x∗,

(2.12)

where the critical inventory level x∗ is given as

x∗=







ǫ

ρ
log

M−ǫ

M−2ǫ
, ǫ∈ (0,M/2),

∞, ǫ∈ [M/2,M].
(2.13)

The value function satisfies

V(x)=
K(ǫ)ǫ

ρ

(
1−e−

ρ
ǫ x
)
, x∈ (0,x∗],

V ′(x)=
M

m
−
√

4ρV(x)

m
, x> x∗.

Moreover, for any ǫ∈ (0,M/2), the optimal price p∗(x)↓M/(2m), as the initial inventory level
x→∞, and the corresponding demand rate λ∗(x)↑M/2.

Lemma 2.2 provides a closed-form representation (via the value function V) of the
product’s optimal price and demand rate. Lemma 2.2 also indicates that a static price
is asymptotically optimal [30] when the initial inventory level increases to infinity (see
Fig. 1 for an illustration).

Figure 1: Left panel: Value function x→V(x). Right panel: Optimal price x→ p∗(x). Parameters are set to
be m=1,ρ=1, and ǫ=1.
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We also note that for the case with ǫ∈ [M/2,M], the firm always sets the ceiling price
K(ǫ) as the optimal price and has no need to adjust its price strategy during the selling
season.

3 Continuous-surging demand

In this section, we extend the continuous demand model by describing the cumulative
demand process D=(Dt)t≥0 as the following controlled jump process:

Dt=
∫ t

0
λ(ps)ds

︸ ︷︷ ︸

continuous demand

+
∫ t

0

∫

Γ

α(ps,γ,Xs−)N(dγ,ds)
︸ ︷︷ ︸

surging demand

. (3.1)

The second term in (3.1) represents the surging demand, whose arrival process is a Pois-
son point process N=(N(t,γ);γ∈Γ)t≥0 with an intensity measure µ on a Borel set Γ with
µ(Γ)<∞. The set Γ is called mark space, which records the locations where the rare event
occurs. This notion is very versatile, as it can represent the longitude and latitude of a lo-
cation [36] when it is continuous (e.g. Γ=R

3), or even represent different locations when
it is discrete (e.g. Γ={γ1,. . .,γn}). Given a location γ∈Γ, the function α(p,γ,x)∈ [0,x] rep-
resents the magnitude of surging demand for the product price p∈ I=[0,K] and inventory
level x>0.

Assumption 3.1. For (p,γ)∈ I×Γ, x→α(p,γ,x) is 1-Lipschitz continuous on R+, that is

|α(p,γ,x)−α(p,γ,y)|≤ |x−y|, ∀x,y∈R+.

Fig. 2 displays an arbitrary sample path of the cumulative demand process t→Dt and
the corresponding inventory process t→Xt, when N=(Nt)t≥0 is a Poisson process with

Figure 2: Left panel: Sample path of the cumulative demand process t→ Dt with a linear surging demand
α(p,γ,x)=α0x (α0 ∈ [0,1]). Right panel: Sample path of the inventory level t→Xt. Parameters are set to be
µ(Γ)=0.15,α0=0.2,λ(p)=10−p, pt =10−0.3t, and X0 =80.



L. Bo and Y.J. Huang / CSIAM Trans. Appl. Math., 5 (2024), pp. 142-181 149

a constant intensity µ>0 and α(x)=α0x (with α0∈ [0,1]) is proportionate to the inventory
level via the Monte-Carlo simulation. This can be seen as a special case of the continuous-
surging demand model (3.1), which may help us illustrate the model intuitively.

Under the surging demand model (3.1), we rewrite the firm’s pricing problem as

V(x)= sup
p∈PK

J(x,p)= sup
p∈PK

E

[∫ τo

0
e−ρs psdDs

∣
∣
∣X(0)= x

]

, (3.2)

where PK denotes the set of all allowable pricing policies. In other words

PK =
{

p=(pt)t≥0; p is a predictable process such that pt ∈ I, ∀t≥0,a.s.
}

. (3.3)

Next, we formulate the HJB equation based on the dynamic pricing problem (3.2) using
the dynamic programming principle. In terms of the surging demand model (3.1), the
value function V(x) formally satisfies the following HJB equation:

sup
λ∈IK

[
LλV(x)+r(λ)+φ

(
p(λ),x

)]
=ρV(x), x∈R+ (3.4)

with boundary condition V(0)= 0. Here, Lλ is an integro-differential operator defined
by, for all f ∈C1(R+),

Lλ f (x) :=−λ f ′(x)+
∫

Γ

{
f
(

x−α
(

p(λ),γ,x
))
− f (x)

}
µ(dγ), (λ,x)∈ IK×R+. (3.5)

The function φ(p,x) for (p,x)∈ I×R+ measures surging revenue over all the locations
where rare events occur, that is

φ(p,x) := p
∫

Γ

α(p,γ,x)µ(dγ). (3.6)

Note that if we take α(·)≡ 0 in the HJB equation (3.4), then it returns to the case of the
continuous demand model.

3.1 The optimal price and well-posedness of the HJB equation

In this section, we focus on the well-posedness (i.e. the existence and uniqueness) of
the HJB equation (3.4) in the classical sense, which is crucial for the following discussion
on structural properties of optimal price. In the traditional literature on dynamic pric-
ing, particularly studies that consider the Poisson-demand model where inventory level
takes only integral values, the proof of well-posedness of their HJB equations is straight-
forward (see, e.g. [3, 18]). Our model, however, is continuous not only in terms of time,
but also in terms of initial inventory level. Taking into account that the surging demand
yields an integro-differential HJB equation to which it is difficult to apply a unique clas-
sical solution, we overcome this challenge by utilizing the viscosity solution technique.
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3.1.1 The optimal price

In this section, we propose a characterization on the optimal (feedback) price implied by
the HJB equation.

Lemma 3.1. Let Assumptions 2.1 and 3.1 hold. If value function V under demand model (3.1) is
a classical solution of the integro-differential HJB equation (3.4), there exists a measurable func-
tion λ∗ :R+→ IK such that

H2

(
x;λ∗(x)

)
= sup

λ∈IK

H(x;λ) := sup
λ∈IK

[
LλV(x)+λp(λ)+φ

(
p(λ),x

)]
, x∈R+, (3.7)

where the operator Lλ is defined by (3.5). Moreover, if λ→H2(x;λ) is concave, then λ∗ is unique.

We can apply Lemma 3.1 to characterize the optimal demand rate, and with it the
optimal price, if the prior result of the value function is indeed a classical solution to
the HJB equation. We then study the viscosity solution of the HJB equation (3.4), whose
well-posedness under the continuous demand model can be followed simply. To achieve
this, we prove certain structural properties satisfied by the value function under the
continuous-surging demand model (3.1).

Lemma 3.2. Under Assumptions 2.1 and 3.1, the value function V defined by (3.2) under the
continuous-surging demand model satisfies that

(i) x→V(x) increases on R+,

(ii) x→V(x) satisfies the linear growth condition on R+,

(iii) x→V(x) is right continuous at x=0.

Lemma 3.2(i) indicates that the firm’s optimal revenue increases as the initial inven-
tory level also does. More specifically, when the firm has more inventory units at the
initial time, then it can sell more item units and earn more profit. Lemma 3.2(ii) proves
that the optimal cumulative revenue can be dominated by a nonnegative linear profit
function in the initial inventory level, while Lemma 3.2(iii) establishes the continuity of
the value function at the vanishing (initial) inventory level. This property plays an im-
portant role in the proof of the existence and uniqueness of viscosity solutions to the
integro-differential HJB equation (3.4).

3.1.2 The well-posedness of the HJB equation (3.4)

In this section, we investigate the existence and uniqueness of classical solutions to the
integro-differential HJB equation (3.4). To do so, we rewrite the HJB equation (3.4) in the
following equivalent abstract form:

{

F(x,V,V ′)=0, x>0,

V(x)=0, x=0,
(3.8)
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where the functional F, for any u∈C1(R+), is defined as

F(x,u,u′) :=ρu(x)−sup
λ∈IK

[−λu′(x)+du(x,λ)], x∈R+. (3.9)

In (3.9), the non-local term du(x,λ) for any measurable function u on R+ is defined as,
for (x,λ)∈R+× IK,

du(x,λ) :=
∫

Γ

{
u
(

x−α
(

p(λ),γ,x
))
−u(x)

}
µ(dγ)+λp(λ)+φ

(
p(λ),x

)
. (3.10)

Our main strategy for studying classical solutions to the integro-differential HJB equa-
tion (3.4) consists of two key steps:

(i) We prove that the value function V(x) for x ∈R+ defined as (3.2) is indeed the
viscosity solution to the abstract equation (3.8) (for the definition of viscosity solutions,
one may refer to [14–16]).

(ii) Given value function V, we formulate Eq. (3.8) as a degenerate elliptic equation
and prove that this has a unique classical solution.

For the first step, we obtain the following main result.

Lemma 3.3. Let Assumptions 2.1 and 3.1 hold. Then, for a sufficiently large discount factor
ρ>0, the value function V defined as (3.2) under the continuous-demand model (3.1) is a viscosity
solution that satisfies the linear growth to the abstract equation (3.8).

In the sequel, we will improve the smoothness of the viscosity solution (i.e. the value
function V defined by (3.2) under the demand model (3.1) equipped with Lemma 3.3) of
the HJB equation (3.8). More precisely, given value function V defined by (3.2) under the
demand model (3.1), we define the following functional, for any u∈C1(R+):

FV(x,u,u′) :=ρu(x)−sup
λ∈IK

[
−λu′(x)+dV(x,λ)

]
, x∈R+, (3.11)

where dV(x,λ) is given as (3.10) with u replaced by value function V. We consider the
following abstract equation given as

{

FV(x,u,u′)=0, x>0,

u=0, x=0.
(3.12)

Then, we have lemma.

Lemma 3.4. Let assumptions of Lemma 3.3 hold. The value function V defined by (3.2) under
demand model (3.1) is a unique viscosity solution that satisfies the linear growth to the abstract
equation (3.12). Moreover, it is continuous, that is, V∈C(R+).
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We then transform the abstract equation (3.12) into a standard elliptic one by utilizing
the assumption λ(K)>0. We define the following function as

HV(x,m) := sup
λ∈IK

1

λ

[
−ρm+dV(x,λ)

]
, (x,m)∈R+×R. (3.13)

Then, Eq. (3.12) above is equivalent to the following standard elliptic equation:

{

u′(x)−HV
(

x,u(x)
)
=0, x>0,

u(x)=0, x=0.
(3.14)

Proposition 3.1. Let assumptions of Lemma 3.3 hold. Given value function V defined by (3.2)
under demand model (3.1), the elliptic equation (3.14) has a solution u∈C1(R+)∩C(R+) that
satisfies the linear growth condition.

For value function V defined by (3.2) under demand model (3.1), let u ∈ C1(R+)∩
C(R+) be the classical solution of Eq. (3.14) in lieu of Proposition 3.1. Then, it is obvious
that this u is also a viscosity solution of Eq. (3.14) (or equivalently Eq. (3.12)). Hence, it
follows from Lemma 3.4 that

V=u on R+. (3.15)

This leads to the main result of this section on the well-posedness of classical solutions to
the abstract equation (3.8).

Theorem 3.1. Let assumptions of Lemma 3.3 hold. Then, the value function V ∈ C1(R+)∩
C(R+) is a unique classical solution to the abstract equation (3.8).

3.2 Example: Optimal price with linear demand

This section analyzes the HJB equation (3.4) with linear demand rate (2.8). We provide
interesting insights on the optimal (feedback) price implied by the HJB equation.

In order to analyze the case with the continuous-surging demand model (3.1), we
consider the following surging demand function:

α(x)=

{

x, x≤Λ,

Λ, x>Λ,
(3.16)

where the constant Λ> 0 represents the potential demand caused by the occurrence of
rare events. In this case, the actual surging demand increases with respect to the initial
inventory when x≤Λ, yet when initial inventory level x exceeds Λ, the surging demand
has reached its saturation point and will remain constant at Λ.

Remark 3.1. For the generality of the model, the magnitude of surging demand α(p,γ,x)
is assumed to be dependent on the product price p, the location γ and the inventory
level x in the continuous/surging demand model (3.1). However, in reality, sometimes
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the occurrence of rare event leads to a surge in demand and in turn the strain supply on
many kinds of products. In such a case, the price factor often has little impact on demand.
For example, due to the shortage of masks at the beginning of the COVID-19 epidemic,
although the price of some masks is much higher than usual (see [24]), people would still
buy them without hesitation. Furthermore, in this section we focus on the situation of
product sales in just one location (e.g. a state or a city). Then the mark space is a single
point and the location variable γ can also be ignored. Hence, one can see that we study
the surging demand function (3.16) from not only the tractability but also the practice.

The resulting HJB equation from (3.4) then becomes that

sup
λ∈[ǫ,M]

[

−λV ′(x)+
(M−λ)λ

m
− λµα(x)

m

]

+
µMα(x)

m

+µV
(

x−α(x)
)
−(ρ+µ)V(x)=0. (3.17)

In view of Theorem 3.1, the corresponding Hamiltonian is read as

H2(x;λ)=−λV ′(x)+
(M−λ)λ

m
− λµα(x)

m
, (x,λ)∈R+× IK.

Note that λ→H2(x;λ) is concave. It follows from Lemma 3.1 that the unique optimal
(feedback) demand rate is

λ∗(x)=
1

2

{
M−mV ′(x)−µα(x)

}
∨ǫ, x∈R+. (3.18)

The optimal (feedback) price from Assumption 2.1 is given by

p∗(x)=
1

2m

{
M+mV ′(x)+µα(x)

}
∧K, x∈R+. (3.19)

Note that both the optimal price and demand depend on the solution of Eq. (3.17). By
solving Eq. (3.17) in terms of (3.18) (or (3.19)), we obtain the following lemma.

Lemma 3.5. Under the continuous surging demand model (3.1), with linear demand rate func-
tion (2.8), the optimal price and demand rate are given respectively as

p∗(x)=







M−ǫ

m
, x∈O,

M+α(x)µ+mV ′(x)

2m
, x∈Oc,

λ∗(x)=







ǫ, x∈O,
M−α(x)µ−mV ′(x)

2
, x∈Oc,

(3.20)

where the set O is defined as

O :=

{

x∈R+;
1

2

(
M−µα(x)−mV ′(x)

)
≤ǫ

}

. (3.21)
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The value function V(x) for x∈R+ solves the following equation:

• on O,

−ǫV ′(x)+
(M−ǫ)ǫ

m
− ǫµα(x)

m
+

µMα(x)

m
+µV[x−α(x)]−(ρ+µ)V(x)=0, (3.22)

• on Oc,

m

4
V ′(x)2+

1

2

(
α(x)µ−M

)
V ′(x)+µV[x−α(x)]

−(ρ+µ)V(x)+
α(x)2µ2

4m
+

α(x)µM

2m
+

M2

4m
=0. (3.23)

The boundary condition is V(0)=0.

We do not expect to obtain an analytical solution to Eq. (3.17), so we instead solve it
numerically for analyzing structural properties satisfied by the optimal price strategy. By
solving Eq. (3.17) numerically, both the resulting value function and optimal price with
respect to initial inventory level under different values of surging demand size Λ are
displayed in Figs. 3 and 4, respectively.

Our first observation is that under certain cases, the static price strategy is optimal. It
follows from Lemma 3.2(i) that the value function V(x) is increasing in x∈R+. In view of
(3.20), if the maximal normal demand rate is smaller than the expected surging demand
size (i.e. M<µΛ), then optimal demand rate is given by ǫ. The optimal price, therefore,
is always the ceiling price K(ǫ)= (M−ǫ)/m when the initial inventory level x≥Λ (see
Figs. 3 and 4 for an illustration). This indicates that under such conditions, there is no
need for the firm to adjust its price when initial inventory level is sufficiently large, since
the static price strategy is always optimal. Here, the firm with a sizable initial inventory
can save significantly on administrative costs associated with price changes. In contrast,
for the firm with a low initial inventory level, the flexibility to change the price becomes
crucial.

Figure 3: Left panel: Value function x→V(x). Right panel: Optimal price x→ p∗(x). Parameters are set to
be M=4,m=1,ρ=1,µ=1, and ǫ=1.
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In another contrast, the optimal price may fail to be monotone in the initial inventory
level (Fig. 4), indicating that the optimal price first decreases, then increases to the ceiling
price as the initial inventory also increases. Our reading of the existing literature on the
dynamic price-based revenue management problem in the absence surging demand has
always shown decreasing optimal price with respect to initial inventory level (see, e.g.
[11,18,38]). To fill this gap in the literature, we find in our case of surging demand caused
by the occurrence of rare events that if the maximal normal demand rate is smaller than
the expected surging demand size, the optimal price indeed increases at a certain interval
belonging to which the initial inventory level belongs. This finding is summarized in the
following proposition.

Proposition 3.2. For the sufficiently small floor of the demand rate ǫ>0, if the maximal demand
rate is smaller than the expected surging demand size (i.e. M<µΛ), then there exists a nonempty
interval J⊂R+, such that the optimal price x 7→ p∗(x) is strictly increasing for x∈ J.

Fig. 4 displays the existence of the abnormal interval J for variously surging demand
size Λ. As we analyzed in the previous subsection, there does not exist an abnormal
interval J in cases without surging demand (i.e. Λ= 0), meaning that the optimal price
function x 7→ p∗(x) always decreases. In an exception, however, when Λ is away from
zero, there appears at least one interval J in which x 7→ p∗(x) shows increase, because
when rare events occur, initial inventory level plays a crucial role in helping improve
sales. In fact, when initial inventory level is x≤Λ, the surging demand function α(x)= x
increases with respect to initial inventory level x, implying that higher initial inventory
level may lead to higher demand rate. Sometimes the revenue generated by the surging
demand exceeds that generated through price reduction and the corresponding increase
in demand rate. In such a case as is indicated by Proposition 3.2, the firm must adopt
an opposite price adjustment strategy compared to the one followed in cases of normal
demand. We call this strategy as “sell slow to sell fast” strategy, i.e. using a high price to
sell slow at regular time but sell fast during demand surges.

Figure 4: Left panel: Value function x→V(x). Right panel: Optimal price x→ p∗(x). Parameters are set to
be M=10,m=1,ρ=5,µ=1, and ǫ=1.
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4 Model extension with random fluctuations

Thus far, we have introduced the continuous demand model and used a marked point
process to describe the surge in demand. A more realistic dynamic demand model is
needed, however, to consider the random fluctuations that are not captured by the model
(e.g. [12]).

The primary focus in this section is to extend the continuous/surging demand model
(3.1) by taking into account Brownian random fluctuations, which leads to the following
generalized surging demand model as a controlled jump-diffusion process:

Dt=

surging demand model (3.1)
︷ ︸︸ ︷
∫ t

0
λ(ps)ds

︸ ︷︷ ︸

continuous demand

+
∫ t

0

∫

Γ

α(ps,γ,Xs−)N(dγ,ds)
︸ ︷︷ ︸

surging demand

+
∫ t

0
σ
(
λ(ps)

)
dWs

︸ ︷︷ ︸

random fluctuations

. (4.1)

Here, W=(Wt)t≥0 is a Brownian motion that is independent of the marked point process
N(dγ,dt), while σ(λ) measures the variability of demand (or demand random fluctua-
tions) when the demand rate is λ. In order to highlight the path behavior of the surging
demand process with Brownian random fluctuations compared with that of the surging
demand model (3.1), we provide a simulation illustration in Fig. 5.

We impose the following assumption on the variance of the demand forecast.

Assumption 4.1. The (standard) variance function λ→σ(λ) is continuous on IK. More-
over, there exists a constant σ0>0 such that σ(λ)>σ0 for all λ∈ IK.

The (standard) variance function σ(·) here is assumed to have a strictly (positive)
lower boundary, in what we refer to the non-degenerate case. If this condition is vi-
olated, then we refer to it as the degenerate case. For example, both the continuous

Figure 5: Left panel: Sample path of the cumulative demand process t→ Dt with a linear surging demand
α(p,γ,x)=α0x (α0 ∈ [0,1]). Right panel: Sample path of the inventory level t→Xt. Parameters are set to be
µ(Γ)=0.15,σ(λ)=1,α0 =0.2,λ(p)=10−p, pt =10−0.3t, and X0 =80.
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demand model (2.1) and the continuous surging demand model (3.1) (corresponding to
σ(·)≡ 0) result in degenerate models. When we study the well-posedness of HJB equa-
tions raised by these models, the degeneracy and non-degeneracy of the demand models
would lead to different proofs of the well-posedness of the corresponding HJB equations
(see Section 3.1).

In this extended demand model with surging demand, the corresponding value func-
tion V defined by (3.2) has the following structural properties.

Proposition 4.1. Let Assumptions 2.1, 3.1 and 4.1 hold. Then, the value function V defined by
(3.2) under the demand model (4.1) satisfies that

(i) x→V(x) is increasing on R+,

(ii) x→V(x) satisfies the linear growth condition on R+,

(iii) x→V(x) is right continuous at x=0.

The above structural properties satisfied by the value function in the extended model
are similar to those of Lemma 3.2 in the degenerate demand case. For item (iii), however,
the proof is rather different and more challenging for the appearance of Brownian forecast
errors. Equipped with surging demand model (4.1) with Brownian forecast errors and
using the dynamic program, the value function V defined by (3.2) formally satisfies the
following integro-differential HJB equation:

sup
λ∈IK

[
L̃λV(x)+r(λ)+φ

(
p(λ),x

)]
=ρV(x), x∈R+ (4.2)

with the boundary condition V(0)=0. Here, L̃λ is an integro-differential operator defined
as, for (λ,x)∈ IK×R+,

L̃λ f (x) :=
1

2
σ2(λ) f ′′(x)−λ f ′(x)+

∫

Γ

{
f
(

x−α
(

p(λ),γ,x
))
− f (x)

}
µ(dγ) (4.3)

for f ∈C2(R+).
The following lemma helps to characterize the optimal demand rate (and, hence, the

optimal price) if the value function is truly a classical solution to the HJB equation, which
we prove in the next section.

Lemma 4.1. Let Assumptions 2.1, 3.1 and 4.1 hold. If the value function V under the demand
model (4.1) is a classical solution of the integro-differential HJB equation (4.2), there exists a mea-
surable function λ∗ :R+→ IK, so that

H3

(
x;λ∗(x)

)
= sup

λ∈IK

H(x;λ) := sup
λ∈IK

[
L̃λV(x)+λp(λ)+φ

(
p(λ),x

)]
, x∈R+, (4.4)

where the operator L̃λ is defined by (4.3). Moreover, if λ→H3(x;λ) is concave, then λ∗ is unique.
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4.1 The well-posedness of the integro-differential HJB equation

This section establishes the well-posedness, in a classical sense, of the integro-differential
HJB equation (4.2). The strategy for studying Eq. (4.2) is similar to that of the degenerate
case in that it consists of two key steps:

(i) We prove that the value function V(x) for x ∈ R+ defined by (3.2) is indeed the
unique viscosity solution to a non-degenerate abstract equation (c.f. Eq. (4.5) below).

(ii) With the given value function V, we formulate Eq. (4.5) as a non-degenerate elliptic
equation (c.f. Eq. (4.8)) that we prove has a unique classical solution.

Here, we emphasize that property (iii), satisfied by the value function documented in
Proposition 4.1 above, plays a key role in the study of the well-posedness of the equation.

We rewrite the HJB equation (4.2) in the following equivalent abstract form:

{

F(x,V,V ′,V ′′)=0, x>0,

u(x)=0, x=0,
(4.5)

where the functional F for any u∈C2(R+) is defined as

F(x,u,u′,u′′) :=ρu(x)−sup
λ∈IK

[
1

2
σ2(λ)u′′(x)−λu′(x)+du(x,λ)

]

, x∈R+. (4.6)

In (4.6), the non-local term du(x,λ) is given by (3.10). For the first step, we then have the
following result.

Lemma 4.2. Let Assumptions 2.1, 3.1 and 4.1 hold. If there is a sufficiently large discount factor
ρ > 0, then the value function V defined by (3.2) under the demand model (4.1) is a viscosity
solution satisfying the linear growth to the abstract equation (4.5).

As the second step, we next improve the smoothness of the viscosity solution the
value function V of the non-degenerate HJB equation (4.2). To do this, for (x,λ)∈R+× IK,
let dV(x,λ) be defined as (3.10) but with u replaced by the value function V under the
demand model (4.1). Then, for any u ∈ C2(R+), let us define the following functional
depending on the value function V:

FV(x,u,u′,u′′) :=ρu(x)−sup
λ∈IK

{

−λu′(x)+
1

2
σ2(λ)u′′(x)+dV(x,λ)

}

, x∈R+. (4.7)

Consider the following abstract equation given as

{

FV(x,u,u′,u′′)=0, x>0,

u=0, x=0.
(4.8)

Then, we have lemma.
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Lemma 4.3. Let Assumptions 2.1, 3.1 and 4.1 hold. If there is a sufficiently large discount
factor ρ > 0 then the value function V defined by (3.2) under the demand model (4.1) is the
unique viscosity solution satisfying the linear growth of the abstract equation (4.8). It is moreover
continuous, that is, V∈C(R+).

We next transform the abstract equation (4.8) into a standard one. To achieve this, we
define the following function as

HV(x,m,q) := sup
λ∈IK

1

σ2(λ)

[
−ρm−λq+dV (x,λ)

]
, (x,m)∈R+×R. (4.9)

Then, Eq. (4.8) above is equivalent to
{

u′′(x)−HV
(

x,u(x),u′(x)
)
=0, x>0,

u(x)=0, x=0.
(4.10)

Observe that in Eqs. (4.9), (4.10), given the value function V, the standard equation (4.10)
is of a class of non-degenerate HJB equations without the nonlocal (integral) term. Given
value function V defined by (3.2) in the demand model (4.1), the following proposition
indicates that Eq. (4.10) has the unique classical solution.

Proposition 4.2. Under Assumptions 2.1, 3.1 and 4.1, the value function V defined by (3.2) in
the demand model (4.1), Eq. (4.10) admits a solution u∈C2(R+)∩C(R+).

For the value function V defined by (3.2) in the demand model (4.1), let u be a classical
solution of Eq. (4.8) whose existence can be guaranteed by Proposition 4.2. Then, it is ob-
vious that this u is also a viscosity solution of (4.8). Therefore, it follows from Lemma 4.3
that

V=u on R+. (4.11)

This yields the main result of this section.

Theorem 4.1. Let Assumptions 2.1, 3.1 and 4.1 hold, then the value function V ∈ C2(R+)∩
C(R+) is a unique classical solution of the HJB equation (4.2) that satisfies the linear growth.

4.2 Example: Optimal price with linear demand and random fluctuations

We provide an illustrative example with Brownian forecast errors for the linear demand
rate p→λ(p) defined in (2.8), and surging demand function x→α(x) as defined in Sec-
tion 2. We also assume that the random fluctuations of demand σ(·) does not depend
on the control variable, or σ(·)≡ σ > 0. Then, for the surging demand model (4.1) with
Brownian forecast errors, the resulting HJB equation from (4.2) becomes that

σ2

2
V ′′(x)+ sup

λ∈[ǫ,M]

[

−λV ′(x)+
(M−λ)λ

m
− λµα(x)

m

]

+
µMα(x)

m
+µV

(
x−α(x)

)
−(ρ+µ)V(x)=0. (4.12)
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In view of Theorem 4.1, the corresponding Hamiltonian is read in the following manner:

H3(x;λ)=−λV ′(x)+
(M−λ)λ

m
− λµα(x)

m
, (x,λ)∈R+× IK.

Note that λ→H3(x;λ) is concave. It follows from Lemma 4.1 that the unique optimal
(feedback) demand rate is

λ∗(x)=
1

2
{M−mV ′(x)−µα(x)}∨ǫ, x∈R+, (4.13)

and so the unique optimal (feedback) price from Assumption 2.1 is given by

p∗(x)=
1

2m
{M+mV ′(x)+µα(x)}∧K, x∈R+. (4.14)

We then have furthermore the following lemma.

Lemma 4.4. Under the surging demand model (4.1) with Brownian random fluctuations and
linear demand rate (2.8), the optimal price and demand rate are given as, respectively

p∗(x)=







M−ǫ

m
, x∈O,

M+α(x)µ+mV ′(x)

2m
, x∈Oc,

λ∗(x)=







ǫ, x∈O,

M−α(x)µ−mV ′(x)

2
, x∈Oc,

(4.15)

where the set O is defined as

O :=

{

x∈R+;
1

2

(
M−µα(x)−mV ′(x)

)
≤ǫ

}

. (4.16)

The value function V(x) for x∈R+ solves the following equation:

• on O,

σ2

2
V ′′(x)−ǫV ′(x)+

(M−ǫ)ǫ

m
− ǫµα(x)

m

+
µMα(x)

m
+µV[x−α(x)]−(ρ+µ)V(x)=0, (4.17)

• on Oc,

σ2

2
V ′′(x)+

m

4
V ′(x)2+

1

2

(
α(x)µ−M

)
V ′(x)+µV[x−α(x)]

−(ρ+µ)V(x)+
α(x)2µ2

4m
+

α(x)µM

2m
+

M2

4m
=0. (4.18)

The boundary condition is given by V(0)=0.
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Next, we show that for this surging demand model with Brownian random fluctua-
tions, in an analogue to Proposition 3.2 in Section 3.2, optimal price may also fail to be
monotone at the initial inventory level.

Proposition 4.3. For a sufficiently large surging demand size Λ>0 and a sufficiently small floor
of the demand rate ǫ > 0, there exists a nonempty interval J ⊂R+ such that the optimal price
x 7→ p∗(x) is strictly increasing for x∈ J.

Together with the abnormal interval J, the value function and optimal price with
respect to the initial inventory level under different demand models are displayed in
Fig. 6. We find that the firm always reduces the price with respect to the initial inventory
level under the normal demand model, while sometimes it raises the price when there is
surging demand.

We also note that the firm can earn higher expected revenue under surging demand
since it increases suddenly, as compared to the a case of normal demand. This implies
that surging demand is a critical factor in enabling the firm to formulate an optimal price
strategy and thus increase its expected revenue. It should be kept in mind, however,
that the demand variability (or random fluctuations of demand) may decrease the to-
tal expected maximum profit. Because of this, the firm must thoughtfully consider the
possible random fluctuations of demand rates when devising an optimal price strategy.

Fig. 7 illustrates the impact of the variability of demand σ on the value function, in-
dicating that a large enough demand forecast error can reduce the firm’s total expected
maximum profit.

Note that for ǫ∈ [M/2,M] and Λ↑+∞ (i.e. the surging demand function α(x)= x for
all x>0), the region O=(0,∞), hence, the HJB equation (4.12) becomes that

1

2
σ2V ′′(x)−ǫV ′(x)−(ρ+µ)V(x)+

µ(M−ǫ)

m
x+

(M−ǫ)ǫ

m
=0, x>0. (4.19)

Figure 6: Left panel: Value function x→V(x). Right panel: Optimal price x→ p∗(x). Parameters are set to
be σ=10,Λ=10, M=5,m=1,ρ=1,µ=1, and ǫ=0.01.
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Figure 7: Left panel: Value function x→V(x). Right panel: Optimal price x→ p∗(x). Parameters are set to
be Λ=10, M=5,m=1,ρ=1,µ=1, and ǫ=0.01.

By matching the boundary condition V(0)=0, the above equation has the unique solution

V(x)=
µ(M−ǫ)

m(µ+ρ)
x+

ǫ(M−ǫ)ρ

m(µ+ρ)2

[

1−exp

(

ǫ−
√

ǫ2+2(µ+ρ)σ2

σ2
x

)]

. (4.20)

Therefore, it holds that

V(x)≤ M−ǫ

m(µ+ρ)2

[

ǫρ+µ(µ+ρ)x−ǫρexp

(

−µ+ρ

ǫ
x

)]

, ∀x>0.

Note that the right side of the above equation shows precisely the expected optimal profit
without random fluctuations (i.e. σ(·)≡0). This supports our conclusions regarding the
negative effects of demand random fluctuations on expected maximum profits, and is
also consistent with our previous numerical analysis.

In the previous sections, we have studied the structural properties of optimal price
strategy and value function under three different demand models. From these, our anal-
ysis reveals the following insights. First, the static price strategy is optimal in certain
cases, because it can help the firm save the substantial effort involved in monitoring in-
ventory levels and cost of price adjustments. Second, the firm that ignores the demand
random fluctuations always overestimates its expected revenue. We find, in fact, that the
Brownian random fluctuations usually has a negative effect on revenue. Lastly, it is usual
that the firm with higher initial inventory level might reduce the price of the product, yet
under the surging demand model, optimal price may increase with respect to the initial
inventory level. This suggests that the firm ought to embrace the surging demand caused
by rare events and be more cautious in making price decisions.
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5 Conclusion

This paper studies the impact and implications of surging demand in the context of a dy-
namic pricing problem. A surge in demand may occur due to rare events, whose “arri-
val” and “place occurred” are jointly modelled by a marked point process. We derive the
fully nonlinear integro-differential HJB equation for the dynamic pricing problem formu-
lated as a stochastic control problem with an exit time. In general, it is difficult to verify
that the value function is sufficiently smooth to satisfy the HJB equation in the classical
sense. Inspired by the viscosity solution technique, we prove that the value function is
the unique classical solution to the HJB equation. We assume that the firm is familiar
with the initial demand environment – that is, it is aware of the demand rate function.
When the demand rate is linear on the price variable, we make a comparison of the op-
timal price and the value function between the case with and without surging demand.
We find that the resulting optimal price decreases as the initial inventory level increases
in the absence of surging demand, which is consistent with the findings in the existing
literature (e.g. [11,18,38]). Interestingly, in the case of surging demand, the optimal price
may increase with respect to the inventory level, which provides the insight into how
the firm should adjust its pricing strategy should rare events occur in order to make its
maximal expected profit. From this, several topics emerge that are worthy of further re-
search. For one, it would be interesting to consider surging demand functions different
from (3.16). It could also be beneficial to explore whether our dynamic pricing problem
can be extended to cases of holding cost and replenishment.

Appendix A. Proofs and auxiliary lemmas

This appendix collects the proofs of all results in the previous sections, except Lemmas 4.2
and 4.3 (see Appendix B).

Proof of Lemma 2.1. Note that the continuous demand model is a special case of the surg-
ing demand model by taking α(·)≡0. Then, this lemma can be immediately followed by
applying Theorem 3.1 and Lemma 4.1.

Proof of Proposition 2.1. We prove the proposition inspired by the viscosity solution tech-
nique. To do it, we first define V̂(x) :=−V(x) for x ∈R+. It follows from (2.7) that V̂
obeys that







F̂(x,u,u′)=0, x>0,

u=0, x=0,
(A.1)

where, for any u∈C1(R+),

F̂(x,u,u′) :=ρu(x)+sup
λ∈IK

{λu′(x)+r(λ)}
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with x > 0. Then, we can show that V̂ is the unique classical solution to the abstract
equation (A.1) (c.f. the proof of Theorem 3.1). In addition, we introduce the convex
envelope V̂∗∗ of V̂ – that is, the largest convex function below V̂ [2]

V̂∗∗(x) := inf
{

k1V̂(x1)+k2V̂(x2); x= k1x1+k2x2, x1,x2∈R+,k1+k2=1,k1,k2>0
}

. (A.2)

Note that the value function x→V(x) is bounded. In fact, Assumption 2.1 yields that

V(x)= sup
p∈PK

∫ τo

0
e−ρs psλ(ps)ds≤

∫
∞

0
e−ρsKλ(0)ds≤ Kλ(0)

ρ
.

In the sequel, we show that x→V(x) is a concave function. It suffices to prove that, for
all x∈R+, there exist x1, x2∈R+ and k1,k2 ≥0 such that

k1+k2=1, x= k1x1+k2x2, V̂∗∗(x)= k1V̂(x1)+k2V̂(x2). (A.3)

Since x → V̂(x) = −V(x) is bounded, the convex envelope x → V̂∗∗(x) is hence well-
defined. We fix x>0. In light of (A.2), there exist

(
xn

1

)

n≥1
,
(

xn
2

)

n≥1
⊂R+,

(
kn

1

)

n≥1
,
(
kn

2

)

n≥1
⊂R+

such that

kn
1+kn

2 =1, x= kn
1 xn

1 +kn
2 xn

2 , V̂∗∗(x)+
1

n
> kn

1V̂
(

xn
1

)
+kn

2V̂
(
xn

2

)
≥ V̂∗∗(x). (A.4)

Without loss of generality, we may assume that xn
1 ≤ xn

2 for all n ∈ N. Therefore,
0< xn

1 ≤ x and xn
2 ≥ x. There exists a subsequence of (xn

1 ,xn
2 ,kn

1 ,kn
2)n≥1 (still denoted by

(xn
1 ,xn

2 ,kn
1 ,kn

2)n≥1), such that (xn
1 ,kn

1 ,kn
2) converges to (x1,k1,k2)∈R+×[0,1]2, as n→∞.

• If k2 > 0, there exists an N1 ∈ N such that kn
2 > 0 for all n ≥ N1. It follows from

xn
2 =(x−kn

1 xn
1 )/kn

2 that xn
2 also converges to some x2≥0 as n→∞. Taking n→∞ on

both sides of (A.4), and using the continuity of x→ V̂(x), we arrive at

V̂∗∗(x)= k1V̂(x1)+k2V̂(x2).

• If k2 =0, it follows from kn
1+kn

2 =1 for all n∈N that k1 =1. Letting n→∞ on both
sides of (A.4) again. Then, the boundedness of x→ V̂(x) yields that

V̂(x)≥ V̂∗∗(x)= V̂(x1).

Note that V̂(x) is strictly decreasing in x. Then, we obtain x1≥x, which implies that
x1= x. Thus, we can take x1= x, x2= x,k1 =1 and k2=0, which yields (A.3).
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We next apply (A.3) to show V̂∗∗∈LSC(R+). In fact, for fixed x≥0, consider a sequence
(xn)n≥1⊂R+ satisfying xn→x, as n→∞. For each n≥1, there exist xn

1 , xn
2∈R+ and kn

1 ,kn
2≥0

such that

kn
1+kn

2 =1, xn = kn
1 xn

1 +kn
2 xn

2 , V̂∗∗(xn)= kn
1V̂
(

xn
1

)
+kn

2V̂
(

xn
2

)
.

Since x is the convex combination of the limit point (x1,x2,k1,k2) of a converging subse-
quence (xn′

1 ,xn′
2 ,kn′

1 ,kn′
2 ), we deduce that

liminf
n′→∞

V̂∗∗(xn′)= liminf
n′→∞

(
kn′

1 V̂
(

xn′
1

)
+kn′

2 V̂
(

xn′
2

))
≥ k1V̂(x1)+k2V̂(x2)≥ V̂∗∗(x).

This easily gives that V̂∗∗∈ LSC(R+). Then, by [2, Proposition 2], V̂∗∗ is also a viscosity
supersolution of Eq. (A.1). It follows from the comparison theorem of the viscosity solu-
tion (c.f. the proof of Lemma 4.3) with V̂(0)= V̂∗∗(0)=0 that V̂∗∗(x)≥ V̂(x) for all x≥0.
On the other hand, by (A.2), we have that V̂∗∗(x)≤ V̂(x) for all x≥0. Therefore, V̂=V∗∗,
which yields that x→V(x)=−V̂(x) is a concave function.

Lastly, by applying Lemma 2.1 and r∈C1(IK), the unique optimal (feedback) demand
rate λ∗(x) is given by

λ∗(x)=(r′)−1
(
V ′(x)

)
∨λ(K),

where (r′)−1(·) represents the inverse function of r′(·). Thus, by Assumption 2.1, the
concavity of x→V(x) and λ→r(λ), the optimal price p∗(x) decreases with respect to the
initial inventory level x. We complete the proof of the proposition.

Proof of Lemma 2.2. We introduce the following set given by

O :=

{

x∈R+;
1

2

(
M−mV ′(x)

)
<ǫ

}

. (A.5)

On the set O. In view of (2.10), the optimal (feedback) demand rate and price are, re-
spectively, given by

λ∗(x)=ǫ, p∗(x)=K(ǫ)=
M−ǫ

m
, ∀x∈O. (A.6)

Plugging them into (2.9), and it results in the following equation on O:

−ǫV ′(x)−ρV(x)+K(ǫ)ǫ=0, ∀x∈O. (A.7)

Hence, with the initial condition V(0)=0, Eq. (A.7) has the following closed-form solu-
tion:

V(x)=
K(ǫ)ǫ

ρ

(
1−e−

ρ
ǫ x
)
, x∈O. (A.8)

In turn, by substituting (A.8) into (M−mV ′(x))/2≤ ǫ, we obtain that O= {x∈R+; 0<
x< x∗}, where x∗ is given by (2.13).
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On the set Oc. On the set Oc = {x ∈R+; x > x∗}, the optimal demand rate is λ∗(x) =
(M−mV ′(x))/2. Accordingly, the optimal price is

p∗(x)=
1

2m

(
M+mV ′(x)

)

for x∈Oc. This yields that the HJB equation (2.9) on Oc becomes that

V ′(x)=
M

m
−
√

4ρV(x)

m
, x≥ x∗ (A.9)

with the boundary condition (continuous fit) V(x∗)= ǫ2/(mρ). Then, in view of (2.6), it
follows that, for all x∈R+,

V(x)= sup
p∈PK

∫ τo

0
e−ρsr(λs)ds= sup

p∈PK

∫ τo

0
e−ρs ps(M−mps)ds≤

∫
∞

0
e−ρs M

4m2
ds≤ M2

4mρ
.

On the other hand, since ǫ∈(0,M/2), we have K(ǫ)>M/(2m). Then, we take the constant
price strategy pt≡M/(2m)∈[0,K(ǫ)]. Hence, the corresponding selling period with initial
inventory level x is given by τo =2x/M. Thus, for all x∈R+,

V(x)≥
∫ 2x

M

0
e−ρs ps(M−mps)ds=

∫ 2x
M

0
e−ρs M2

4m
ds=

M2

4mρ

(

1−e−
2ρx
M

)

.

That is,

M2

4mρ

(

1−e−
2ρx
M

)

≤V(x)≤ M2

4mρ
, ∀x∈R+.

This yields that limx→∞ V(x)=M2/(4mρ). By Eq. (A.9), we have that

p∗(x)=
M

m
−
√

ρV(x)

m
, x≥ x∗.

Together with Proposition 2.1, we obtain p∗(x)↓M/(2m),λ∗(x)↑M/2, as x→∞.

Proof of Lemma 3.1. The proof is similar to the proof of Lemma 4.1.

Proof of Lemma 3.2. The proof is similar to the proof of Proposition 4.1.

Proof of Lemma 3.3. The proof is similar to the proof of Lemma 4.2.

Proof of Lemma 3.4. The proof is similar to the proof of Lemma 4.3.
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Proof of Proposition 3.1. We apply [31, Lemma 4] to establish the existence of classical so-
lutions to Eq. (3.14). To this end, recall that HV(x,m) which is defined by (3.13), i.e.

HV(x,m)= sup
λ∈IK

1

λ

{
−ρm+dV(x,λ)

}
, (x,m)∈R+×R. (A.10)

We next verify that the function HV(x,m) satisfies the conditions of [31, Lemma 4]: for
any compact subset X of R+, there exist constants M1 and M2 such that, for all (x,m),
(x,m̃)∈X ×R,

(i) |H(x,m)|≤M1(1+|m|),

(ii) |H(x,m)−H(x,m̃)|≤M2|m−m̃|,

(iii) H is continuous in x∈X for each m.

First of all, it follows from the linear growth of x→V(x) (c.f. Lemma 3.2) that there exists
a constant C>0 such that V(x)≤C(1+x) for all x≥0. Therefore, for all (x,λ)∈R+× IK,

∣
∣dV(x,λ)

∣
∣=

∣
∣
∣
∣

∫

Γ

{
V
(

x−α
(

p(λ),γ,x
))
−V(x)

}
µ(dγ)+λp(λ)+φ

(
p(λ),x

)
∣
∣
∣
∣

≤
∫

Γ

∣
∣V
(

x−α
(

p(λ),γ,x
))∣
∣µ(dγ)+µ(Γ)|V(x)|+λp(λ)+φ

(
p(λ),x

)

≤M

{

1+
∫

Γ

(
x−α

(
p(λ),γ,x

))2
µ(dγ)

}

x2+M(1+x2)+λp(λ)+Mx

≤M(1+x2)+λ(0)K+Mx, (A.11)

where M> 0 is a generic constant (independent of (x,λ)) which may be different from
line to line. For any compact subset X of R+, using Assumptions 2.1 and 3.1, there exists
a constant M̃=M̃(X )>0, such that |dV(x,λ)|≤M̃ for all (x,λ)∈X× IK. As a consequence,
by the assumption λ(K)>0, it holds that

sup
(x,λ)∈X×IK

∣
∣
∣
∣

dV(x,λ)

λ

∣
∣
∣
∣
≤ M̃

λ(K)
. (A.12)

Then, it follows from (A.12) that, for all m∈R,

∣
∣HV(x,m)

∣
∣≤ M̃+ρ

λ(K)
{1+|m|}.

This yields the condition (i). On the other hand, it is easy to check that

∣
∣HV(x,m)−HV(x,m̃)

∣
∣≤ ρ

λ(K)
|m−m̃|, ∀(x,m), (x,m̃)∈X ×R,



168 L. Bo and Y.J. Huang / CSIAM Trans. Appl. Math., 5 (2024), pp. 142-181

which verifies the validity of the condition (ii). For any m ∈R, using Assumptions 2.1
and 3.1, the function

h(m;x,λ) :=
1

λ

{
−ρm+dV(x,λ)

}

is jointly continuous in (x,λ)∈X × IK. From the Berge’s maximum theorem (see, e.g. [31,
Proposition 8]), it follows that HV(x,m)=supλ∈IK

h(m;x,λ) is continuous in x∈X for each
m∈R. This implies that (iii) holds.

It remains to show that the solution u satisfies the linear growth condition. We finish
this proof by using the comparison theorem (c.f. [33, Theorem II.IX]). In fact, in view of
Assumptions 2.1 and 3.1, there exists a constant M̃>0 such that |dV(x,λ)|≤ M̃(1+x) for
all (x,λ)∈R+× IK. Then, we let C :=λ(0)M̃/(λ(K)ρ), and define the following function
given by

w1(x)=C(1+x), w2(x)=−C(1+x), ∀x≥0.

Thus, we can obtain that, for all x≥0,

w′
1(x)−HV

(
x,w(x)

)

=w′
1(x)−sup

λ∈IK

{

− ρ

λ
w1(x)+

1

λ
dV(x,λ)

}

≥C+
ρ

λ(0)
C(1+x)− M̃

λ(K)
(1+x)>0.

Then, by the comparison theorem, u(x)≤w1(x)=C(1+x) for all x≥0. In a similar fashion,
for all x≥0, it holds that

w′
2(x)−HV

(
x,h(x)

)

=w′
2(x)−sup

λ∈IK

{

− ρ

λ
w2(x)+

1

λ
dV(x,λ)

}

≤−C− ρ

λ(0)
C(1+x)+

M̃

λ(K)
(1+x)<0.

Hence, using the comparison theorem again, it follows that u(x)≥w2(x)=−C(1+x) for
all x≥ 0. This yields that |u(x)| ≤C(1+x) for all x≥ 0, i.e. u satisfies the linear growth
condition. Thus, the proof of the proposition is complete.

Proof of Lemma 3.5. The proof is similar to the proof of Lemma 2.2.

Before the proof of Proposition 3.2, we have the following observation. If ǫ∈[M/2,M],
since the value function x→V(x) is increasing, it holds that

1

2

(
M−mV ′(x)−µα(x)

)
≤ǫ, ∀x>0.
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Hence, the set O= (0,∞), i.e. the optimal price p∗(x) = K(ǫ) for x > 0. Then, the HJB
equation (3.17) becomes that

−ǫV ′(x)+
(M−ǫ)ǫ

m
− ǫµα(x)

m
+

µMα(x)

m
+µV

(
x−α(x)

)
−(ρ+µ)V(x)=0. (A.13)

In this case, we can actually get the analytical solution to Eq. (A.13). Note that, for x≤Λ,
α(x)=x, by solving Eq. (A.13) on [0,Λ] with the initial condition V(0)=0, we obtain that

V(x)=
M−ǫ

m(µ+ρ)2

[

ǫρ+µ(µ+ρ)x−ǫρexp

(

−µ+ρ

ǫ
x

)]

, x∈ [0,Λ]. (A.14)

For x≥Λ, α(x)=Λ, the solution to (A.13) on [Λ,∞) is

V(x)=exp

(

−µ+ρ

ǫ
x

)

×
[

−
∫ x

0
exp

(
µ+ρ

ǫ
y

)
µMΛ−ǫµΛ+(M−ǫ)ǫ+µV(x−Λ)

ǫ
dy+C

]

. (A.15)

Here C ∈R is a constant which can be determined by the continuity of V(x) at x = Λ.
Then, by (A.14) and (A.15), we can get the exact expression of the value function V(x) on
[Λ,2Λ]. Similarly, by using the expression of the value function V(x) on [Λ,2Λ], we can
solve Eq. (A.13) explicitly again on [2Λ,3Λ], then so do on [3Λ,4Λ],[4Λ,5Λ],. . . .

Next, by applying Lemma 3.5 and the discussion above, we give the proof of Propo-
sition 3.2.

Proof of Proposition 3.2. We note that, the condition M<µΛ gives that

M−µα(x)−mV ′(x)

2
≤0, x≥ M

µ
.

Then, the optimal price p∗(x) = (M−ǫ)/m (that is, the ceiling price) for all x ≥ M/µ.
Hence, it is sufficient to prove Oc 6= ∅. Next, we prove it by contradiction. Suppose
Oc=∅, i.e. O=(0,∞). It follows from (A.14) that

Λ(x) :=
M−µx−mV ′(x)

2
−ǫ

=
1

2

{

M−µx− M−ǫ

µ+ρ

[

µ+ρexp

(

−µ+ρ

ǫ
x

)]}

−ǫ, ∀x≤Λ.

Consequently, we have

Λ
′(x)=−1

2

[

µ− ρ(M−ǫ)

ǫ
exp

(

−µ+ρ

ǫ
x

)]

.
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Let Λ′(x)=0, we then obtain that

x0=
ǫ

µ+ρ
ln

ρ(M−ǫ)

µǫ
.

Note that for the sufficiently small normal demand rate ǫ>0, we have 0< x0<Λ, hence,
the following estimate holds:

Λ(x0)=
1

2

(

M−µx0−
µ

µ+ρ
M

)

−ǫ

=
1

2

(
ρ

µ+ρ
M− µǫ

µ+ρ
ln

ρ(M−ǫ)

µǫ

)

−ǫ → ρ

µ+ρ
M>0 as ǫ → 0.

This means that, if the normal demand rate ǫ>0 small enough, then Λ(x0)>0. This results
in a contradiction with O=(0,∞). Thus, we complete the proof of the proposition.

Proof of Proposition 4.1. We first prove the conclusion (i). To this purpose, let x,y≥0 satisfy
x > y. For p = (pt)t≥0 ∈ PK, denote by Xx,p = (X

x,p
t )t≥0 the inventory process with the

initial inventory level X0=x and the control p. It follows from [25, Theorem 3.1] that, for
all t≥0, Xx

t ≥X
y
t ,P-a.s. Moreover, let τo(x,p) be the stopping time defined by (2.3) with Xt

replaced by X
x,p
t . Therefore, we obtain that τo(x,p)≥τo(y,p),P-a.s. By the Assumption 3.1

and the nonnegativity of µ(·), we get that, for any p∈PK,

E

[∫ τo(x,p)

0
e−ρs

{
r(ps)+φ

(
ps,X

x,p
s

)}
ds

]

≥E

[∫ τo(y,p)

0
e−ρs

{
r(ps)+φ

(
ps,X

y,p
s

)}
ds

]

.

Thus, together with (3.2), it results in V(x)≥V(y) when x>y≥0. In other words, x→V(x)
is increasing on R+. This shows the validity of the claim (i).

Next, we prove the conclusion (ii). For any x ≥ 0, it follows from (3.1) that, for all
p∈PK,

X
x,p
t 1t≤τo(x,p)=

{

x−
∫ t

0
λ(ps)ds−

∫ t

0
σ
(
λ(ps)

)
dWs−

∫ t

0

∫

Γ

α
(

p(s),γ,X
x,p
s−
)

N(dγ,ds)

}

1t≤τo(x,p)

≤ x+

∣
∣
∣
∣

∫ t

0
σ
(
λ(ps)

)
dWs

∣
∣
∣
∣
, t≥0.

Then, by the Burkholder-Davis-Gundy inequality, we have that

E[X
x,p
t 1t≤τo(x,p)]≤ x+M

√
t

for some constant M>0, which is independent of (t,x,p). This immediately yields that,

for all (t,x)∈R
2
+,

sup
p∈PK

E

[

X
x,p
t 1t≤τo(x,p)

]

≤ x+M
√

t. (A.16)
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In the sequel, we let M> 0 be a generic positive constant independent of (t,x,p), which
may be different from line to line. Then, it follows from (A.16), Assumptions 2.1 and 3.1
that

V(x)≤ sup
p∈PK

E

[∫
∞

0
e−ρsr(ps)ds

]

+ sup
p∈PK

E

[∫
∞

0
e−ρsφ(ps,X

x,p
s )1s≤τo(x,p)ds

]

≤ M

ρ
+M

∫
∞

0
e−ρs sup

p∈PK

E

[

X
x,p
s 1s≤τo(x,p)

]

ds

≤ M

ρ
+M

∫
∞

0
e−ρs(x+M

√
s)ds

=
M

ρ
(1+x)+M2+M2

∫
∞

0
e−ρs

√
sds

≤ M

ρ
(1+x)+

M2

ρ
3
2

≤M(1+x).

That is, x →V(x) satisfies the linear growth condition. Toward this end, we prove the
validity of the conclusion (iii). To do it, note that V(0−) = 0, let (xn)n≥1 with xn ≥ 0
satisfying xn →0 as n→∞. Then, by (2.5), it is enough to show that V(xn)→V(0)=0 as
n→∞. In fact, first of all, we note that, for any (t,x,p)∈R

2
+×PK,

X
x,p
t 1t≤τo(x,p)=

{

x−
∫ t

0
λ(ps)ds−

∫ t

0
σ
(
λ(ps)

)
dWs−

∫ t

0

∫

Γ

α
(

ps,γ,X
x,p
s−
)

N(dγ,ds)

}

1t≤τo(x,p)

≤Yx,p(t)1t≤τo(x,p). (A.17)

Here, we defined that

Y
x,p
t := x−

∫ t

0
σ
(
λ(ps)

)
dWs, ∀(t,x,p)∈R

2
+×PK.

Furthermore, we introduce that

τ̃o(x,p) := inf
{

t≥0;Y
x,p
t ≤0

}
. (A.18)

As a consequence, for all (x,p)∈R+×PK, it holds that τ̃o(x,p)≥τo(x,p), P-a.s. It follows
from (A.17), Assumption 3.1 and Hölder inequality that

V(x)= sup
p∈PK

E

[∫
∞

0
1s≤τo(x,p)e

−ρs
{

r(ps)+φ
(

ps,X
x,p
s

)}
ds

]

≤M
∫

∞

0
e−ρs sup

p∈PK

E

[

1s≤τo(x,p)

(
1+X

x,p
s

)]

ds

≤M
∫

∞

0
e−ρs sup

p∈PK

E

[

1s≤τ̃o(x,p)

(
1+Y

x,p
s

)]

ds

≤M
∫

∞

0
e−ρs sup

p∈PK

√

P
(
τ̃o(x,p)≥ s

)
E
[(

1+Y
x,p
s

)2]
ds. (A.19)
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Using the BDG inequality with Assumption 4.1, it is not difficult to show that

E

[(
1+Y

x,p
t

)2
]

≤2
{

E

[∣
∣Y

x,p
t

∣
∣
2
]

+1
}

≤4(x2+M2t+1). (A.20)

On the other hand, in light of the definition (A.18) of τ̃o(x,p), this results in that

τ̃o(x,p)= inf

{

t≥0;
∫ t

0
σ
(
λ(ps)

)
dWs ≥ x

}

.

This yields that for all (x,p)∈R+×PK,

P
(
τ̃o(x,p)≥ s

)
≤P

(

sup
t∈[0,s]

∫ t

0
σ
(
λ(pv)

)
dWv ≤ x

)

.

Note that there exists a standard Brownian motion B=(Bt)t≥0 such that

∫ t

0
σ
(
λ(pv)

)
dWv

d
=B

(∫ t

0
σ2
(
λ(pv)

)
dv

)

, t≥0,

where “
d
=” denotes the equality in law. Then, using Assumption 4.1, it follows that, P-a.s.

sup
t∈[0,s]

B

(∫ t

0
σ2
(
λ(pv)

)
dv

)

≥ sup
t∈[0,s]

Bσ2
0 t=σ0 sup

t∈[0,σ2
0 s]

Bσ0
t , (A.21)

where Bσ0
t := Bσ2

0 t/σ0 for t≥ 0 is also a standard Brownian motion. For any a> 0, let us

define the stopping time given by

τσ0
a := inf

{
t≥0; Bσ0

t = a
}

.

Then, from [23, Remark 8.3, Chapter 2], it follows that, τσ0
a admits the following closed-

form probability density given by

P
(
τσ0

a ∈dt
)
=

a√
2πt3

exp

(

− a2

2t

)

1t>0dt.

Consequently, we obtain from (A.21) that

P
(
τ̃o(x,p)≥ s

)
≤P

(

sup
t∈[0,s]

B∫ t
0 σ2(λ(p(s)))ds

≤ x

)

≤P

(

sup
t∈[0,s]

Bσ2
0 t ≤ x

)

=P

(

σ0 sup
t∈[0,σ2

0 s]

Bσ0
t ≤ x

)

=P

(

τσ0
x

σ0

≥σ2
0 s
)

=
∫ +∞

σ2
0 s

x

σ0

√
2πt3

exp

(

− x2

2σ2
0 t

)

dt. (A.22)
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It follows from (A.19), (A.20) and (A.22) that, for all n≥1,

0≤V(xn)≤M
∫

∞

0
e−γs

{

4
(

x2
n+M2s+1

)
∫ +∞

σ2
0 s

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)

dt

} 1
2

ds. (A.23)

By noting that xn →0 with xn ≥0 as n→∞, there exists N≥1 such that |xn|≤1 for all
n≥N. Therefore, for all t>0,

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)

≤ 1

σ0

√
2πt3

, ∀n≥N.

It follows from the dominated convergence theorem (DCT) that, for all s>0,

lim
n→∞

∫
∞

σ2
0 s

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)

dt=
∫

∞

σ2
0 s

lim
n→∞

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)

dt=0.

For all s≥0, it holds that

∫
∞

σ2
0 s

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)

dt≤
∫

∞

0

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)

dt=1.

As a consequence, for all n≥N,

e−γs

{

4
(

x2
n+M2s+1

)
∫

∞

σ2
0 s

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)} 1
2

≤2e−γs(2+M2s)
1
2 .

Using DCT again, it follows that

lim
n→∞

∫
∞

0
e−ρs

{

4
(

x2
n+M2s+1

)
∫

∞

σ2
0 s

xn

σ0

√
2πt3

exp

(

− x2
n

2σ2
0 t

)

dt

} 1
2

ds=0.

Then, the desired result follows from (A.23).

Proof of Lemma 4.1. Using Assumptions 2.1, 3.1 and 4.1, and the continuity of x→V(x), it
follows that, for any x>0, the function H3(x;λ) is continuous in λ∈IK. Note that the set IK

is a compact set. Then, by [19, Proposition D.5], there exists a measurable λ∗=λ∗(x)∈ IK

such that H3(x;λ∗)=supλ∈IK
H3(x;λ). Thus, we complete the proof of the lemma.

Proof of Proposition 4.2. We apply [31, Proposition 1] to prove the desired result. To do it, it
is enough to verify that the function HV defined by (4.9) satisfies the following conditions:

I. For any compact subset X of R+, there exist constants M1, M2 such that, for all
(x,m,q), (x,m̃,q̃)∈X ×R

2,

(a) |H(x,m,q)|≤M1{1+|m|+|q|},

(b) |H(x,m,q)−H(x,m̃,q̃)|≤M2{|m−m̃|+|q− q̃|},

(c) H is continuous in x∈X for each (m,q).



174 L. Bo and Y.J. Huang / CSIAM Trans. Appl. Math., 5 (2024), pp. 142-181

II. For all (x,q)∈R+×R,m→H(x,m,q) is non-increasing.

III. For any K>0, there exist constants K1,K2>K such that, for all x∈R+ and ε∈{−1,1},

H(x,K1+K2x,εK2)<0, H(x,−K1−K2x,εK2)>0.

We first verify that HV satisfies the condition I. First of all, we have from Assump-
tions 2.1 and 4.1 that

2λ

σ2(λ)
≤ 2λ(0)

σ2
0

,
2ρ

σ2(λ)
≤ 2ρ

σ2
0

, ∀λ∈ IK. (A.24)

Moreover, it follows from the linear growth of x→V(x) that there exists a constant C>0
such that V(x)≤ C(1+x) for all x ≥ 0. Then, by the similar argument in the proof of
Proposition 3.1, using Assumptions 2.1, 3.1 and 4.1, there exists a constant M̃= M̃(X )>0
such that |dV (x,λ)|≤ M̃ for all (x,λ)∈X × IK. As a consequence

sup
(x,λ)∈X×IK

∣
∣
∣
∣

dV(x,λ)

σ2(λ)

∣
∣
∣
∣
≤ M̃

σ0
. (A.25)

Then, it follows from (4.9), (A.24) and (A.25) that, for all (m,q)∈R
2,

|H(x,m,q)|≤M1{1+|m|+|q|}

with

M1 :=max

{
2M̃

σ0
,
2λ(0)

σ2
0

,
2ρ

σ2
0

}

.

This yields I(a). Moreover, by (4.9) and Assumption 4.1, it holds that, for all (x,m,q),
(x,m̃,q̃)∈X ×R

2,

|HV(x,m,q)−HV(x,m̃,q̃)|

≤sup
λ∈I

{
2λ

σ2(λ)
|m−m̃|+ 2ρ

σ2(λ)
|q− q̃|

}

≤M2{|m−m̃|+|q− q̃|}

with M2=max{2λ(0)/σ2
0 , 2ρ/σ2

0}. This shows property I(b). Analogously to the proof of
Proposition 3.1, for any (m,q)∈R

2, by Assumptions 2.1, 3.1, and 4.1, the function

h(m,q;x,λ) :=
2

σ2(λ)

{
−ρm−λq+dV (x,λ)

}

is jointly continuous in (x,λ)∈X×IK. Then, from Berge’s maximum theorem (see, e.g. [31,
Proposition 8]), it follows that HV(x,m,q)=supλ∈IK

h(m,q;x,λ) is continuous in x∈X for

each (m,q)∈R
2. This yields I(c).
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In view of the expression (4.9) of HV , it is not difficult to see that m → H(x,m,q) is
non-increasing since γ > 0. Hence, the condition II is satisfied by HV . Finally, by As-
sumptions 2.1, 3.1 and 4.1, there exists a constant C̃> 0 such that dV(x,λ)≤ C̃(1+x) for
all (x,λ)∈R+× IK. For any K>0, let us define that

K2=max

{
C̃

ρ
,K

}

+1, K1=max

{
λ(0)

ρ
K2+

C̃

ρ
,K

}

+1. (A.26)

Then, we arrive from Assumptions 4.1 and 3.1 at

HV(x,K1+K2x,−K2)

≤ sup
λ∈IK

2

σ2(λ)

{
−ρ(K1+K2x)+λK2+C̃(1+x)

}

≤ sup
λ∈IK

2

σ2(λ)

{

−ρ

(
λ

ρ
K2+

C̃

ρ
+1+

(
C̃

ρ
+1

)

x

)

+λK2+C̃(1+x)

}

≤− inf
λ∈IK

2ρ

σ2(λ)
<0, ∀x≥0.

In a similar fashion, we also have that, for all x≥0,

HV(x,−K1−K2x,−K2)≥ sup
λ∈IK

2

σ2(λ)

{
ρ(K1+K2x)+λK2−C̃(1+x)

}
≥ sup

λ∈IK

2ρ

σ2(λ)
>0.

Consequently, the condition III is satisfied by HV . Thus, the desired result follows from
[31, Proposition 1]. Then, the proof of the proposition is complete.

Proof of Lemma 4.4. The proof is similar to the proof of Lemma 2.2.

Proof of Proposition 4.3. For x≥M/µ, it follows from M<µΛ that

M−µα(x)−mV ′(x)

2
≤0.

Then, the optimal price p∗(x)= (M−ǫ)/m for all x≥ M/µ, and hence it is sufficient to
prove Oc 6=∅. We next prove it by contradiction. Suppose Oc =∅, i.e. O=(0,∞). The
value function V(x) satisfies the following equation:

1

2
σ2V ′′(x)−ǫV ′(x)+

(M−ǫ)ǫ

m
− ǫµα(x)

m

+
µMα(x)

m
+µV[x−α(x)]−(ρ+µ)V(x)=0 (A.27)

with boundary condition V(0)=0. For x≤Λ, the surging demand function α(x)=x, then
Eq. (A.27) reduces to

1

2
σ2V ′′(x)−ǫV ′(x)−(ρ+µ)V(x)+

µ(M−ǫ)

m
x+

(M−ǫ)ǫ

m
=0,
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whose solution is given by

V(x)=
µ(M−ǫ)

m(µ+ρ)
x+

ǫ(M−ǫ)ρ

m(µ+ρ)2
+C1exp(Ax)+C2exp(Bx). (A.28)

Here C1,C2 are constants to be determined, while the constants A, B are defined by

A :=
ǫ+
√

ǫ2+2(µ+ρ)σ2

σ2
, B :=

ǫ−
√

ǫ2+2(µ+ρ)σ2

σ2
. (A.29)

The boundary condition V(0)=0 gives

ǫ(M−ǫ)ρ

m(µ+ρ)2
+C1+C2=0.

As D→∞,C1→0 and C2→ (ǫ(M−ǫ)ρ)/(m(µ+ρ)2). It follows from (A.28) that

V ′(x)=
µ(M−ǫ)

m(µ+ρ)
+AC1exp(Ax)+BC2exp(Bx).

Then, we have that

M−µα(x)−mV ′(x)

2
−ǫ

=
M−µα(x)

2
− µ(M−ǫ)

2(µ+ρ)
+

1

2
AC1exp(Ax)+

1

2
BC2exp(Bx)−ǫ

→ M

2
− µ(M−ǫ)

2(µ+ρ)
+

Bǫ(M−ǫ)ρ

2m(µ+ρ)2
−ǫ as D → ∞, x → 0,

=
M

2
− µ(M−ǫ)

2(µ+ρ)
+

1

ǫ+
√

ǫ2+2(µ+ρ)σ2

ǫ(M−ǫ)ρ

m(µ+ρ)
−ǫ

→ M

2
− µM

2(µ+ρ)
=

ρM

2(µ+ρ)
>0 as ǫ → 0.

This means that, for a sufficiently large surging demand size Λ>0 and a sufficiently small
floor of the normal demand rate ǫ>0, there exist a sufficiently small x∗>0 such that

M−µα(x∗)−mV ′(x∗)
2

>ǫ.

This results in a contradiction with O=(0,∞).

Appendix B. Proof of Lemmas 4.2 and 4.3

Proof of Lemma 4.2. To get the existence of viscosity solution, it is enough to prove that
the value function V defined by (3.2) is a viscosity solution of the abstract equation (4.5).
This result follows from a standard argument, hence we omit the proof here.
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Proof of Lemma 4.3. In view of Proposition 3.2, Lemma 4.2, and [29, Proposition 5.4], we
can see that the value function V defined by (3.2) is a viscosity solution of the abstract
equation (4.8). To get uniqueness, it is sufficient to prove the following comparison prin-
ciple: Let u∈USC(R+) (respectively v∈LSC(R+)) be a viscosity subsolution (respectively
supersolution) satisfying the linear growth of Eq. (4.8). Then, u≤ v on R+. We show it
by contradiction, and assume that there exists x∈R+,u(x)−v(x)≥ 2δ> 0 with δ> 0. It
follows from u(0)≤0 and v(0)≥0 that x>0. Define

Ψ(x,y) :=u(x)−v(y)−ψ(x,y), (x,y)∈R
2
+,

where
ψ(x,y)= k|x−y|2+ε(x2+y2)

with (k,ε) ∈ R+×(0,1]. Moreover, define Mk := supx,y≥0Ψ(x,y). Since u,v satisfy the

linear growth condition, by the upper semi-continuity of Ψ, we have that Mk <∞, and

there exists (xk,yk)∈R
2
+ such that Mk =Ψ(xk,yk). As a consequence

Mk ≥u(x)−v(x)−ψ(x,x)≥2δ−2εx2.

This yields that there exists ε0 ∈ (0,δ/(2x2)) such that Mk > δ for all ε ∈ (0,ε0]. Using
Ψ(0,0)≤Ψ(xk ,yk) and the linear growth of u,v, it follows that

k|xk−yk|2+ε
(

x2
k+y2

k

)

≤u(0)−v(0)+u(xk)−y(yk)

≤u(0)−v(0)+2C{1+|xk |+|yk|} (B.1)

for some C>0. Therefore, we can find a positive constant Cε>0 such that |xk|, |yk|≤Cε for
all k≥1. By this, there exists a subsequence, still denoted by (xk,yk), which converges to

some (xε,yε)∈R
2
+. Hence, the estimate (B.1) also yields the following estimate given by

k|xk−yk|2≤2C(1+2Cε)+u(0)−v(0),

from which we can conclude that xk−yk → 0 as k→∞, and hence xε = yε. On the other
hand, it follows from Ψ(xε,yε)≤Ψ(xk,yk) for all k≥1, we obtain that

k|xk−yk|2≤u(xk)−u(xε)+v(yk)−v(yε)+ε(x2
ε +y2

ε )−ε(x2
k+y2

k).

By the semi-continuity of u,v, we can get

k|xk−yk|2 → 0 as k → ∞. (B.2)

We next prove that, for all ε1 > 0, there exists ε∈ (0,ε1] such that xε = yε > 0. We also
show it by contradiction, and assume that there exists ε1 >0 such that xε =yε =0 for any
ε∈ (0,ε1]. Since Mk ≥δ, it holds that

u(xk)−v(xk)−k|xk−yk|2−ε(x2
k+y2

k)≥δ>0.
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Letting k→∞ and by (B.2), it results in liminfk→∞(u(xk)−v(xk))≥ δ. Moreover, by the
semi-continuity of u,v, it follows that

liminf
k→∞

(
u(xk)−v(xk)

)
≤ limsup

k→∞

(
u(xk)−v(xk)

)

≤ limsup
x→0

(
u(x)−v(x)

)
≤u(0)−v(0)≤0.

Thus, we get a contradiction, which means that xε = yε > 0 for some ε ∈ (0,ε1]. Con-
sequently, we may choose a sequence (εn)∞

n=1 ⊂ (0,ε0] such that εn → 0 as n → ∞ and
xεn = yεn >0. Then, for any εn, there exists a Nn ≥1 such that xk >0,yk >0 for all k≥Nn.
By [14, Theorem 1] and [26, Lemma 4.4.5], there exist qk

1,qk
2 such that

[
qk

1 0

0 −qk
2

]

≤2k

[
1 −1
−1 1

]

+

{

4
(
(k+εn)2+k2

)

k3
+2εn

}[
1 0
0 1

]

, (B.3)

sup
λ∈IK

{
1

2
σ2(λ)qk

1−λ[2k(xk−yk)+2εnxk]+du(xk,λ)

}

≥γu(xk), (B.4)

sup
λ∈IK

{
1

2
σ2(λ)qk

2−λ[2k(xk−yk)−2εnyk]+dv(yk,λ)

}

≤γv(yk). (B.5)

Subtract (B.5) from (B.4), we have that

γ
(
u(xk)−v(yk)

)
≤ sup

λ∈IK

{
1

2
σ2(λ)qk

1−λ[2k(xk−yk)+2εnxk]+du(xk,λ)

}

−sup
λ∈IK

{
1

2
σ2(λ)qk

2−λ[2k(xk−yk)−2εnyk]+dv(yk,λ)

}

.

Note that γ(u(xk)−v(yk))≥γMk≥γδ>0. Therefore,

γδ≤ sup
λ∈IK

{
1

2
σ2(λ)

(
qk

1−qk
2

)
+2εnλ|xk−yk|+

(
du(xk,λ)−dv(yk,λ)

)
}

. (B.6)

Using (B.3), it yields that

qk
1−qk

2≤
4
(
(k+εn)2+k2

)

k3
+2εn.

By the definition of Mk and Assumption 3.1, it holds that

du(xk,λ)−dv(yk,λ)

=
∫

Γ

(
φ(λ,γ,xk)−φ(λ,γ,yk)

)
µ(dγ)−µ(Γ)

(
u(xk)−v(yk)

)

+
∫

Γ

(

u
(
xk−α

(
p(λ),γ,xk

))
−v
(
yk−α

(
p(λ),γ,yk

)))

µ(dγ)
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≤C|xk−yk|+
∫

Γ

(

Mk+ψ
(

xk−α
(

p(λ),γ,xk

)
,yk−α

(
p(λ),γ,yk

)))

µ(dγ)

−µ
(
Γ)(Mk+ψ(xk,yk)

)

=C|xk−yk|+εn

∫

Γ

[(
xk−α

(
p(λ),γ,xk

))2−x2
k+
(
yk−α

(
p(λ),γ,yk

))2−y2
k

]

µ(dγ)

+k
∫

Γ

[(
xk−α

(
p(λ),γ,xk

))2−x2
k+
(
yk−α

(
p(λ),γ,yk

))2−y2
k

]

−2
(

xk−α
(

p(λ),γ,xk

))(
yk−α

(
p(λ),γ,yk

))
µ(dγ)

≤C|xk−yk|

for some constant C>0 which is independent of (xk,yk). It follows from Assumption 4.1
that, there exists a positive constant M>0, such that

limsup
k→∞

sup
λ∈IK

{
1

2
σ2(λ)

(
qk

1−qk
2

)
+2εnλ|xk−yk|+

(
du(xk,λ)−dv(yk,λ)

)
}

≤M2εn. (B.7)

Using (B.6) and (B.7), it results in 0 < γδ ≤ M2εn. Letting n → ∞, we get the desired
contradiction, and hence the comparison principle holds. Let u,v be viscosity solutions
of Eq. (4.8), which satisfy the linear growth condition. Then, we have u∗≤v∗ and v∗≤u∗
on R+. Note that v∗≤ v≤ v∗ and u∗≤u≤u∗ on R+. Therefore, u= v= v∗= v∗=u∗=u∗.
This shows that the viscosity solution is unique and continuous on R+.
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