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Abstract. This paper is concerned with the relaxation limit of a three-dimen-
sional quasi-linear hyperbolic-parabolic chemotaxis system modeling vasculo-
genesis when the initial data are prescribed around a constant ground state.
When the relaxation time tends to zero (i.e. the damping is strong), we show
that the strong-weak limit of the cell density and chemoattractant concentration
satisfies a parabolic-elliptic Keller-Segel type chemotaxis system in the sense of
distribution.
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1 Introduction

In this paper, we are concerned with the following quasi-linear hyperbolic-para-
bolic chemotaxis system modeling vasculogenesis – the vitro formation of new
blood vessels, proposed by Gamba et al. [11]:
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













∂tρ+∇·(ρu)=0, (1.1a)

∂t(ρu)+∇·(ρu⊗u)+∇P(ρ)=−
1

τ
ρu+µρ∇φ, (1.1b)

∂tφ=D∆φ+aρ−bφ. (1.1c)

Here the unknowns ρ=ρ(x,t) and u=u(x,t)∈R
3 denote the density and velocity

of the endothelial cell, respectively, and φ = φ(x,t) the chemoattractant concen-
tration, at t > 0 and x ∈ R

3. The density-dependent quantity P is the pressure
function which is smooth and satisfies P′(ρ)>0 for ρ>0. D, a and b are positive
constants representing the diffusion coefficient, production rate and degradation
rate of the chemoattractant, |µ| with µ∈R\{0} is the cell response intensity to the
chemoattractant. 0<τ≪1 is a relaxation time. The initial data are given by

[ρ,u,φ]|t=0=[ρ0,u0,φ0](x) → (ρ̄,0,φ̄) as |x| → ∞ (1.2)

with constants ρ̄ > 0 and φ̄ > 0. When the initial value [ρ0,u0,φ0] ∈ Hs(Rd),
s>d/2+1, is a small perturbation of the constant ground state (i.e. equilibrium)
[ρ̄,0,φ̄] with ρ̄>0 sufficiently small, the global existence and stability of solutions
to (1.1) without vacuum converging to [ρ̄,0,φ̄] was established in [7,8]. By adding
a viscous term ∆u to the Eq. (1.1b), the linear stability of the constant ground state
[ρ̄,0,φ̄] was obtained in [17] under the condition

bP′(ρ̄)−aµρ̄>0. (1.3)

The stationary solutions of (1.1) with vacuum (bump solutions) in a bounded
interval with zero-flux boundary condition were constructed in [1, 2]. Recently
the stability of transition layer solutions of (1.1) on R+= [0,∞) was established
in [13] and the convergence to diffusion waves for solutions of (1.1) was obtained
in [20] for x∈R

3.
As τ → 0 (strong damping), it was formally derived in [4] by the asymp-

totic analysis that the solution of (1.1) converges to the well-known Keller-Segel
model. In [6], the authors considered different dissipation relaxation limits of
model (1.1), and proved in Lp (p ≥ 1) space that the convergence limit is the
parabolic-elliptic Keller-Segel model by the energy methods and compensated
compactness tools. An interesting question is whether the relaxation limit prob-
lem of (1.1) can be proved in a stronger sense, such as in Hs (s ≥ 3) space. For
the isothermal compressible Euler equations, namely P(ρ)=kρ for some constant
k > 0, by using a stream function, Junca and Rascle [15] showed that the solu-
tions to the damped isothermal Euler equations converge to those of the heat
equation for large BV initial data. Later, Coulombel and Goudon [5] studied the
global existence of smooth solutions and the convergence to the heat equation as
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the relaxation time tends to zero. For the multidimensional damped isentropic
Euler equations, Lin and Coulombel [19] showed that the asymptotic behavior
of the global smooth solutions is governed by the porous media equation as the
relaxation time tends to zero. We further refer to [3, 25, 26] for other interesting
research in this topic. For some other types of hyperbolic or hyperbolic-parabolic
chemotaxis models, we refer to [10, 12, 18, 22, 23] and references therein.

The aim of this paper is to construct global smooth solutions to (1.1), and to
show that, in an appropriate time scaling, as τ tends to 0, the solution compo-
nent (ρ,φ) of (1.1) converges to the solution of the following Keller-Segel type
chemotaxis model:

{

∂tρ
0−∇·

(

∇P(ρ0)−µρ0∇φ0
)

=0,

∆φ0+aρ0−bφ0=0,

which is well-known as, if P(ρ) = ρ, the parabolic-elliptic minimal Keller-Segel
system (cf. [16,21]) extensively studied in the literature [14,23], where the chemo-
taxis is called “attractive” if µ>0 and repulsive if µ<0.

Throughout this paper, we assume that

bP′(ρ̄)−aµρ̄>0. (1.4)

As will be seen later, the strict positivity of bP′(ρ̄)−aµρ̄ plays an important role
in our analysis in ensuring the dissipation of the system. However, the condition
(1.4) is free when µ<0.

Our first result on the existence of global solutions of (1.1)-(1.2) is given below.

Theorem 1.1. For any ρ̄>0 and φ̄=(a/b)ρ̄, if P(·) is smooth on (0,∞) and satisfies the

condition (1.4) for given ρ̄>0, there exists a constant ǫ>0 such that for any τ∈(0,1], if
∥

∥[ρ0− ρ̄,u0,φ0−φ̄]
∥

∥

HN(R3)
+‖∇φ0‖HN(R3)<ǫ (1.5)

with N≥3, then the Cauchy problem (1.1)-(1.2) admits a unique global solution with

[ρ(x,t)− ρ̄,u(x,t),φ(x,t)−φ̄,∇φ(x,t)]∈C
(

[0,∞);HN(R3)
)

satisfying

∥

∥[ρ(·,t)− ρ̄,u(·,t),φ(·,t)−φ̄,∇φ(·,t)]
∥

∥

2

HN(R3)
+

1

τ

∫ t

0
‖u(·,s)‖2

HN (R3)ds

+τ
∫ t

0

(

‖∇ρ(·,s)‖2
HN−1(R3)+‖∇φ(·,s)‖2

HN(R3)+‖φt(·,s)‖
2
HN(R3)

)

ds

≤C0

∥

∥[ρ0− ρ̄,u0,φ0−φ̄,∇φ0]
∥

∥

2

HN(R3)
,

where C0>0 is a constant independent of τ and t.
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The next theorem asserts the convergence of solutions as τ→0. For the conve-
nience of statement, we denote the solution obtained in Theorem 1.1 by (ρτ,uτ,φτ).
Then our second main result is given in the following theorem.

Theorem 1.2. Let (ρτ ,uτ,φτ) be the unique global solution obtained in Theorem 1.1. Set

s=τt and define

(̺τ ,mτ,ϕτ)(x,s) :=

(

ρτ(x,t),
ρτ(x,t)uτ(x,t)

τ
,φτ(x,t)

)

.

Then under the assumptions in Theorem 1.1, the solutions (̺τ ,mτ,ϕτ) satisfy that

∥

∥[̺τ(s)− ρ̄,ϕτ(s)−φ̄,∇ϕτ(s)]
∥

∥

2

HN(R3)
+τ2‖mτ(s)‖2

HN(R3)+
∫ ∞

0
‖mτ(s)‖2

HN (R3)ds

+
∫ ∞

0

(

‖∇̺τ(s)‖2
HN−1(R3)+‖∇ϕτ(s)‖2

HN (R3)+τ
∥

∥∂s ϕτ(s)
∥

∥

2

HN(R3)

)

ds≤C,

where C is a constant independent of τ. Thus, for any 0<T,R<+∞, extracting a sub-

sequence if necessary, it follows that as τ→0

̺τ → ̺0 strongly in C
(

[0,T);Hm
(

B(R)
))

,

ϕτ
⇀ ϕ0 weakly in L2

(

[0,T);HN
(

B(R)
))

,

where N−1<m<N and B(R)=:{x∈R
3 : |x|≤R}. Moreover, (̺0,ϕ0) satisfies, in the

sense of distributions, the following Keller-Segel type chemotaxis system:











∂s̺0−∇·
(

∇P(̺0)−µ̺0∇ϕ0
)

=0,

∆ϕ0+a̺0−bϕ0=0,

̺0|s=0=ρ0.

2 Uniform estimates

We proceed by mentioning some notations frequently used in the paper.

Notation. Throughout this paper, C denotes a generic positive constant (gener-
ally large) and λ denotes some positive constant (generally small), where both C
and λ may take different values in different places. For two quantities a and
b, a∼ b means ca≤ b≤ a/c for a generic constant 0< c<1. For any integer m≥0,
we use Hm to denote the usual Sobolev space Hm(R3). For simplicity, the norm
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of Hm is denoted by ‖·‖m with ‖·‖=‖·‖0 . We use 〈·,·〉 to denote the inner product
of the Hilbert space L2(R3), i.e.

〈 f ,g〉=
∫

R3
f (x)g(x)dx, ∀ f ,g∈L2(R3).

For a multi-index l = (l1,l2,l3), we denote ∂l = ∂l1
x1

∂l2
x2

∂l3
x3

and the length of l is
|l|= l1+ l2+ l3. For simplicity, we denote

‖[A,B]‖X =‖A‖X+‖B‖X

for some Sobolev space X.
In this section, we will construct global smooth solutions to (1.1) with initial

data (1.2) satisfying (1.5). First, we present the following Sobolev inequality for
the Lp estimate on products of derivatives of two functions (cf. [9]).

Lemma 2.1. Let θ=(θ1,··· ,θn) and η=(η1,··· ,ηn) be two multi-indices with |θ|= k1,

|η|= k2 and set k= k1+k2. Then, for 1≤ p,q,r≤∞ with 1/p=1/q+1/r, we have

∥

∥∂θu1∂ηu2

∥

∥

Lp(Rn)
≤C

(

‖u1‖Lq(Rn)

∥

∥∇ku2

∥

∥

Lr(Rn)
+‖u2‖Lq(Rn)

∥

∥∇ku1

∥

∥

Lr(Rn)

)

, (2.1)

where C is a positive constant.

The well-known Aubin-Lions-Simon lemma [24] is cited below for later use.

Lemma 2.2 (Aubin-Lions-Simon Lemma). Let X0, X, X1 be three Banach spaces with

X0 ⊆X⊆X1. Suppose that X0 is compactly embedded in X and that X is continuously

embedded in X1. For 1≤ p,q≤∞, let

W=
{

f ∈Lp([0,T];X0) | ∂t f ∈Lq([0,T];X1)
}

.

(i) If p < ∞, then the embedding of W into Lp([0,T];X) is compact (that is W is

relatively compact in Lp([0,T];X)).

(ii) If p=∞ and q>1, then the embedding of W into C([0,T];X) is compact.

2.1 Reformulation of the problem

Before constructing the global smooth solutions to (1.1), we first rewrite (1.1)
around the constant state [ρ̄,0,φ̄] with φ̄=(a/b)ρ̄. By writing ρ̃= ρ− ρ̄, ũ= u−0,



6 Q. Liu, H. Peng and Z.A. Wang / Commun. Math. Anal. Appl., 3 (2024), pp. 1-18

φ̃=φ−φ̄, we reformulate the Cauchy problem (1.1)-(1.2) as















∂tρ̃+ ρ̄∇·ũ= g1, (2.2a)

∂tũ+
P′(ρ̄)

ρ̄
∇ρ̃+

1

τ
ũ−µ∇φ̃= g2, (2.2b)

∂tφ̃−D∆φ̃−aρ̃+bφ̃=0 (2.2c)

with initial data given by

[ ρ̃,ũ,φ̃]|t=0=[ ρ̃0,ũ0,φ̃0]= [ρ0− ρ̄,u0,φ0−φ̄]. (2.3)

Here g1, g2 are defined as follows:







g1=−∇·(ρ̃ũ),

g2=−ũ·∇ũ−

(

P′(ρ̃+ ρ̄)

ρ̃+ ρ̄
−

P′(ρ̄)

ρ̄

)

∇ρ̃.

Next we shall focus on the reformulated problem (2.2)-(2.3) and explore the
global existence of solutions. Without confusion, in the rest of this section, we
still use [ρ,u,φ] to denote [ρ̃,ũ,φ̃], correspondingly, [ρ0,u0,φ0] to denote [ρ̃0,ũ0,φ̃0]
for simplicity unless otherwise stated. The main result of this section about the
global existence of solutions to the reformulated Cauchy problem (2.2)-(2.3) with
small smooth initial data are stated as follows.

Proposition 2.1. Given ρ̄>0 and N≥3. Let φ̄=(a/b)ρ̄ and P(·) be smooth on (0,∞)
with bP′(ρ̄)−aµρ̄ > 0. If ‖[ρ0,u0,φ0]‖

2
N+‖∇φ0‖

2
N is small enough, then the Cauchy

problem (2.2)-(2.3) admits a unique global solution U=[ρ,u,φ] satisfying

U∈C
(

[0,∞);HN(R3)
)

, ∇φ∈C
(

[0,∞);HN(R3)
)

,

and

∥

∥[ρ,u,φ]
∥

∥

2

N
+‖∇φ‖2

N+
∫ t

0

(

‖φt‖
2
N+

1

τ
‖u‖2

N+τ‖∇ρ‖2
N−1+τ‖∇φ‖2

N

)

ds

≤C
(

∥

∥[ρ0,u0,φ0]
∥

∥

2

N
+‖∇φ0]‖

2
N

)

,

where C>0 is independent of τ and t.

The existence of local-in-time solutions of (2.2)-(2.3) can be readily established
by the standard iteration method and details are omitted for brevity. Then to
prove Proposition 2.1, it suffices to derive the a priori estimates in the following
lemma.
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Lemma 2.3 (A Priori Estimates). Assume that the conditions in Proposition 2.1 hold.

Let

U=[ρ,u,φ]∈C
(

[0,T);HN(R3)
)

be a solution to the system (2.2)-(2.3) with

‖[ρ,u,φ]‖2
N+‖∇φ‖2

N ≪1

for any 0≤ t<T. Then

d

dt ∑
|l|≤N

{

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+

∫

R3
(ρ+ ρ̄)|∂lu|2dx

−2µ〈∂lφ,∂lρ〉+
bµ

a
‖∂lφ‖2+

µD

a
‖∂l∇φ‖2

}

+κτ
d

dt ∑
|l|≤N−1

{

2〈∂lu,∂l∇ρ〉+
µ

a
‖∂l∇φ‖2

}

+κλτ‖∇ρ‖2
N−1

+κλτ‖∇φ‖2
N+

ρ̄

2τ
‖u‖2

N+
2µ

a
‖φt‖

2
N ≤0,

where λ>0 and 0<κ≪1 are constants.

Proof. Our proof is motivated by the work [20] and consists of three steps.

Step 1. We first claim that

1

2

d

dt ∑
|l|≤N

{

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+

∫

R3
(ρ+ ρ̄)|∂lu|2dx

−2µ〈∂lφ,∂lρ〉+
bµ

a
‖∂lφ‖2+

µD

a
‖∂l∇φ‖2

}

+
ρ̄

2τ
‖u‖2

N+
µ

a
‖φt‖

2
N

≤Cτ‖[ρ,u,φ]‖2
N

(

‖∇[ρ,u,φ]‖2
N−1+‖∇φ‖2

N

)

. (2.4)

In fact, it is convenient to start from the following reformulated form of (2.2):















∂tρ+(ρ+ ρ̄)∇·u=−u·∇ρ, (2.5a)

∂tu+
P′(ρ+ ρ̄)

ρ+ ρ̄
∇ρ+

1

τ
u−µ∇φ=−u·∇u, (2.5b)

∂tφ−D∆φ−aρ+bφ=0. (2.5c)
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Applying ∂l to the Eq. (2.5a) for 0≤|l|≤N, multiplying the result by P′(ρ+ρ̄)
×(ρ+ ρ̄)−1∂lρ and taking integration in x give

1

2

d

dt

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+〈P′(ρ+ ρ̄)∂l∇·u,∂lρ〉

=
1

2

〈(

P′(ρ+ ρ̄)

ρ+ ρ̄

)

t

∂lρ,∂lρ

〉

−∑
k<l

Ck
l

〈

∂l−k(ρ+ ρ̄)∂k∇·u,
P′(ρ+ ρ̄)

ρ+ ρ̄
∂lρ

〉

−

〈

u·∂l∇ρ,
P′(ρ+ ρ̄)

ρ+ ρ̄
∂lρ

〉

−∑
k<l

Ck
l

〈

∂l−ku·∂k∇ρ,
P′(ρ+ ρ̄)

ρ+ ρ̄
∂lρ

〉

. (2.6)

Applying ∂l to the Eq. (2.5b) for 0 ≤ |l| ≤ N, multiplying it by (ρ+ ρ̄)∂lu, and

integrating the resulting equation with respect to x, we get

1

2

d

dt

∫

R3
(ρ+ ρ̄)|∂lu|2dx+

〈

P′(ρ+ ρ̄)∂l∇ρ,∂lu
〉

+
1

τ

∫

R3
(ρ+ ρ̄)|∂lu|2dx

=
1

2
〈(ρ+ ρ̄)t∂

lu,∂lu〉−∑
k<l

Ck
l

〈

∂l−k

(

P′(ρ+ ρ̄)

ρ+ ρ̄

)

∂k∇ρ,(ρ+ ρ̄)∂lu

〉

−
〈

u·∂l∇u, (ρ+ ρ̄)∂lu
〉

−∑
k<l

Ck
l

〈

∂l−ku·∂k∇u, (ρ+ ρ̄)∂lu
〉

+µ〈∂l∇φ, (ρ+ ρ̄)∂lu〉. (2.7)

With integration by parts and (2.5a), we can update the last term in (2.7) as fol-

lows:

µ〈∂l∇φ,(ρ+ ρ̄)∂lu〉

=−µ〈∂lφ,(ρ+ ρ̄)∂l∇·u〉−µ〈∂lφ,∇ρ∂lu〉

=µ〈∂lφ,∂lρt〉+µ〈∂lφ,∂l(u·∇ρ)〉+µ

〈

∂lφ,∑
k<l

Ck
l ∂l−k(ρ+ρ̄)∂k∇·u

〉

−µ〈∂lφ,∇ρ∂lu〉

=
d

dt
µ〈∂lφ,∂lρ〉−µ〈∂lφt,∂

lρ〉+µ〈∂lφ,u·∂l∇ρ〉−µ〈∂lφ,∇ρ∂lu〉

+µ

〈

∂lφ,∑
k<l

Ck
l ∂l−k(ρ+ ρ̄)∂k∇·u

〉

+µ

〈

∂lφ,∑
k<l

Ck
l ∂l−ku·∂k∇ρ

〉

.

Applying ∂l to the Eq. (2.5c) for 0≤ |l| ≤ N, multiplying it by (µ/a)∂l φt, and

integrating the resultant equation with respect to x, we have

d

dt

{

bµ

2a
‖∂lφ‖2+

µD

2a
‖∂l∇φ‖2

}

+
µ

a
‖∂lφt‖

2=µ〈∂lφt,∂
lρ〉. (2.8)
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It follows from (2.6)-(2.8) and the integration by parts that

d

dt

(

1

2

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+

1

2

∫

R3
(ρ+ ρ̄)∂lu|2dx

−µ〈∂lφ,∂lρ〉+
bµ

2a
‖∂lφ‖2+

µD

2a
‖∂l∇φ‖2

)

+
1

τ

∫

R3
(ρ+ ρ̄)|∂lu|2dx+

µ

a
‖∂lφt‖

2

= I l
1(t)+∑

k<l

Ck
l I l

k,l(t), (2.9)

where

I l
1(t)=

〈

P′′(ρ+ ρ̄)∇ρ∂lρ,∂lu
〉

+
1

2

〈(

P′(ρ+ ρ̄)

ρ+ ρ̄

)

t

,|∂lρ|2
〉

+
1

2

〈

(ρ+ ρ̄)t,|∂
lu|2

〉

+
1

2

〈

∇·

(

u
P′(ρ+ ρ̄)

ρ+ ρ̄

)

,|∂lρ|2
〉

+
1

2

〈

∇·
(

u(ρ+ ρ̄)
)

,|∂lu|2
〉

−µ
〈

∂l∇φ,u∂lρ
〉

−µ〈∂lφ,∇·u∂lρ〉−µ
〈

∂lφ,∇ρ∂lu
〉

,

I l
k,l(t)=−

〈

∂l−k(ρ+ ρ̄)∂k∇·u,
P′(ρ+ ρ̄)

ρ+ ρ̄
∂lρ

〉

−

〈

∂l−ku·∂k∇ρ,
P′(ρ+ ρ̄)

ρ+ ρ̄
∂lρ

〉

−

〈

∂l−k

(

P′(ρ+ ρ̄)

ρ+ ρ̄

)

∂k∇ρ,(ρ+ ρ̄)∂lu

〉

−
〈

∂l−ku·∂k∇u,(ρ+ ρ̄)∂lu
〉

+µ
〈

∂lφ,∂l−k(ρ+ ρ̄)∂k∇·u
〉

+µ
〈

∂lφ,∂l−ku·∂k∇ρ
〉

.

Next, we estimate I l
1(t) and I l

k,l(t) term by term. The key part is to get a uniform

bound independent of τ. When |l|= 0, by the Cauchy-Schwarz and Gagliardo-

Nirenberg inequalities, I l
1(t) can be estimated as

|I l
1(t)|≤C‖∇ρ‖‖ρ‖L6‖u‖L3+C‖∇·u‖

(

‖ρ‖L6‖ρ‖L3+‖u‖L6‖u‖L3

)

+C‖∇ρ‖
(

‖u‖L6‖ρ‖L3+‖u‖L6‖u‖L3

)

+C‖∇φ‖L2‖ρ‖L6‖u‖L3

+C‖φ‖L3‖∇·u‖L2‖ρ‖L6+C‖∇ρ‖L2‖φ‖L6‖u‖L3

≤
ρ̄

8τ
‖u‖2

1+Cτ‖[ρ,u,φ]‖2
1‖∇[ρ,u,φ]‖2, (2.10)

where we have used the facts ‖[ρ,u,φ]‖N≪1 and ∂tρ+(ρ+ρ̄)∇·u=−u·∇ρ. When

|l|≥1, it follows from the Cauchy-Schwarz inequality that

|I l
1(t)|≤C‖∇ρ‖L∞‖∂lρ‖‖∂lu‖+C‖∇·u‖L∞

(

‖∂lρ‖2+‖∂lu‖2
)
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+C‖u‖L∞‖∇ρ‖L∞

(

‖∂lρ‖2+‖∂lu‖2
)

+C‖u‖L∞‖∂lρ‖‖∂l∇φ‖

+C‖∇·u‖L∞‖∂lρ‖‖∂lφ‖+C‖∇ρ‖L∞‖∂lu‖‖∂lφ‖

≤
ρ̄

8τ
‖u‖2

N+Cτ‖[ρ,u]‖2
N

(

‖∇[ρ,u,φ]‖2
N−1+‖∇φ‖2

N

)

,

which along with (2.10) yields for any l,

∣

∣I l
1(t)

∣

∣≤
ρ̄

8τ
‖u‖2

N+Cτ‖[ρ,u,φ]‖2
N

(

‖∇[ρ,u,φ]‖2
N−1+‖∇φ‖2

N

)

. (2.11)

For ∑k<l C
k
l I l

k,l(t), we have

∣

∣

∣

∣

∑
k<l

Ck
l I l

k,l(t)

∣

∣

∣

∣

≤∑
k<l

Ck
l ‖∂lρ‖‖∂l−k(ρ+ ρ̄)∂k∇·u‖+∑

k<l

Ck
l ‖∂lρ‖‖∂l−ku·∂k∇ρ‖

+∑
k<l

Ck
l ‖∂lu‖

∥

∥

∥

∥

∂l−k

(

P′(ρ+ ρ̄)

ρ+ ρ̄

)

∂k∇ρ

∥

∥

∥

∥

+∑
k<l

Ck
l ‖∂lu‖‖∂l−ku·∂k∇u‖

+∑
k<l

Ck
l ‖∂lφ‖‖∂l−k(ρ+ ρ̄)∂k∇·u‖+∑

k<l

Ck
l ‖∂lφ‖‖∂l−ku·∂k∇ρ‖

=
6

∑
i=1

Ji. (2.12)

For J1, noticing that |l−k|≥1, there exists some multiple index s with |s|=1. We

have from (2.1) that

|J1|≤∑
k<l

Ck
l ‖∂lρ‖‖∂l−k−s∂sρ∂k∇·u‖

≤C‖∂lρ‖
(

‖∂sρ‖L∞‖∇|l|−1∇·u‖+‖∇·u‖L∞‖∇|l|−1∂sρ‖
)

≤
ρ̄

16τ
‖u‖2

N+Cτ‖ρ‖2
N‖∇ρ‖2

N−1. (2.13)

Similarly, we can estimate J2-J6 as

6

∑
i=2

|Ji|≤
ρ̄

16τ
‖u‖2

N+Cτ‖[ρ,u,φ]‖2
N‖∇[ρ,u,φ]‖2

N−1. (2.14)

Plugging (2.13) and (2.14) into (2.12), we see

∣

∣

∣

∣

∑
k<l

Ck
l I l

k,l(t)

∣

∣

∣

∣

≤
ρ̄

8τ
‖u‖2

N+Cτ‖[ρ,u,φ]‖2
N‖∇[ρ,u,φ]‖2

N−1. (2.15)
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Substituting (2.11) and (2.15) into (2.9), one has

d

dt

(

1

2

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+

1

2

∫

R3
(ρ+ ρ̄)|∂lu|2dx

−µ〈∂lφ,∂lρ〉+
bµ

2a
‖∂lφ‖2+

µD

2a
‖∂l∇φ‖2

)

+
1

τ

∫

R3
(ρ+ ρ̄)|∂lu|2dx+

µ

a
‖∂lφt‖

2

≤
ρ̄

4τ
‖u‖2

N+Cτ‖[ρ,u,φ]‖2
N

(

‖∇[ρ,u,φ]‖2
N−1+‖∇φ‖2

N

)

. (2.16)

Taking the summation of (2.16) over |l| ≤ N and using the fact ρ+ ρ̄≥ 3̄ρ/4, we

have

1

2

d

dt ∑
|l|≤N

{

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+

∫

R3
(ρ+ ρ̄)|∂lu|2dx

−2µ〈∂lφ,∂lρ〉+
bµ

a
‖∂lφ‖2+

µD

a
‖∂l∇φ‖2

}

+
ρ̄

2τ
‖u‖2

N+
µ

a
‖φt‖

2
N

≤Cτ‖[ρ,u,φ]‖2
N

(

‖∇[ρ,u,φ]‖2
N−1+‖∇φ‖2

N

)

,

which leads to (2.4).

Step 2. We claim that

τ
d

dt ∑
|l|≤N−1

{

〈∂lu,∂l∇ρ〉+
µ

2a
‖∂l∇φ‖2

}

+λτ‖∇ρ‖2
N−1+λτ‖∇φ‖2

N

≤
C

τ
‖u‖2

N+Cτ‖[ρ,u]‖2
N‖∇[ρ,u]‖2

N−1. (2.17)

Let 0 ≤ |l| ≤ N−1. Applying ∂l to the (2.2b), multiplying it by τ∂l∇ρ, taking

integration in x, using integration by parts, and replacing ∂tρ from (2.2a), one has

τ
d

dt
〈∂lu,∂l∇ρ〉+

τP′(ρ̄)

ρ̄
‖∂l∇ρ‖2−µτ〈∂l∇φ,∂l∇ρ〉

= ρ̄τ‖∇·∂lu‖2−τ
〈

∇·∂lu,∂lg1

〉

−〈∂lu,∇∂lρ〉+τ
〈

∂lg2,∇∂lρ
〉

. (2.18)

Applying ∂l∇ to (2.2c) we multiply the arising equation by (τµ/a)∂l∇φ and in-

tegrate the result in x, thus obtaining

τµ

2a

d

dt
‖∂l∇φ‖2+

τµD

a
‖∂l∇2φ‖2−µτ〈∂l∇φ,∂l∇ρ〉+

µbτ

a
‖∂l∇φ‖2=0. (2.19)
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Adding (2.18) to (2.19) yields

τ
d

dt

{

〈∂lu,∂l∇ρ〉+
µ

2a
‖∂l∇φ‖2

}

+
τP′(ρ̄)

ρ̄
‖∂l∇ρ‖2

−2µτ〈∂l∇φ,∂l∇ρ〉+
µbτ

a
‖∂l∇φ‖2+

µDτ

a
‖∂l∇2φ‖2

= ρ̄τ‖∇·∂lu‖2−τ〈∇·∂lu,∂l g1〉−〈∂lu,∇∂lρ〉+τ〈∂l g2,∇∂lρ〉. (2.20)

Since bP′(ρ̄)−aµρ̄>0, the following matrix:







P′(ρ̄)

ρ̄
−µ

−µ
bµ

a






(2.21)

is positive definite, which yields a positive constant C1>0 such that

P′(ρ̄)

ρ̄
‖∂l∇ρ‖2−2µ

〈

∂l∇φ,∂l∇ρ
〉

+
µb

a
‖∂l∇φ‖2≥C1

(

‖∂l∇ρ‖2+‖∂l∇φ‖2
)

.

This together with (2.20) gives

τ
d

dt

{

〈∂lu,∂l∇ρ〉+
µ

2a
‖∂l∇φ‖2

}

+C1τ‖∂l∇ρ‖2

+C1τ‖∂l∇φ‖2+
µDτ

a
‖∂l∇2φ‖2

= ρ̄τ‖∇·∂lu‖2−τ
〈

∇·∂lu,∂lg1

〉

−〈∂lu,∇∂lρ〉+τ
〈

∂lg2,∇∂lρ
〉

. (2.22)

Then, it follows from the Cauchy-Schwarz inequality that

τ
d

dt

{

〈∂lu,∂l∇ρ〉+
µ

2a
‖∂l∇φ‖2

}

+
τC1

2
‖∂l∇ρ‖2

+τC1‖∂l∇φ‖2+
µDτ

a
‖∂l∇2φ‖2

≤
C

τ

(

‖∇·∂lu‖2+‖∂lu‖2
)

+Cτ
(

‖∂lg1‖
2+‖∂lg2‖

2
)

, (2.23)

where we have used the fact 0<τ<1<1/τ. Noticing that g1, g2 are quadratically

nonlinear, one has from (2.1) that

‖∂lg1‖
2+‖∂lg2‖

2≤C‖[ρ,u]‖2
N‖∇[ρ,u]‖2

N−1.



Q. Liu, H. Peng and Z.A. Wang / Commun. Math. Anal. Appl., 3 (2024), pp. 1-18 13

Substituting this into (2.23) and taking the summation over |l|≤N−1, we have

τ
d

dt ∑
|l|≤N−1

{

〈∂lu,∂l∇ρ〉+
µ

2a
‖∂l∇φ‖2

}

+λτ
(

‖∇ρ‖2
N−1+‖∇φ‖2

N

)

≤
C

τ
‖u‖2

N+Cτ‖[ρ,u]‖2
N‖∇[ρ,u]‖2

N−1,

where λ=min{C1/2,µD/a}. This completes the proof of (2.17).

Step 3. Multiplying (2.17) by κ and adding the resulting inequality to (2.4), we

have

1

2

d

dt ∑
|l|≤N

{

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+

∫

R3
(ρ+ ρ̄)|∂lu|2dx

−2µ〈∂lφ,∂lρ〉+
bµ

a
‖∂lφ‖2+

µD

a
‖∂l∇φ‖2

}

+κτ
d

dt ∑
|l|≤N−1

{

〈∂lu,∂l∇ρ〉+
µ

2a
‖∂l∇φ‖2

}

+κλτ‖∇ρ‖2
N−1+κλτ‖∇φ‖2

N+
ρ̄

2τ
‖u‖2

N+
µ

a
‖φt‖

2
N

≤
Cκ

τ
‖u‖2

N+Cτ‖[ρ,u,φ]‖2
N

(

‖∇[ρ,u,φ]‖2
N−1+‖∇φ‖2

N

)

.

By choosing κ and ‖[ρ,u,φ]‖N small enough, we can obtain that

1

2

d

dt ∑
|l|≤N

{

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx+

∫

R3
(ρ+ ρ̄)|∂lu|2dx

−2µ〈∂lφ,∂lρ〉+
bµ

a
‖∂lφ‖2+

µD

a
‖∂l∇φ‖2

}

+κτ
d

dt ∑
|l|≤N−1

{

〈∂lu,∂l∇ρ〉+
µ

2a
‖∂l∇φ‖2

}

+
κλτ

2
‖∇ρ‖2

N−1

+
κλτ

2
‖∇φ‖2

N+
ρ̄

4τ
‖u‖2

N+
µ

a
‖φt‖

2
N ≤0. (2.24)

This completes the proof of Lemma 2.3.
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Proof of Proposition 2.1. We denote EN(U(t)) by

EN

(

U(t)
)

= ∑
|l|≤N

{

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx−2µ〈∂lφ,∂lρ〉

+
bµ

a
‖∂lφ‖2+

∫

R3
(ρ+ ρ̄)|∂lu|2dx

}

+
µD

a
‖∇φ‖2

N+κτ ∑
|l|≤N−1

{

2〈∂lu,∂l∇ρ〉+
µ

a
‖∂l∇φ‖2

}

, (2.25)

and rewrite
∫

R3 P′(ρ+ ρ̄)/(ρ+ ρ̄)|∂lρ|2dx as

∫

R3

P′(ρ+ ρ̄)

ρ+ ρ̄
|∂lρ|2dx=

P′(ρ̄)

ρ̄
‖∂lρ‖2+

〈(

P′(ρ+ ρ̄)

ρ+ ρ̄
−

P′(ρ̄)

ρ̄

)

∂lρ,∂lρ

〉

, (2.26)

which updates (2.25) to

EN

(

U(t)
)

= ∑
|l|≤N

{

P′(ρ̄)

ρ̄
‖∂lρ‖2−2µ〈∂lφ,∂lρ〉+

bµ

a
‖∂lφ‖2+

∫

R3
(ρ+ ρ̄)|∂lu|2dx

}

+ ∑
|l|≤N

〈(

P′(ρ+ ρ̄)

ρ+ ρ̄
−

P′(ρ̄)

ρ̄

)

∂lρ,∂lρ

〉

+
µD

a
‖∇φ‖2

N

+κτ ∑
|l|≤N−1

{

2〈∂lu,∂l∇ρ〉+
µ

a
‖∂l∇φ‖2

}

with constant 0<κ≪1. By the fact that the matrix (2.21) is positive definite, along

with the smallness of κ and ‖ρ‖N , we have that

EN

(

U(t)
)

∼‖[ρ,u,φ]‖2
N+‖∇φ‖2

N .

This together with (2.24) leads to

‖[ρ,u,φ]‖2
N+‖∇φ‖2

N+
∫ t

0

(

1

τ
‖u‖2

N+τ‖∇ρ‖2
N−1+τ‖∇φ‖2

N+‖φt‖
2
N

)

ds

≤C
(

‖[ρ0,u0,φ0]‖
2
N+‖∇φ0]‖

2
N

)

. (2.27)

This a priori estimate combined with the local existence theorem completes the

proof of Proposition 2.1, and thus Theorem 1.1.
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3 Convergence to the Keller-Segel model

In this section, we are going to prove Theorem 1.2.

Proof of Theorem 1.2. We have shown that the Cauchy problem (1.1) admits a uni-

que global solution (ρτ ,uτ,φτ). Next, we will adapt the compactness argument

developed in [5] and justify the convergence of (ρτ ,uτ ,φτ) to the solution of the

Keller-Segel model as τ→0. To this end, we introduce the rescaled time variable

s=τt and define

(̺τ ,mτ,ϕτ)(x,s) :=

(

ρτ(x,t),
ρτ(x,t)uτ(x,t)

τ
,φτ(x,t)

)

.

The system (1.1) turns into















∂s̺τ+∇·mτ =0, (3.1a)

τ2∂sm
τ+τ2∇·

(

mτ⊗mτ

̺τ

)

+∇P(̺τ)=−mτ+µ̺τ∇ϕτ, (3.1b)

τ∂s ϕτ =D∆ϕτ+a̺τ−bϕτ. (3.1c)

Thus, we have from (2.27) that

∥

∥[̺τ(s)− ρ̄,ϕτ(s)−φ̄,∇ϕτ(s)]
∥

∥

2

N
+τ2‖mτ(s)‖2

N+
∫ ∞

0
‖mτ(s)‖2

Nds

+
∫ ∞

0

(

‖∇̺τ(s)‖2
N−1+‖∇ϕτ(s)‖2

N+τ
∥

∥∂s ϕτ(s)
∥

∥

2

N

)

ds≤C, (3.2)

where C is a constant independent of τ.

From (3.2), we have that ̺τ is bounded from below and above by positive

constants, τmτ and ϕτ−φ̄ are bounded in L∞([0,∞),L2(R3)), and mτ⊗mτ/̺τ is

bounded in L1([0,∞),L1(R3)). Hence, as τ goes to 0, we can pass the limit in the

Eq. (3.1b) in the sense of distributions as following:

{

−mτ−∇P(̺τ)+µ̺τ∇ϕτ
⇀ 0,

D∆ϕτ+a̺τ−bϕτ
⇀ 0 in D′(R+×R

3),

which together with the Eq. (3.1a) yields

{

∂s̺
τ+∇·

(

µ̺τ∇ϕτ−∇P(̺τ)
)

⇀ 0 in D′(R+×R
3),

D∆ϕτ+a̺τ−bϕτ
⇀ 0 in D′(R+×R

3).
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It follows from (3.1), (3.2) that (̺τ− ρ̄) is bounded in L∞([0,∞);HN(R3)) and

∇̺τ is bounded in L2([0,∞);HN−1(R3)). Furthermore, we obtain that ∂s̺
τ is

bounded in L2([0,∞);HN−1(R3)). This shows that (̺τ− ρ̄) is bounded in the

space H1([0,T);HN−1(R3)) for any T>0. Thus, there exist a subsequence τn and

a function ̺0 such that

̺τn− ρ̄ ⇀ ̺0− ρ̄ weakly in H1
(

[0,T);HN−1(R3)
)

.

It means that ̺0− ρ̄∈C([0,T);HN−1(R3)), which along with ̺τn |s=0= ρ0 for all n

leads that ̺0|s=0=ρ0.

Now, we have that ∂s̺
τn is bounded in L2([0,∞);HN−1(R3)), and moreover

̺τn is bounded in L∞([0,∞);HN(R3)). By the Aubin-Lions-Simon lemma, we can

extract a new subsequence, still denoted by τn, such that the following conver-

gence holds:

̺τn → ̺0 strongly in C
(

[0,T);Hm(B(R)
))

,

where N−1<m<N, R>0 and B(R) denotes the ball {x∈R
3 : |x|≤R}. Lastly, we

can get the convergence properties to ϕτn from (3.2)

ϕτn ⇀ ϕ0 weakly in L2
(

[0,T);HN(B(R)
))

.

The proof of Theorem 1.2 is complete.
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