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1 Introduction

The dynamics of a viscous compressible fluid are modeled by the well known
Navier-Stokes equations. For a barotropic fluid, the Navier-Stokes equations may
be written as

drp+div(pu) =0, (1.1)
dt(pu)+div(pu®u)+ VP =divs, (1.2)

where p and u are the density and the velocity field of the fluid, respectively,
P=P(p) is the pressure, S is the viscous stress tensor. Note that we are neglecting
possible external forces for simplicity.

Let T>0 be fixed. Throughout this paper we consider Egs. (1.1)-(1.2) posed on
a smooth bounded open set (2 C RN with N>2, along with the following initial
and boundary conditions:

u(t,x)=0, 0<t<T, x€0Q), (1.3)
p(0,%)=po(x), p(0,x)u(0,x)=mo(x), x€Q. (1.4)

—~

Moreover, we assume that the fluid is isentropic and satisfies
P(p)=Ap” (1.5)

for some constants A >0 and v > N /2. Let us consider the case of a Newtonian
fluid, where the viscous stress tensor takes the form

S=A(divu)I+2uD(u), (1.6)

where T is the identity matrix in RN, D(u) = (Vu+(Vu)')/2 is the symmetric
part of the velocity gradient and A and y are the viscosity coefficients which, in
general, depend on the density.

It has been known, since the pioneering works by Serre [24], Hoff [17, 18],
Vaigant and Kazhikhov [26], Lions [21] and Feireisl [13,14], among others (see
also, e.g. [10, 20,23, 25]), the regularizing properties of the effective viscous flux
and its characterization as the function whose gradient is the gradient part in
the Hodge decomposition of the Newtonian force of the fluid, when the shear
viscosity of the fluid is constant.

The problem of existence of global solutions to the compressible Navier-Stokes
equations with viscosity coefficients depending on the density is a difficult prob-
lem, specially in dimensions greater than one. The general theory developed by
Lions [21], and later extended by Feireisl, Novotny and Petzeltova [16] and by
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Feireisl [14], who extended the range of the exponent of the pressure law to the
optimal value, relies on a certain continuity with respect to weak convergence of
the effective viscous flux (see (1.18) below), which, so far, for space dimension
greater than or equal to 3, has only been proved in the case of constant viscos-
ity coefficients. In dimension 2, Vaigant and Kazhikhov [26] studied the periodic
case under the assumptions that u is constant and A(p) = pf with B> 3. Their
result also relies heavily on the regularity of the effective viscous flux and its
identification with the function whose gradient is the gradient part of the Hodge
decomposition of the Newtonian force of the fluid, which corresponds to (1.14).
One great advantage of this decomposition in dimension 2 is that the divergence-
free part of the Hodge decomposition w may be written as V+G, for some func-
tion G, which allows for the deduction of higher order regularity estimates on the
solutions when combined with the periodic boundary conditions.

A significant breakthrough on the construction of weak solutions with den-
sity dependent viscosities has been made by Bresch and Desjardins in a series of
papers [1-5] and by Bresch et al. [6]. In general, when the viscosity coefficients
depend on the density, the equations may become degenerate when close to the
vacuum and, in particular, the velocity field is not bounded in L?(0,T; H!(Q)).
However, this degeneracy provides a very particular structure that yields some
integrability properties of the gradient of the density, under some restrictions that
relate the viscosity coefficients. Namely, the relation

M) =2(2n' (D) —p(2)).

known as the Bresch-Desjardins relation, which was introduced in [2]. Vasseur
and Yu [27] proved existence of solutions for the compressible barotropic Navier-
Stokes equations when (p) =p and A =0 using a stability result by Mellet and
Vasseur [22]. Independently and using different methods, Li and Xin [19] also
established existence of solutions for the compressible barotropic Navier-Stokes
equations with density dependent viscosities covering the case considered by
Vasseur and Yu, as well as more general viscosities satisfying the Bresch-Desjar-
dins relation, but with a non-symmetric stress diffusion

S=u(p)Vu+A(p)divu

and several extra restrictions on the viscosities and the pressure law. The case of
the heat-conductive fluids has been treated by Bresch and Desjardins [4]. More
recently, Bresch et al. [7] extended the previous results by Vasseur and Yu and by
Li and Xin to more general assumptions on the viscosities, satisfying the Bresch-
Desjardins relation, including, in particular, the case when p(p) =pop* with pp>0
and 2/3 <a <4. All of these results, regarding non-constant viscosity coefficients,
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have been posed either in IR? or in the torus T° and they all rely on the higher
regularity on the density allowed by the degeneracy of the viscosity. None of
them, however, uses the regularity of the effective viscous flux discovered by
Lions, as it is only available for the case of constant viscosities so far.

In this article, following a path very similar to the one by Feireisl [13] (see
also [14]), we explore further the connection between the Hodge decomposition
of the Newtonian force and the regularizing properties of its gradient part, by ad-
dressing the problem of the global existence of weak solutions for compressible
Navier-Stokes equations with both viscosities depending on a spatial mollifica-
tion of the density. We believe that this replacement of the density by its spatial
averaging in the argument of the viscosity coefficients does not affect the original
model in its practical aspects and so it yields a very reasonable model, with the
advantage that it is much more mathematically treatable.

More precisely, we denote [p]”7 =n*p, where p is the extension of p by 0 to the
whole RYN and 7 is a smooth function with compact support, and we assume that

A=A(lp]"),  u=ullp]"), (1.7)

where {— A({) and {— u({) are smooth functions satisfying

HOZp0>0, MO+ p(@)20, VIER 1.9

Note that if 77 is nonnegative, then we only need to assume (1.8) for ¢ > 0.
Under these hypotheses, the main purpose of this paper is to prove the fol-
lowing result.

Theorem 1.1. Let the initial data satisfy

pQZO and pQEL7(Q),

2 1.9
m(x) =0 whenever po(x)=0, and %EE(Q). 19)

Then, there exists a weak energy solution (p,pu) to the initial/boundary value problem
for the Navier-Stokes equations (1.1)-(1.2) under the conditions expressed in (1.3)-(1.8).
Furthermore, (p,pu) is a renormalized solution to the continuity equation (1.1).

Remark 1.1. A pair (p,pu) is called a weak energy solution to (1.1)-(1.2), (1.3)-
(1.4) if
p is nonnegative and €L (0,T;L7(Q))),
ueL2(0,T;Hj((;RY))
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satisfy (1.1)-(1.2) in the sense of distributions and the following energy inequality
holds: For almost every 0 <t <T,

/Q {%P(t,x) lu(t,x) |2 + %p(tlx)q dx

+/0t/0 [V|V“(t/rx)|2+()\+y)(divu(t’,x))? dxdt’

1 A e
< /Q [Eimo(x)r%ﬁpo(x)”] dx ' Ey. (1.10)

Remark 1.2. The definition of renormalized solution is as follows: (p,u) is said to
be a renormalized solution to the continuity equation (1.1), if the equation

B(p);+div (B(p)u) +b(p)divu=0

holds in the sense of distributions in (0,T) x RY, provided that p and u are ex-
tended to be zero outside (), and for any functions

B€C[0,00)NC(0,00),
)

b€ C[0,00) bounded in [0,00), (1.11)
B(0)=b(0)=0
satisfying
b(z)=B'(z)z—B(2). (1.12)

Let us now explain in more details the role played by the effective viscous
flux. One can see that, decomposing (the divergence of) the viscous stress tensor
in terms of the Hodge decomposition, one may rewrite (1.2) as

d¢(pu)+div(pu®u)+Vg=w, (1.13)

where
g:=P—divA~ldivSs, (1.14)
and w := divS—V(divA~1divS), which satisfies divw = 0. Here, the operator
divA~!div may be regarded through its components in terms of the Riesz trans-
form as N
divA~'divS=(VAT'V):S= )" R;R;S;j,
ij=1

where R; is the operator whose Fourier symbol is —i¢;/|¢| (see Appendix B). The
function g is often referred to as the effective viscous pressure (see, e.g. [14]).
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Then, we note that divA~!divID(u) =divu and so
g=P—(A+2u)divu+2[u, VA~IV]:D(u)

N
=P—(A+2u)divu+2 Y [1;R;R;]Dyj(u), (1.15)
i,j=1

where
[b;RiR;)(fij) =DRiR;(fij) — RiR;(bfij)
is the Lie bracket. If the shear viscosity y is constant, then

g=4qo:=P—(A+2u)divu, (1.16)

which is usually called the effective viscous flux, to which we referred previously.
Reasoning as in [15], applying the operator divA~! to (1.13), we see that

g=—divA~19;(ou) —divA~ldiv(pu®u),
and thus, formally, multiplying by p and using the continuity equation, it holds

go=—0;(divA~1[pu]p) —div (oudivA~[ou])
+pudivA~ldiv[ou] —divA~div[pu®u]p. (1.17)

Most remarkably, the right-hand side of this identity can be shown to be weakly
continuous in the following sense. Let (p% p‘u®) be a sequence of solutions of
the Navier-Stokes equations (1.1)-(1.2) (or a convenient approximation of them)
such that p* — p,p*u® — pu and Vu® — Vu weakly in a suitable L space, re-
lated to the natural a priori estimates. If the viscosity coefficients are constant, it
can be shown that (p,pu) is a weak solution of the Navier-Stokes equations with
P=P(p), where the overline stands for a weak limit of the sequence indexed by e.
Then, considering identity (1.17) for both (p%,pu®) and (p,pu), each of the terms
on the right-hand side converges weakly to its counterpart as e — 0. Thus, it fol-
lows that

(P(p) — (A+2p)divu)p= (P(p) + (A+2u)divu)p. (1.18)

This noteworthy fact, first discovered by Lions [21], is the key point to show
existence of global weak solutions for the Navier-Stokes equations. The main
issue is to show that the sequence of densities converges strongly in order to ac-

count for the nonlinearity of the pressure term, that is, to show that P(p) =P(p).
Note that, if the viscosity coefficients are functions of p, then the (formal) rea-
soning outlined above does not yield identity (1.18), as weak convergence, in
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general, does not commute with products. Also, the presence of the commutator
in identity (1.15) requires careful analysis. On the bright side, the regularity re-
sults by Coifman and Meyer [11] and Coifman et al. [12] regarding commutators
of Riesz transforms and the operators of multiplication shed some light into the
possibility of extending these results to more general settings (see, e.g. [13]).

It is the purpose of this paper to further explore these ideas for non-constant
viscosities satisfying (1.7)-(1.8) to prove Theorem 1.1. More specifically, the core
result of this paper is the extension of the weak continuity of the effective viscous
flux to the case where the viscosities may depend on local spatial averages of the
density as in (1.7). Then, we apply it to prove Theorem 1.1.

The strategy of the proof of Theorem 1.1 follows the same ideas of Feireisl [13,
14]. We find solutions of the Navier-Stokes equations as weak limits of a sequence
of solutions of a regularized system, where the main difficulty is to show strong
convergence of the densities in order to account for the pressure term. At this
point, aside from the notion of renormalized solutions, the key tool, and main
result of this paper, is an identity which extends (1.18) to the case we consider
here (see Theorem 2.1 below). Namely,

(P(p)— (A(lpl")+2u(fpl) divu) p = (P(o)+ (A([p]") +2u([p]")) divu ) p. (1.19)

This identity is crucial to prove that the limit functions (p,u) solve the continuity
equation in the sense of renormalized solutions. This last bit of information may
be used in order to prove the strong convergence of the densities. However, at
this last stage we also need the following identity regarding the effective viscous
flux:

P(p) Cdive) o Plp) .
(st (A([pwzu([pm*d )P' (120

Note that when the viscosity coefficients are constant both (1.19) and (1.20) reduce
to (1.18).

The rest of this paper is organized as follows. In Section 2, we state precisely
and prove the main ingredient for the proof of Theorem 1.1, that is, Theorem 2.1,
which is about the weak continuity of the effective viscous flux. Let us point that
the key to the proof of this result is the realization that the effective viscous pres-
sure may be written as (1.15). Then, as an application of Theorem 2.1, we prove
Theorem 1.1 by adapting the framework contained in [14]. More precisely, in Sec-
tion 3, we introduce a two-level regularization of the Navier-Stokes depending on
two small parameters € and §, which correspond to an artificial viscosity added to
the continuity equation and an artificial pressure term, respectively. We discuss
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the solvability of the regularized system and state some a priori estimates on the
solutions. In Section 4, we show convergence of the solutions as the artificial
viscosity tends to 0, by means of a variant of Theorem 2.1. Finally, in Section 5,
we show convergence of the solutions as the artificial pressure vanishes using
Theorem 2.1 once again, which is the last step of the proof of Theorem 1.1.

2 The effective viscous flux

Let us consider a sequence (p,,u,) of weak energy solutions of (1.1)-(1.2) with P
given by (1.5), S given by (1.6) and whose viscosity coefficients satisfy (1.7) and
(1.8). Let us also assume that p,, and u,, satisfy the continuity equation (1.1) in the
sense of renormalized solutions and that there are some function p,u and P such
that

on — P weakly- in L*(0,T;L7(Q))),

u, — u weakly in L%(0,T;H{(QY)), (2.1)

P(p,) — P weakly in L"((0,T)xQ) forsome r>1

as n— o00. Moreover, let us assume that
ouluq|* isboundedin L*(0,T;L(Q)). (2.2)

Then, we have the following result, which establishes the announced extension
of (1.19), and represents a decisive step in the proof of the weak continuity of
the effective viscous flux. Throughout this section the overline stands for a weak
limit of the sequence indexed in n.

Theorem 2.1. Let oy > N /2. Then, passing to a subsequence if necessary

/OT/Q?B(P” Lu([pnﬁ)(ﬂ([pn]ﬂ) _diV“”] et

> o0 sy v s -

forany geCZ((0,T)xQ)), and any bounded and continuous function B, where B(p, ) —
B(p) weakly- in L*((0,T) x Q). Likewise, we also have that

/OT/QQDB(Pn) [P(on— (2u(lon])+A([0n]"))divu, | dxdt

T
5 /0 /Q ¢B(p) [P— (2u([o]")+A([p]"))divu] dxdt. 2.4)
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The proof of (2.3) is similar to that of (2.4), therefore, we only prove in details
the former and comment briefly the modifications that have to be made for the
proof of the latter. A brief account of the strategy of the proof is as follows. First,
we rewrite the momentum equation satisfied by the sequence (p,,u,) as

VP(pn)—divS, =—0:(pnu,) —div(ppu, @uy), (2.5)

and show that we may take the limit as n — co to conclude that the following
equation holds in the sense of distributions:

VP—divS=—09;(pu) —div (pu®u), (2.6)

where
8= A([p]") (diva)I+2u([o]")D(w).

Then, we take the test functions

{%(t,x) = ¢(t:X)8 1 (B(on) F([pa]") (%), o
¢(t,x)=(t,x)A"IV (B(p)F([p]")) (t,x)
in Egs. (2.5) and (2.6), respectively, where
1
F(¢)= m (2.8)

After some manipulation, upon integrating by parts, the terms involved in the
conclusion of Theorem 2.1 will appear in each one of the two resulting equations.
Then, to conclude it suffices to show that each of the remaining terms converges
to its counterpart as n — co.
Now, in order to deduce Eq. (2.6) we first observe that
pn — p in C([0,T;LY . (Q0)), (2.9)

weak

where the space C([0,T};L! _, (Q)) is defined as in Appendix A. Indeed, (2.9)
follows by applying Proposition A.1in view of the equations verified by each p;,.
Since the convolution operator f€L(Q)~[f]7€Ck(Q) is compact for any integer

k>0, we see that

Mleal") = M), u(loealy) — n(lp]") strongly in C(0,T;C*(Q))).

Thus, if S, denotes the viscous stress tensor corresponding to (p,,u,), we have
that 5, — S in the sense of distributions. Moreover, by (2.1) and (2.2) we have
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that the sequence p,u, is bounded in L* (O,T;LZ'Y/ WH)(Q)), so we can apply
Proposition A.1 once again to deduce that (up to a subsequence) p,u, converges

in C([0,T] ;L2 (el (Q))). To show that the limit equals pu it suffices to note that

weak

L7(Q) is compactly imbedded in H~1(Q), so that
on — p in C([0,T;H(Q)),
which, together with (2.1), yields the convergence

2y

opu, — pu in c([o,T];Lgv;;k(Q)). (2.10)

Now, note that 27/(y+1) is also compactly imbedded in H~1(Q) due to our
hypothesis that v > N /2 (see, e.g. [14, Theorem 2.8]). Thus, we conclude that

pnu, — pu in C([0,T;H 1(Q)), (2.11)

and, consequently p,u, ®u, — pu®u in the sense of distributions. Furthermore,
since H}(Q)) is imbedded continuously in L¢(Q)), where c=2N/(N—2) if N>3
and c >1 arbitrary if N =2, we have that, in fact,

pnuy @u, — pu®u weakly in LZ(O,T;LS(Q)),

where 1/s=(v+1)/(2y)+(N—-2)/(2N) if N>3and 1/s> (y+1)/(27) if N=2.
In this way, Eq. (2.6) results by taking the limit as n — co in Eq. (2.5).

In order to proceed with the remaining details of the proof of Theorem 2.1,
we first need a couple of preliminary observations. The first one concerns the
resulting terms in the left-hand side of Egs. (2.5) and (2.6) after taking the test
functions ¢, and ¢.

Lemma 2.1. Let F be given by (2.8). Then

T T
Pdivod dt—/ /s-v dxdt
/o /Q 1vcp X A 4) X

_/T/ B(o)F([p]")d dt—/T/ [VA~'Y,9]:(S)B(o) F([o]")dxdt
= QGWI Y Y X A ,9): 0 0 N
T -
[ [ (P1-5)Vg) AV (BRIE(p]) et

where q is the effective viscous pressure, corresponding to P minus the gradient part of
the Hodge decomposition of divS, that is

q:=P—(A([o)")+2u([o]"))divu+2[u([p]"), VAT V]:D(u). (2.12)
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Similarly,

T
/ /Q P(pn)divedxdt— / / S+ Vpndxdt
0

T

/0 / PqnB(on) F([on]")dxdt

_/ / (VAT 0] (Sn)B(pn) F([on]") dxdt

+// P(ou)L=S8u)-V)-A7'V (B(on)F ([on]") ) dxdt,

where

qn:=P(pn) — (AMlpn]") +2p([pn]")) divuy
+2[u([en]"), VATIV] :D(uy). (2.13)

Proof. The proof of both identities is similar, and therefore we only prove the first
one. To that end, note that on the one hand we have that

! ! . -1 Y2RY
| [ sVgaxat= [ | ¢8:9a71V (B(0)F(lo])) dxat
T —_—
+/0 /Q(S'V‘P)'A 'V (B(o)F([p])) dxdt. (2.14)

On the other hand, using the self-adjointness of the operator VA~V and by the
definition of the commutator [-,-] we see that

/T/ ¢S: VA~V (B(p)F([p])) dxdt

—/ / [VA™1V,¢](S)B(p) dxdt—l—/ /(pqu T)dxdt,

where §:= VA~V :S. Then, noting that VA~!V:ID(u) =divu we see that
= (A([o)") +2u([o)")) diva+2[u([o]"), VA~'V] :D(u).

Finally, we see that
T T
/ /Qﬁdiwdxdt:/ /Fvgo-A—lv(B(p)F([p]*/))dxdt
0

+ / / PoB(p)F([o]")dxdt, 2.15)
and the result follows by gathering (2.14)-(2.15). O
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The second preliminary observation will allow us to evaluate the first term on
the right-hand side of Egs. (2.5) and (2.6) after taking the test functions ¢, and ¢.
Indeed, in order to evaluate the partial derivative of ¢, and ¢ with respect to t we

need to deduce the equations that B(p,)F([px]") and B(p)F([p]") satisfy.

Lemma 2.2. Let F be given by (2.8) and let b be given by (1.12). Then, the following
equation holds in the sense of distributions in RN:

(Blou)E([oa]")) iy (B(ow) (o] un) =, 216)

where

1™ —F([0a)")b(pn)divu,

+B(0n)F'([0n]") [div ([on]"wn) —div (17 (0nun)) ]
—B(pn)[on]"F'([on]")divu.

Moreover, hy, — h weakly in L?((0,T) x RN) as n — oo, where
< —F([p]")bp)divu
+F'([p]") [B(o) V [p]"-u+ (o] Blp)divu— B(p)div (1 (pu)) |
= [e)"F'([e]")B(p)divu,
and (p,u) satisfy the following equation in the sense of distributions:
(B(p)E(p]")) +div (B(p)E([p]")u) =h. (217)
Proof. ~ Step 1. By Proposition A.1 we have that
B(pn) — B(p) in C([0,T;L) . ()

Then, since L7 (Q) is compactly imbedded in H~!(Q)) due to our assumption that
v > N/2, we conclude that

B(pn)un — B(p)u
in the sense of distributions. Then, we can take the limit as n — oo in the equation
B(pn)+div (B(on)uy) +b(pn)divu, =0 (2.18)

with b given by (1.12), to obtain that the following equation is satisfied in the
sense of distributions:

B(p), +div (B(o)u) +b(p)divu=0.

Here, b(p)divu is a weak limit of the sequence b(p, )divuy,.
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Step 2. In order to deduce (2.16) we proceed as follows. First, extending p,
and u, by zero outside (), we may take 77(x—y) as a test function in the continuity
equation

dtpn+div(ppu,) =0

to deduce an equation for [p,|". Then, we use this equation to deduce an equation
for F([p(®)]1). Finally, we use the resulting equation and combine it with (2.18) to
conclude.

Step 3. Lastly, in order to deduce Eq. (2.17) it suffices to take the limit as n— oo
in (2.16), noting that each term converges weakly to its counterpart. [

Proof of Theorem 2.1.  Step 1. Let us first mention that, as pointed out in [14],
it is enough to prove the theorem for functions B in C[0,00)NC!(0,00) which are
bounded and such that b(z), given by (1.12), is also continuous in [0,00), bounded
and satisfy B(0) =b(0) =0; that is, for functions that satisfy the conditions (1.11)
and (1.12) of the definition of renormalized solutions. Indeed, we can always
approximate any bounded and continuous function B by a sequence B,,, m =
1,2,..., of functions that satisfy these requirements, which are bounded uniformly
with respect to m and converge to B—B(0) on compact subsets of R, and then
pass to the limit as m — o in (2.3).

Step 2. Let us prove (2.3). Let ¢, be given by (2.7). Then, seeing that

910 =(t,x)A" 'V (B(pn)F([04]")) +0r9 A~V (B(pn)F([04]")),

we take ¢, as a test function in Eq. (2.5) to obtain

T T 5
P(p,)dive,d dt—/ /sn-v dxdt=Y"T", 2.19
| [ Plon)divendxat— [ [ it =1 219)
where
T
1= /O /Q PPt A1V AV (B(py)E([ou]" )y ) dxdt,
T
L / / u, A Yk, dxdt,
2 0 Q(PP u S
T
B=— [ | pwunpu ™V (B(pu)E((pal)axat

= /OT [ (ertts @,V g)-A79 (B(pu)E([pu]")) et
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Ig’:—/OT/ngpnun@mn:VA_lv(B(pn)F([pn]”))dxdt.

Note that we have used Lemma 2.2 in order to deal with the time derivative
of B(px)F([px]"), giving rise to I} and I}.

Similarly, taking ¢, given by (2.7), as a test function in Eq. (2.6) and using
Lemma 2.2 once again, we obtain that

T _ T 5
/O /Q Pdivdxdt— /O /Q S-chdxdt:];I‘, (2.20)
where
T _
L= /0 /Q goud~1Vdiv (B(p)F([o]")u)dxdt,
T
L=— /0 /Q ppuA ' Vhdxdt,
I ——/T/ up A1V (B(p)F([p]")) dxdt
s== | | pug: 0)F([p ,
T _
L=—[ [ (pusu-Ve)-a7V (Blo)E([pl") dxdt,
T _
I5:—/0 /Q(ppu@)u:VA_1V(B(p)F([p]’7))dxdt.

Step 3. We claim that I]’7 — I for j=2,3,4 and that [ +If — [ +I5 as n — oo,
Indeed, using the boundedness of the function B, another application of Proposi-
tion A.1 yields the convergence

B(pn)F([on]") — B(p)F([p]") in C([0,T};LE .\ ()

. (2.21)
for any finite p>1.

Consequently, we may use the regularizing properties of the operator A~V (see
Proposition B.1) to conclude that

ATV (B(ou)E([pa]")) — AT'V(B(0)F([p]") in C(K)  (2.22)
for any compact K C [0,T] x Q. Thus,

I - I, I} - I} as n — oo (2.23)
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Similarly, by Lemma 2.2 we have that h, —h weakly in L?((0,T) x Q) and so
A 'Vh, — A" 'Vh weakly in L? (O,T;H1 (Q)),
which, together with (2.11), implies that

I - I, as n — oo. (2.24)

Regarding I} and I’ we see that

I = / /un 0x]) VA~ div (ppnuy)

~VA 1V(B<pn>F<[pnm)-qopnun]dxdt,

and, likewise,

11+15_/ / 0" VA~ div (ppu)
—va© 1V<W)>F<[m">>-¢pu] dxat,
From the relations (2.21), (2.10) and Theorem B.2, we have that
Blpu)F(loa]") VAT div (ppuun) = VATV (B(pa) F(loa]")) - ppnttn
— B(p)F([p]") VA~ div(ppu) = VATV (B(0)F([0]")) - ppu

weakly in L"(Q) for any 1 <r <2vy/(y+1) and for each fixed t € [0,T]. Since
7> N/2, we have that L' (Q)) is compactly imbedded in H~'(Q) and thus,

B(pn)E(lon]") VA~ div (@pntn) = VATV (B(pw)E([oa]")) - ppnn
— B(p)E([p)") VA~ div(ppu) — VATV (B(p)F([p]")) - ppu
strongly in L?(0,T; H~1(Q)). Hence, using (2.1) we conclude that

L+ — L+Is as n — oo, (2.25)
which proves the claim.

Looking back at identities (2.19) and (2.20) we obtain that

T T
lim /0 /Q P(pn)divgpdxdt — /O /Q S+ Vpnxdt
T T
- / / Pdivdxdt — / / S.Vdxdt. (2.26)
0 JQO 0 JQO



34 H. Frid, D. Marroquin and J. F. Nariyoshi / Commun. Math. Anal. Appl., 3 (2024), pp. 19-60

Step 4. Now, we claim that

lim [ : | #9:B (o) Eloaixat= [ ' | oaBEF(plaxdt,  @27)

n—00

where g, and g, which are given by (2.12) and (2.13), are the effective viscous
pressure corresponding to the momentum equations (2.5) and (2.6), respectively.

In light of (2.26) and Lemma 2.1, it suffices to show that
I ]” — Ij as n —

for j=6,7, where
T
== [ [ [VATIV.0]):(S)B(on) E(lon]")dxdt,

= [ [ (P(on) 1-5,)-Vg)-A71V (B(o)F([pu]") dxat
7= o Ja Pn n ¢ Pn Pn ’

and, accordingly,
T _
o= _/0 /Q [VATIV,0]:(8)B(p) F([p]")dxdt,

T ) 1
b= [ [ (P1-8)-Ve)-57'V(B()F(el"))dxat.
In view of (2.22) it is clear that

I; - I; as n — oo.

Regarding I’ we may invoke the regularizing properties of the commutator of
Riesz transforms and the operator of multiplication, discovered by Coifman and
Meyer [11], which we state in the Appendix B, for convenience (see Theorem B.1).
Indeed, by part 2 of Theorem B.1 we have that

[VAT'V,¢]:(S0) — [VAT'V,¢]:(S)
weakly in L?(0,T;WY(RY)), Vi<g<2.

Therefore, noting that (2.21) implies that

B(on)F([0n]") — B(p)F([0]")

P (2.28)
strongly in C([0,T; W™ "P(RY)), V1<p<oo,

then we readily conclude that

I — Iy as n — oo.
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Step 5. Atlast, with identity (2.27) at hand, from the definition of g, and g, we
see that all that is left to conclude the proof of the theorem is to show that I§ — Ig
as n— 00, where

T
= [ [ o[VATIV,u(lon)")):D(ws) Blon) F (o)) dx,
B= [ [ o[VaTV,u(lo))] :Dlw) Blo)F(lo] it

This, however, is another consequence of part 2 of Theorem B.1, which implies
that

VATV, u([oa]")]:D(un) — [VAT'V,u([o]")] :ID(u)
weakly in L?(0,T;WY(RY)), Vi<g<2,

which together with (2.28) yields the desired convergence and concludes the
proof. O

Remark 2.1. The proof of (2.4) may be carried out in the same way using the test
functions

(t,x) = (t,x)AV (B(p)) (£X)
instead of (2.7). In fact, the proof in this case is slightly less complicated in the
sense that Lemma 2.2 is not necessary, since the equations satisfied by B(p,)

and by B(p) are much simpler than those corresponding to B(p,)F([px]") and
by B(p)F([0]")-

{cpn(t,x)=¢<t,x>A-1V(B<pn>)<t,x>,

3 Existence of solutions: Regularized problem

We now turn our attention to the problem of existence of solutions to the Navier-
Stokes equations. To this end, let us consider the following auxiliary system:

dip+div(pu) =eAp, (3.1)
d¢(pu)+div(pu®u)+VP=divS+eVu-Vp, (3.2)
where ¢ >0 and ¢ > 0 are small constants,

P=P® (p) % Ap7 +6pP (3.3)
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with the new exponent f satisfying

,B>max{4,§N,'y}. (3.4)

Note that, aside from the artificial viscosity added to the continuity equation,
intended to regularize the density, two new terms are added to the continuity
equation. Namely, an artificial pressure term 6pf, which will allow for improved
integrability of the density, as well as the term eVu-Vp which makes up for the
unbalance in the energy of the system caused by the introduction of the viscosity
in the continuity equation. This approximation of system (1.1)-(1.2) resembles the
one introduced by Feireisl et al. [16], where they study the Navier-Stokes equa-
tions with constant viscosity coefficients.

We will find solutions of the Navier-Stokes equations as a limit of the sequence
of solutions to the regularized system taking the limit as e—0, leaving ¢ fixed first,
and then taking the limit when § — 0. To that end, we consider Egs. (3.1)-(3.2)
with S given by (1.6) and viscosity coefficients of the form (1.7) satisfying (1.8),
subject to the following initial and boundary conditions:

Vo(t,x)-v=0, 0<t<T, x€9Q, (3.5)
u(t,x) =0, 0<t<T, x€dQ, (3.6)
p(0,x) :p(()(s) (x), p(0,x)u(0,x) :mgs) (x), x€Q, (3.7)

Q) (%)

where v is the normal vector to dQ) and p,’ and m,,~ are, respectively, suitable
approximations of the initial datum pp and mg from the original system. Note that
a Neumann boundary condition was added to the density in accordance with the
introduction of the viscosity term in the continuity equation.

Existence and uniqueness of solutions can be proven as in [16] through
a Faedo-Galerkin method. More precisely, first the continuity equation (3.1) is
solved globally in terms of the velocity field assuming that the latter is as smooth
as needed. Then, for each n € N we find a solution u, for the Faedo-Galerkin
approximations of the momentum equation, namely Eq. (3.2) with p = p, being
the solution of (3.1) in terms of u,,, satisfied in the weak sense with test functions
in the finite-dimensional space X, C L?(Q;R?) generated by the first n eigenfunc-
tions of the Laplacian in H}(Q)). The Faedo-Galerkin approximations are solved
using Schauder’s fixed point theorem, which provides a unique local solution
u, € Xy Finally, it is shown that each u,, may be prolonged globally and that the
sequence (p,,uy) has a limit point, which is the desired solution of the regular-
ized system, based on a couple of global a priori estimates. Note that the strong
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convergence of the densities is straightforward due to the artificial viscosity term,
which regularizes the continuity equation. In particular, the explicit dependence
of the viscosity coefficients of the fluid on the density poses no extra difficulties
at this stage. In summary, we have the following.

Proposition 3.1. Fix € > 0, and assume that initial datum p((;s) and m((;s) satisfy the
following properties:

(a) ,0((,5) €C®(Q) and mé‘s) €C®(O;RN).
(b) There exists a constant m >0 such that p\®) (x) > m everywhere.
(9)

9Py _
(c) 30 (x) (x) =0 on 0Q).

Then, there exist a weak solution (p¢,p“u®) of (3.1)-(3.2), (3.6)-(3.7) such that
(0),u®) € (C([0,T;LA(Q) NL2 (0, T;HY () ) x L2(0,T; Hy (4RY)).

Moreover, p(®) >0 and the pair satisfies the energy estimates

/Q 1

P (O]u ()2 +

%p( (t )7_|_L () (¢ )/3] dx

1 p—
[ [ RIITOR-+ (A1) (o1 (dlivl®)?]
+s// Ay(p©)T 146 ()P |90 Paxat
S/QE(PS‘S)) mg H%(P( ) +%(P(‘S))ﬁ]d ey, 69
/|p |2dx+e//|Vp 2dxdt’
/ 0l Pdx+ / / divu® (p(©)2dxdt (3.9)
for almost every 0 <t <T.

Note that the assumptions on the initial values ‘0(()5) (x) and mé‘s)(x) may be
relaxed. However, we can always approximate functions pp and mg in the class
given by (1.9) by smoother initial data (depending on the parameter / and inde-
pendent of ¢) satisfying the hypotheses of Proposition 3.1, as will be shown later.

As an immediate consequence of the energy inequalities (3.8)-(3.9), we con-

clude the following.
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Corollary 3.1. Let (0©),u(®)) be the solutions of the regularized system provided by
Proposition 3.1. Then, the following estimates hold true uniformly in e > 0:

sup p(‘“') (t,x)7dx <(const.) Eé‘s), (3.10)
0<t<T/Q
sup (5p(8)(t,x)/3dx§(const.)E(()‘s), (3.11)
0<t<T/Q
/Q 0 (£, x)dx = /Q oV (x)dx forall 0<t<T, (3.12)
sup | p(tx)[ul® (£,x)]|2dx < (const.)E(()(s), (3.13)
0<t<T
! (¢) 2 2 (%)
/o /Q[]u (£,%)]°+|Vu(t,x)|*]dxdt < (const.)E;”’, (3.14)
T
s/ /Q|Vp(€)(t,x)|2dxdt§ (const. depend. on E((;S)and T). (3.15)
0

Note that (3.14) is enabled by (1.8) and (3.15) is uniform in ¢ due to (3.4).
Next we are going to find a sequence ¢, — 0 (leaving & fixed) so that p(¢n)
and u(®) converge to a solution of the original system.

Lemma 3.1. There exists a constant C=C (ﬁ,E((;S),é,T), independent of €, such that

[ Lo o <c

Proof. The improved integrability estimates for the density from [14, 16] can be
repeated line by line in this present case. The idea is to obtain an L! estimate for

p(e)P (p(e)) by taking

div_l{ |Q|/p0 dy] (t,%)

as a test function in the momentum equation (3.2), where
div1: {fe LP(Q);/ fdx=0} — W&’p(Q;]RN), l<p<oo
Q

denotes the so-called Bogovskii operator (see [8,9]). Note that here we have uti-
lized the conservation of the mass (3.12). We refer to [14,16] for the details. O
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Remark 3.1. The similar, although weaker, result

/ / V(X)L 4@ (¢ )P dxdt' <C(B,EY,6,T,0),

where O CC ) and 0 <a<b < T, may be proven if one chooses alternatively the
test function

IV . (0exp®)]
with ¢ € C(Q)) being a localization function, and (6 )¢ being mollifiers in
C®(RN) (see [14, Lemma 7.6]). The operator VA~! will play an important role in
the sequence of this paper, and some of its most crucial properties are discussed
in the Appendix B.

4 Vanishing viscosity limit

Now we move on to the vanishing viscosity limit. With the a priori estimates
from the previous section at hand we can find weakly convergent subsequences
as e—0 (leaving ¢ fixed) so that the limit functions p and u solve the Navier-Stokes
equations (1.1)-(1.2) with P = P(p), where P(p) is a weak limit of the sequence
{P(p®)}. As pointed out before, the main difficulty in this scheme is to show
that P(p)=P(p), which turns out to be equivalent to showing strong convergence
of the densities. To achieve this, we use a variant of Theorem 2.1.

We begin by proving the following proposition, which follows directly from
Corollary 3.1 and Lemma 3.1.

Proposition 4.1. Fixing both p((;s) and m((;s) and passing to subsequences €, — 0 if nec-

essary, we may assume that there exist

peL”(0,T;L7(Q2)),
Plo)eL’ ((0,T)xQ),
uel?(0,T; Hy(yRY))
such that
’p(S) —~ p weakly in LﬁH((O/T)XQ)'
P(o©) — Plp) weakly in L'F ((0,T)x0D),
u®  q weakly in L2(0,T;HL(Q;RN)), (4.1)
evul®vpe) — 0 stronglyin L'((0,T)x GRN),
\gAp(e) — 0 strongly in L?(0,T;H-1(Q))).
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Moreover, we have
(i) p(ﬁ) —p in C([0,T}; LZ;euk(Q))’

(i) A([ <€>w>%A([prw,y([pwﬂ)%u([p]ﬂ) strongly in C([0,T];C™(0Y)),
(i) pu'®) = pu in C([0,T); LZW(%LU(Q)),

weak

(iv) pu E)@)u(e)Apu@u weakly in L?(0,T;L5(Q;RN*N)) for 1<s<oco satis-
fying 1/s=(y+1)/(2y)+1/2* if N>3, and 1/s>(y+1)/(2y) if N=2.

Finally, the pair (p,u) is a weak solution to

dtp+div(pu) =0, (4.2)
9t (pu) +div (pu®u) +VP(p) =divSs (4.3)

with initial and boundary conditions
u(t,x)=0, 0<t<T, x€9Q, (4.4)
p(0x)=py" (x), (pw)(Ox)=mg"(x), xeQ, (45)

where
S=A([p]") (divu)T+2u([o]")D(u),
and satisfies the enerqy estimate

| [§p<t>|u<t>|2+%p< 45 e(0)

+// IMIVal*+ (A([o]” )+V([P]'7))(divu)2]dxdt’

-1 6)12 A 5 ) 5 5
S/Q E(p((, )) ]m(() )} +—7_1(Pé ))W+ﬁ(pé ))ﬁ} dx=E(()) (4.6)

for almost every 0 <t <T.

Remark 4.1. Let us mention that, by weak solution to (4.2), it should be under-
stood that (p,u) verifies

T T
/ /pu —dedt—/ /()pu@u:qudxdt—/o /QP(p)divgodxdt

+ /0 /Q S:V pdxdt = /Q m'? (x) - (0,x)dx, (4.7)

/OT /Qp<i>dxdt— /O ! /Q pu-Vdxdt = /Q o (x)p(0,x) dx 4.8)

for any ¢ € C¥([0,T) x (;RN) and ¢ € C*([0,T) x Q).
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Proof. First we observe that the convergences in (4.1) follow directly from Corol-
lary 3.1. Second, note that (i) follows from Proposition A.1 in view of the equa-
tions verified by p(¢). Next, (ii) follows from the fact that the convolution operator
FeLP(Q)— (yxf) eCk(Q) is compact for any integer k>0, as one can easily see
from the Arzela-Ascoli theorem.

The assertion that p(&u(®) converges in C([0,T];L>"/(7*1)(Q)) follows from
the same lines of (i) and the bounds of p(®) in L*(0,T;L7(Q)) and of \/E ul®
in L®(0,T;L?(Q))) expressed in, respectively, (3.10) and (3.11). Then, in order to
conclude (iii) we have to verify that the limit is indeed pu (symbolically, pu =
pt). This can be seen as follows. Since y > N/2,L7(Q) C H1(Q) with compact
injection. Then p®) — p strongly in C([0,T];H~1(Q)). This implies that pu = pu
indeed.

Finally, (iv) is obtained by a similar argument of (iii), for L27/(r*1)(Q)
H~Y(Q) compactly since 7> N /2.

All things considered, one can easily pass to the limit and conclude that (4.7)
and (4.8) are both valid, i.e. that (p,u) is a equation solution to (4.2)-(4.5). More-
over, (3.8) implies that

_/OT/Q |:%p(€)|u(€)|2+r)/f1(p(e))’Y_F%(p(s))ﬁ] 1P/(t)dxdt
T
+ /O /Q [u([p]")|Vu<€>|2+(A([p]f/)m([pm)(divu<s>)z} (F)dxdt

1 A 0
< /Q {59(()5) [ug” (0 + 1 (06”)"+ B—1 (P((fs))ﬁ} $(0)ax=y(0)Ey”

for any nonnegative ¢ € C°([0,T)), from which the energy inequality (4.6) fol-
lows. ]

Next we state a variant of Theorem 2.1 valid for solutions of the regularized
system.

Lemma 4.1. Forany ¢ € CZ((0,T) xQ2),

T (e) P(p®) —diva® | dx
o e Ly<[p<s>w>+mp<s>m v |

r P(p) .
WA [zmmmmqpm‘d“] et
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The proof is essentially the same as that of Theorem 2.1, modulo a few terms
that tend to zero as e—0. Note that, in contrast with Theorem 2.1, here the conclu-
sion holds with the function B(z)=z, which is not a bounded function. However,
due to the artificial pressure term, which is fixed throughout this section, there
are higher integrability estimates available on the densities which allow for the
admissibility of this unbounded function.

Since the main ideas of the proof have been set in Section 2 we will only point
out the modifications that are in order to prove this result.

First, we have the following observation which is the analogue of Lemma 2.2
for solutions of the regularized system.

Lemma 4.2. Let F(¢) be as in (2.8). Then, the following equation holds in the sense of
distributions in RN:

(P E([0']7))+div (0 ([0 ])u) =1, (4.9)

where

¢) def e . € - € £ —a J (E)
1O ZLeF([p©]1) div (16Vp®) +e)_p @ F ([o©]1) (a;* {;y.
i=1 : !

+oOF ([p ") [div ([p©]7u®) ~div (5% (o u))) |
— [p(s)]np/ ( [p(s)]n)divu(s),

Moreover, h'®) — h weakly in L*>(0,T;H*(RN))+ L2/ (B+2) ((0,T) x RN) as ¢ —0,
where

W E ) [oV o1t o) pciva—div (o)) | =617 'l

and (p,u) satisfy the following equation in the sense of distributions:
(PE([p]"))+div (oF ([p]")u) =h. (410)

Proof. Note that, extending p®) and u® by zero outside (), we have that they sat-
isfy the following equation in the sense of distributions in R™:

atp(e)—i—div(p(e)u(g)) =div (1va(€))- (4.11)

Then, in order to deduce (4.9) first we take 7(x—y) as a test function in (4.11)
in order to deduce an equation for [0(?)]7. Then, we use this equation to deduce
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an equation for F([p(®)]1). Finally, we use the resulting equation and combine it
with (4.11) to conclude.

In order to deduce Eq. (4.10) it suffices to take the limit as e— 0 in (4.9), noting
that each term converges weakly to its counterpart in light of Proposition 4.1. [

Proof of Lemma 4.1. The idea is to take the test functions

il ) (t,%)
M@ +2u([pt]7) )=

- p
(t,x)=@(t,x)A 1V< )(t,x)
P Mo+ 25[p17)
in the momentum equations of, respectively, p(?u(®) and pu. In light of Lem-
ma 4.2, we may proceed as in the proof of Theorem 2.1 to conclude that, after
some manipulation, we arrive at the following identity:

(])(8) (t,x)= (p(if,x)A_1 \Y4 <

8

' () . ]
(®) 2 —divu® | dxdt=R®) (©)
¢p iva'™ | dx +Y'rY, (412
/0 /Q lzy([p(ﬂ)]ﬁ)+/\([p(€)]f7) j_zl]

where

T
R(S):g/ / vu(ﬁ).vp(s)).A—lv[p(E)F([p(S)]W)]godxdt,

h _/ / 70! 1de( (0@ ([T )u®))dxdt,
/ / 9o uOATIVR ) dxdt,
/ [ pu g 1V( (0! F([p©)]7)) dxdt,
/ e 9.Vg)- A1V (B(pl)F([o)]")) dxat,
/ Jpoe J VATV (B(p'9)F([p"9]")) dxdt,

:/ / [VAT'V,9]:(8))B(p®))F([p©]")dxdt,

W= [* [ (P9 1-5©): V)0~V (Bl F([o]")) i,



44 H. Frid, D. Marroquin and J. E. Nariyoshi / Commun. Math. Anal. Appl., 3 (2024), pp. 19-60

Similarly, after taking ¢(©) as a test function in Eq. (4.2), using Lemma 4.2 and
proceeding as in the proof of Theorem 2.1 we arrive at the identity

! m —divu | dxdt= 3 (&)
b ot lzqumﬂqpm v =D

where

Ilz/OT/qupu A~V div (oF([p]")u)dxdt,
L=— /0 ! /Q ppuA~'Vhdxdt,
[3=_/0T/qu @AV (0F ([o]"))dxdt,

T
I4=—/0 /()(pu@u-qu)-A_1V(pF([p]’7))dxdt,

T
== [ | ppusu:va IV (oF(jo]"))dxt,

T

o= [ [ [V8719,g]:(S)oF (o] )dxt,
b= [ [ ((PGI1-5)-V9) A7 (0B (1))t
=2 [ [ VAV u(lo]")]:D(w) pF(p] it

Now, other than the fact that R(®) tends to zero as e—0, which follows directly
from Proposition 4.1, the proof of Theorem 2.1 can be repeated with some minor
modifications in order to show that (up to a subsequence)

I; — Ij as ¢ — 0, Vi=1,...8,
and the result follows. O

We are almost in condition to prove the strong convergence of the densities.
However, first we need the following lemma, which follows directly from a gen-
eral known result (see [14, Proposition 4.2]).

Lemma 4.3. If we prolong p and u to be zero outside ), then p turns out to be a renor-
malized solution to the continuity equation p;+div (pu)=0. Moreover, the class of B for
which

B(p)i+div (B(o)u) + (B'(p)o—B(p))divu=0
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in the sense of distributions in (0,T) xRN can be extended to B € C[0,00)NC!(0,00)
satisfying
|EB'(&)] < (const.) (2°+¢%), VE>0 (4.13)

for some fixed exponent 0 <8 <y /2.

This is basically due to the fact that p € L2((0,T) x Q) and u € L?(0,T; H}(Q))).
The proof consists in mollifying equation the continuity equation, multiplying
the resulting equation by B’(p) and then taking the limit as the regularizing pa-
rameter vanishes, wherein the convergence is ensured by the L? integrability of
the density, which is available at this stage because of the estimates available due
to the artificial pressure.

Proposition 4.2. p(¢) — p strongly in L1((0,T) x Q0).

Proof. Since p(®) is uniformly bounded in LE+1((0,T) x Q), it suffices to show that,
passing to a subsequence if necessary, p(¢) — p almost everywhere. To prove
this, we will apply a convexity argument, more specifically, we will show that
(plogp)(t,x) = (plogp)(t,x) for almost every 0 <t < T and x€ ().

Let B(z) =zlogz. On the one hand, in light of Lemma 4.3, the function B(p)
is admissible in the definition of renormalized solutions, and therefore we have
that the following equation is satisfied in the sense of distributions in RN

9t (plogp)+div (plog(p)u) +pdivu=0.

Thus, we see that

t
/0/deivudxds:/Qp(()‘s)log(pg)dx—/ﬂp(t,x)log(p(t,x))dx (4.14)

for any t€[0,T].

Next, we approximate B by a sequence of smooth convex functions By, k =
1,2,... with B’ and B” uniformly bounded and multiply (3.1) by B} (p(¥)) to obtain
that, in the sense of distributions in RY,

3 (B(p')) +div (Be (o) ul®)) + (B (0)pd — By(p(©))) divu
—eA(10Br(0'9))) —ela By ()| Vp(®)2.

Thus, multiplying this equation by some test function ¢, integrating and send-
ing k — co, we obtain

t
(&) Jiv (&) (9) N Ay (e) (e)
/O/Qtpp divu dxdsg/gtppo log (p) dx /Qv,bp (t,x)log (0" (t,x))dx

for any t€[0,T].
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Passing to a subsequence if necessary, taking the limit as e —0 we get

t -

/ / Ppdivadxds < / yoy log (o6) dx— / pplog(p)(t)dx,
0.0 0 Q
which implies
t -
/ / pdivudxds < / pgs) log (pg)dx—/ plog(p)(t)dx. (4.15)
0./0 Q Q

In this way, from Egs. (4.14) and (4.15) we infer that

- t
/Q(plog(p)—plogp)(t)dxg/ /deivu—pdivudxds
0

for almost all t € [0,T].
Therefore, by Lemma 4.1 we have that

T T
logo—pl ddt<//
/O/Q[pogp plogp | dx SyAA

PP(P) | 4
2u<[pm+A<[pm]d o

As, by convexity, -

pP(p) <pP(p), (4.16)
we deduce that plogp < plogp. This last bit of information is enough to conclude
the strong convergence of the densities due to Proposition C.1. O

Remark 4.2. To see (4.16), consider a measurable set X C (0,T) x Q) and define the
functional F:LA*1((0,T) xQ) — R by

£)= [ FALIT F81£1P- £) —Plo) yaxat

It is clear that F is convex and continuous in the strong topology of LA*1 (Q),
is consequently lower semicontinuous in the weak topology o(LF+1,L(A+1) ). As
p®) — p weakly, we conclude that

F(p) <liminfF (o)),
which, passing to a subsequence if necessary, yields that

0< /X pP(p) dx— /X 0P(p) dxdt.

This evidently yields that pP(p) < pP(p) almost everywhere, as we previously
claimed.
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All things considered, we conclude that the limit functions (pu) are a weak
energy solution of the Navier-Stokes equations. Thus, we have proven the fol-
lowing.

Theorem 4.1. Let p>max{4,3N/2,v} and let pé‘s) and m(()(s) be as in Proposition 3.1.
Assume that the viscosity coefficients satisfy (1.7)-(1.8). Then, there exists a weak energy
solution (p,pu) of Egs. (1.1)-(1.2) with

P(p)=Ap" +6pF

satisfying the initial and boundary conditions (1.3)-(1.4).
Moreover, p and u satisfy the continuity equation in the sense of renormalized solu-
tions and satisfy the estimate

A B“f)'“(f)!“%p( VT +5- Ll ﬂ
[ o+ (A1) ) v ]

Looy-m@p, 4 o 5 def (5
g/ﬂ{i(pf))) \mgq +7_1(pé))v+ﬁ(p(()))ﬁ} ixE®. 4.17)

5 Vanishing artificial pressure

Our goal now is to take the limit as 6 — 0 and show that, up to a subsequence,
(019),ul®)) converge to a solution for the original problem, where (0(®),u(?)) are
the solutions of the Navier-Stokes equations provided by Theorem 4.1.

Let us consider general datum pp and mg as in (1.9). Despite they may not
fall in the class of initial conditions considered in Theorem 4.1, we may always

approximate them by pé‘s) cC®(Q)), with (9p¥) /v (x))(x) along x€9Q), and m(()(s) €
C®(O;RN) for each § >0 such that

()

(i) py’ — pPo almost everywhere and in L7 (Q)),

(i) 0<o< ‘0(()5) <51/ (2p) everywhere,
(9)

(iii) m, ’ being a suitable regularization by convolution of
X pé&) (x) mo (%)

for which mé&) (pgs))_l/2 — mg(pg)"1/? in L2(C;RN).
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This choice is also convenient since it implies that

EY - K,

where Ey and E((;S) are defined in, respectively, (1.10) and (4.17).

Let us begin with the following analogue of Lemma 3.1.

Lemma 5.1. For any 0 <w <min{1/N,2vy/N—1}, there is a constant C=C(w, E((,‘s) )
such that, for all 6 >0,

T
/ /Q LAJp (£,%)] 7+ +6]p® (£,x) [ } dxdt < C.
0

Proof. The proof of this estimate on the improved integrability of the densities,
like that of Lemma 3.1, may be carried out as the proof of [14, Proposition 5.1]
and, therefore, we omit it. The idea is to take the following test function in the
momentum equation:

o(t,x)=div ! { (0% Bu(0')) —,15, /Q (Gn*Bm(p(‘”))dy} (t,%),

where (6,) is a mollifier sequence in C=°(RY) and By, (z) is an adequate approxi-
mation of z+— z%. Note that the assumption that oy > N /2 is essential for w to be
positive. U

As a consequence of this estimate and (4.17) we deduce the following result
whose proof follows the same lines of that of Proposition 4.1.

Proposition 5.1. Keeping the notations above and passing to subsequences &, — 0 if
necessary, there exist p € L (0,T;L7(Q)),P(p) € L'*</7((0,T) x Q) (where 0 < w <
min{1/N,2v/N—1}), and uw€ L*(0, T; H} (Q4;RN)) such that

0@ —~ p weakly in LYt ((0,T) xQY),
P(p©®)) — P(p) weaklyin LO+<)/7((0,T)xQ),
u® ~ u weakly in L?(0,T; Hj ((RN)).

Moreover, we have the next convergences in the following spaces:

(i) p®) —p in C([0,T];LY (Q)),

weak
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(ii) A([p@]") = A[p]") and p([p®1") = p([p]") strongly in C([0,T];C(€0)) (see
Remark A.1),

(i) p®ul® — pu in C([0,T;L2/ (1)),

weak

(iv) p®ul® @ul®) — puu weakly in L2(0,T;L°(Q;RN*N)) for 1<s<oo satisfy-
ing 1/s=(y+1)/(2y)+1/2* if N>3, and 1/s>(y+1)/(27), if N=2.

Finally, the pair (p,u) is a weak solution to

dip+div(pu) =0, (5.1)
dt(pu) +div(pu®u)+VP(p) =divs (5.2)
with initial and boundary conditions
u(t,x)=0, 0<t<T, x€0Q), (5.3)
p(0,1)=p0(x), (pu)(0,%)=mo(x), x€Q, (5.4)

where
S=A([p]") (divu)I+2pu([e]")D(u),

and satisfies the energy estimate
[, [3pOmOR 2oy ax
+ [ [ne 7 ul+ Ao +a(le]") (diva)?] dxar
< [ |30 ol + 05 ax=Eo 55

for almost every 0 <t <T.

Once more, all that is left then is to show that P(p) = Ap?7, which is the same
as establishing that p(®) — p almost everywhere.

This can be achieved in a similar fashion we proceeded previously. However,
due to the lack of higher integrability of the density, we are obliged to consider
truncations of the sequence p(%). Following [16], we choose a function T € C®(RR)
such that

1. T(z)=zforz<1,
2. T(z)=2forz>3,

3. T is concave.
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Furthermore, for any real number M >0, put T;: IR — R as

TM(z)zMT<%>.

Notice that Ty(z) =z for z< M, Ty (z) =2M for z > 3M, each Ty is concave
and T}, (z) is uniformly bounded in 0 < M < oo and —oo <z < 0.

Moreover, as each p'%) is a renormalized solution to the continuity equation, it
holds that

T ()¢ +div (Tar(0)u'?) + (T (01! = Ty (p1)) divu'® =0
for any 6 >0 and M > 0. Using Proposition A.1 we find that

Twm(e®) — Tm(p) in C([0,TLLY  (Q)), V1<p<co.

weak

Thus, since LP(Q) is compactly imbedded in H~!(Q) for large enough p and
u®) — u weakly in L?(0,T;H(Q2)), we have that

div (Ty(p9)ul) — div(Tp(o)u)

in the sense of distributions and consequently for any M >0, the following equa-
tion holds also in the sense of distributions:

Trm(p), +div(Tm(e)u) + (Th,(0)p— Tm(p) ) divu=0, (5.6)

where (T}, (0)p— Tam(p))divu is a weak limit in L?((0,T) x Q) of (T}, (0(®))p'®) —
Ty (0®)divu® as 6 —0.

At this point, we realize that by Lemma 5.1 we have that 6pf — 0 strongly
in L(B+@)/B((0,T)xQ)). Thus, P(p) = Ap?, from which a direct application of
Theorem 2.1 yields the following result.

Lemma 5.2. Forany ¢ € CX((0,T) x Q) and any M >0,

! o) AP ou® ] ax
o | s Ao o | e

T = P(p) .
— /0 /QQOTM((J) IZM([()]”)—F/\([p]”)_dwu]dth'
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Remark 5.1. Since

2u(( 1) +A ) = 2u(( 1)+ ([ ]")
strongly, then it follows directly from Lemma 5.2 that

[ ] 9Tute) A7~ (o)1) + A (o)1) divu® ] at

o [ [ T [P~ Gl + Ao diva]dxar. 62

With this observation at hand, we deduce the following estimate, which en-
ables for the proof that the limit functions (p,u) are renormalized solutions of the
continuity equation.

Lemma 5.3 (Bounds on the Oscillation Defect Measure). There exists a constant C
such that

imsap| T (p )= T ()70 < C
—

forany M>1.

Proof. Using the inequality |y —z|7"! < (y7—z7)(y—z), which holds for any non-
negative y and z, we deduce that

Tm(y) = Tm (@) " < (Tm(y)" = Tm(2)") (Tu(y) —Twa(2)), 0<y, 0<z.

From the properties of Ty; we see that the function y — T, (y)7 —y7 must be non-
increasing. Thus, we conclude that

T ()~ T ()" < (" —2")(Twa(y) - Tw(2)), 0<y, 0<z.

Next, since the y — 7 is convex and T}, is concave, by Lemma C.1 we see that

T
limsup/ /]TM(p(‘S))—TM(p)Wdedt

0—0
<1i —0") @y _T dxdt
<limsup / / 07) (Tm(0') = Ta(p) ) dx
<1i —p") @y _T dxdt
<limsup / / o") (T (")) = Tm(p)) dx
+/ / (07 —0") (Tm(p) = Twm(p) ) dxdt
:limsup/ / ’YTM ))—ETM(p)}dxdt. (5.8)

0—0
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Then, denoting G([p]7) =2u([p]")+A([p]"), we may use (5.7) and the energy
inequality (5.5) to conclude that

T
limsup/ /}TM(p(‘S))—TM(p)Wdedt
6—0

<11msup/ / Tai(p'®)divul )—TM(p)divu} G([p]")dxdt

1

p

<G()II? 11 <sup/ / )(divu! ))dedt>
LYT((0,T)xQ) \0<x<1

1

( / / Tw (o) )|’r+1dxdt) "
( [ [ Tt )|"f“dxdt)}”,

hence the desired conclusion. O

Lemma 5.4 (p is a Renormalized Solution). The limit functions p and u satisfy the

continuity equation in the sense of renormalized solutions, i.e. extending p and u by zero
outside ), we have

B(p)¢+div (B(p)divu)+ (B'(0)o—B(p)) divu=0 (5.9)
in the sense of distributions in (0,T) x RN, where B € C([0,00))NC!((0,00)) satisfies

CB'(Q)|<C(¢P+¢%), V>0

for some C>0and 0 <0 <y/2.

Proof. The proof consists in regularizing the Eq. (5.6) through a mollifying oper-
ator Sy, multiplying the resulting equation by B/(S;Tam(p)), then letting k — oo
tirst and then M — oo to find Eq. (5.9) in the limit. The latter convergence is jus-
tified by the bounds on the oscillation defect measure from Lemma 5.3 as in [16,
Lemma 4.4], to which we refer for the remaining details. O

Finally, we deduce the strong convergence of the densities p(®).

Theorem 5.1. p(©) — p strongly in L1((0,T) x Q).
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Proof. Notice that, from the renormalized solution property, we have that

pD1ogpl®) — plogp in C([0,T|;LY  (Q)), V1<p<q.

weak

Our goal is again to show that plogp =plogp, which will again imply the desired
conclusion according to Proposition C.1.
For M >1, define the “entropies”

7

so that by({) is an approximation of

B(¢)=(logl, ¢(Bm)'(§)—Bm()=Tm(Q),
which is an approximation of {— (. Applying By, to both p(‘s) and p yields

/Q[BM(P(‘”(LX)) Bt (p(t%)) | pax
= /Q Bu(oy” (x) — Bt (po(x)) | px
+/ot/Q [Bat (0O (#,%))u'® =B (p(#,x) ) u| - Vep(x) dxt
+/Of/0 [TM (o(t' ) divu(t,x) = T (0 () ) divu'® (t’,x)} dxdt’,

where ¢ € C*(Q)) and 0 < t < T. By the same convexity argument that leads to
(5.8) we have that

P Tum(p) 27 T (p)-
Then, taking ¢ =1 and letting  approach 0, by Lemma 5.2 we have that

/[m( x) — By (p(t,x)) ] dx

—11m// Ta(o)divu— Ty (0')diva® ] dxdt
6—0

_// Trm(e)—Tum(po )}dwudxdt

(0) Tm(p)—P(0)Tm(p) ,_ .,
o) / 21([p)" +y<[p]> it

< /0 /Q [Tat(p) — ot (p) | divudxdt’. (5.10)

To finalize the proof, we require the following two limits.
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Claim 1:
Tulp) — p in LP((0,T)xQ), V1i<p<y as M — oo. (5.11)
Indeed, notice that
I Ta(o) =l ((0,T xQ)<hmianTM(P(5))_P(5)HZ# o
On the other hand

if 0<C<M,

,TM<@—€|§{(Z_M)++M, it M<(,

so that

HTM pHLP 0TxQ)<hmme7 P/ /Q pl0 ospMT P|pW)|P dxdt

1
o ”
§M7_phmmf/0 /Q]p |V dxdt
- ET
- M7r—°P

— 0 as M — oo,

just as asserted.
Claim 2:
Bum(p) — plogp in LP((0,T)xQ), V1i<p<y as M — oo. (5.12)

The argument is almost interchangeable from the one leading to (5.11). Noting
that

[Bm(C) —Clogl| <1(p,e0)(0)C1ogL
for >0and M >1, we see that for p <o <7,

1Bum(p) _PlogPHZrJ o T)><Q)

glimianBM(p) 1OSP H ((0,T)x Q1)

= W/ /le<5>>MMU_p|P( Jogp'®) |Pdxdt

(MlogM hmmf/ /|p |Tdxdt
CET

~ (MlogM)“—?

which shows the claim.

— 0 as M — oo,
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In virtue of both (5.11) and (5.12), we can pass M — o in (5.10) to conclude
that

/Q [plogp(t,x) —p(t,x)logp(t,x)]dx <0

for any 0 <t <T. This implies that plogp = plogp, which, as explained in the
beginning of this proof, furnishes the desired result. O

The proof of Theorem 1.1 is thereby complete.

Appendix A. On the C([0,T]; Eweak) Spaces

Let E be a Banach space and E* its dual. We denote by E;, . the space E* en-
dowed with the weak-* topology ¢(E,E*). Similarly, we denote by E.c.k the
space E endowed with the weak topology ¢ (E*,E).

By C([0,T];Eweak), we understand the set of functions u:[0,T] — Eyeax Which
are continuous. Provided that E is separable, then the weak-+ topology is metriz-
able on bounded sets in E* and the space C([0,T];E} ..,) is also metrizable on
bounded sets. Thus, combining the Banach-Alaouglu theorem with the Arzela-

Ascoli theorem yields the following (see [14, Corollary 2.1]).

Proposition A.1. Let E be a separable Banach space. Assume that v, : [0,T] — E¥,
n=1,2,...,is a sequence of measurable functions such that

sup ||vn(t)||px <M uniformlyin n=1,2,....
te[0,T]

Moreover, let the family of (real) functions
(0,,D):t — (v,(1), D), te€l[0,T], n=12,...

be equicontinuous for any fixed ® belonging to a dense subset in the space E.
Then, v, € C([0,T[;E} ;) for any n=1,2,..., and there exists v € C([0,T;E} ..)
such that

v, — veC([0,TLE, ) as n — oo,

passing to a subsequence as the case may be.

This result is particularly useful if the space E is reflexive.

Remark A.1. In the text, we also encountered the space C([0,T];C*((2)), which
does not fall precisely in the hypotheses of this appendix. However, C*(Q)) is
a Fréchet space, in particular, a metric space, so its topology is straightforward to

define and it is actually metrizable. (Recall that u, — u in C*(Q}) if, and only if,
uy —u in CK(Q) for every k >0).
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Appendix B. The A~V operator and some
commutator estimates involving Riesz
transforms

Let N >1 be an integer. By the symbol A~1V, we will understand the operator
which maps L?(RN) into the homogeneous Sobolev space W'# (RN;RN) for any
1< p< oo andis given by the formula

(A IV ) (x) = {A‘l (i) (x),n., A (i) (x)}

8x1 8xN

for any f € S(RY), equivalently, and probably more clearly, A~'V is operator
whose the Fourier multiplier is

ig

| azf(@),

(ATIVHE) =~

where 1<j <N and again f € S(RV).
In virtue of the Sobolev inequality,

ATV LP(RY) — LP*(RN;RY)  continuously,

provided that 1 <p <N, where 1/p*=1/p—1/N. Consequently, Morrey’s theo-
rem asserts that, provided that 1 <g<N <p <o,

ATV (LINLP)(RN) — (C*NL®)(RY;RYN)

for x =1—N/p. Observe that, in our case, we will only apply A~'V to func-
tions supported in (), so that many of these conclusions may be strengthened as
follows.

Proposition B.1. Let () C RN be a bounded open set and, for any 1 < p < oo, consider
LP(Q) as subspace of L (RN) by extending its elements to be zero outside Q). Then

1. There exists a constant C=C(p,Q) such that

1871wl yra ey < Cllulloey, VaeLP(Q).

2. Forany 1<p<Nand 1<g<ocosatisfying1/q>1/p—1/ N, there exists a constant
C=C(p,q,Q) such that

8719 uray < Cllullsy, VHELP(Q).
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3. If p> N, there exists a constant C=C(p,Q) such that
1AV ul| coigy S Cllullr),  YueLP(Q),
where x =1—N/p.

An important feature of this operator A~!V is that VA~!V can be seen as the
matrix

VATV = [RiR] 1<jk<N’

where R; denotes the j-th Riesz transform, that is, the Fourier operator with mul-
tiplier

(R]'fﬂé)=—%f(é), feSRN).

This allows us to apply the results by Coifman, Rochberg and Weiss [12] and by
Coifmann and Meyer [11] on the regularity of the commutators involving Riesz
transforms. The following theorem plays an important role in our work.

Theorem B.1. If1<j,k<N, and b and f € S(RN), let us define the commutator

[b,RiRi]f(x) =b(x)(RjRif) (x) — (RjRk(bf)) (x).
Then

1. (Coifman-Rochberg-Weiss) For 1<p<oo, there exists a constant C=C(p) such
that

16, RiRie] £l L (rvy < ClIO I gamio @y | f | Lo (v

2. (Coifman-Meyer) If 1 <p,q,r <oo with 1/r=1/p+1/q, then there exists a con-
stant C=C(p,q,r) such that

IV, RiRe] f || vy < CIIVE o vy | f [ o o) -

Another crucial and related result is the following particular case of the div-
curl lemma (see [14, Corollary 6.1]).

Theorem B.2. Assume that Q C RN is an open set and 1< p,q,r < oo satisfy
1

1 1
e ——
p q T
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Moreover, let (f,) be a sequence in LF(Q) and (v,) be a sequence in L1(C;RN) for
which

fn — f weaklyin LP(Q)),
v, — v weaklyin LT(Q;RN).

Then

(VAT (fu)on— (VAT div) (vn) fu
— (VA (flo—(VA~div)(v) f  weakly in L' (C;RN).

Appendix C. Weak convergence and convexity

Let us state without proof the following general result which proved itself be
very useful to show strong convergence of the sequences of densities considered
in this text (see [14, Theorem 2.11]).

Lemma C.1. Let O CRY be a measurable set and {v,}°°_, a sequence of functions in
LY(O;RM) such that
v, — v weaklyin L' (O;IRM).

Let ®:RM — (—o0,00] be a lower semi-continuous convex function such that ®(v,) €
LY(O) for any n and

®(v,) — D(v) weaklyin L}(O).

Then,

O(v)<P(v) aa.on O.

If, moreover, ® is strictly convex on an open convex set U CIRM, and

d(v)=P(v) aa.on O,

then
va(y) — v(y) forae. ye{yeO:v(y)eU},

extracting a subsequence as the case may be.
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