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Abstract. In this paper, we consider the perturbed solutions with polynomial
tail in large velocities for the non-cutoff Boltzmann equation near global Max-
wellians in the whole space. The global in time existence is proved in the
weighted Sobolev spaces and the almost optimal time decay is obtained in
Fourier transform based low-regularity spaces. The result shows a time-velo-
city decay structure of solutions that can be decomposed into two parts. One
part allows the slow polynomial tail in large velocities, carries the initial data
and enjoys the exponential or arbitrarily large polynomial time decay. The
other part, with zero initial data, is dominated by the non-negative definite
symmetric dissipation and has the exponential velocity decay but only the slow
polynomial time decay.
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1 Introduction

We consider the following Cauchy problem on the spatially inhomogeneous non-
cutoff Boltzmann equation in the whole space:
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d:F+v-VxF=Q(F,F), F(0,x,0)=F(x,v), (1.1)

where the unknown F(t,x,v) > 0 stands for the density distribution function of
rarefied gas particles with velocity v € R® at position x € R® and time ¢ >0, and
initial data Fy(x,v) >0 is given. The bilinear Boltzmann collision operator Q(-,-)
which acts only on velocity variable is defined by

Q(G,F)(v) = /]R 3 /g B(o—1,0)[G(u)F(2)) ~ G(u)F(v)]dordu,

where the post-collision velocities (¢/,u") denote

U,:v+u+|v—u| ,:v+u_|v—u|

2
5 5 , 5 5 o, oce5°.

Moreover, we assume that the non-negative Boltzmann collision kernel B(v—1u,0)
takes the form
B(v—u,0)=|v—u|"b(cosh), —3<vy<1,

where
cosezu-a, 0<9§E,
|v—u] 2
and
sinfb(cosf) ~01"% as O — 0, 0<s<l1. (1.2)

Define the global Maxwellian y by

p=p(v):=(2mr) /2 102,

Under the perturbation near the global Maxwellian, we look for solutions in the
form of

F=u+g (1.3)

for the unknown function g=g(#,x,v). Substituting (1.3) into (1.1), we can rewrite
the Cauchy problem on the Boltzmann equation in terms of g as

0ig+v-Vig=Lg+Q(g,8),

2(0,x,0) =g0(x,0) :=Fy(x,0) —u(v), (1.4)

where the linearized collision operator £ is given by

Lg:=Q(n,g)+Q(g 1)
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Next we introduce notations which will be frequently used later. In this paper,
the velocity weight is denoted by

(v):=4/14]|v|%

With this notation, given a function f = f(v), we define the weighted Sobolev

norm by
2 2
£ = [ @ (V) (o) Pl

Particularly, if £ =0, we then write || f HL2 =|IfIl HY, - In case of the symmetric

dissipation that is to be specified later, it is 1mportant to introduce the dissipation
norm as in [2] that

2
1= [ o, B0 (@) @)= (0)*f(0) dodudo
///R o BO=w@) W) (1) (o N2 i(0)V2) dodudo,

where 0 <s <11is given as in (1.2) and we write | f|| g3 = || f|| s, for k=0. Given
a function f = f(x,v), we also denote

W = oo 172 £ g

and write || fll;2 = || fll mgmo
We shall prove the global existence in weighted Sobolev spaces. The corre-
sponding norms are defined by

171 = 1R 2+ 92 fHLsz . (15)
11 = e . 1.6)
ufug::||f||L%,U+HvfoL§,U, a7)
1B = A=) f 2+ I VP P o [ F2OA-B)f e (18)

where the macroscopic projection P is given by

Pf(x,0)= [/ (x,0)+b/ (x,0) v+ (x,0) ([o]* =3)] ' /2 (0)
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with

o/ =af (x / f(x,0)ut"?(v)do
b =bf(x / fxvvyl/z( )do
of =cf(x / f(x,0) |7)|2 —3)ul?(v)do.

To study the time decay of solutions, we shall establish estimates in spaces which
rely on the Fourier transform

f(t,8,0)=Felf(t,-0))(C),

where ¢ € IR3 is the Fourier variable. Let 0< T < oo, then we also further define the
following norms:

. 1/p
gy, = fo 50 1F0EDIE )

0<t<T

T p/2 /p
“]?HLE,’L"ZTHZiszz (/11%3 (/0 ||f(t,§,-)||%{szdt) d‘:) ,

T p/2 /p
Pl = ( L ([, @) dg)

for1<p <o, and

||f||LooLooLz :=sup sup [|f(£¢, Nz .
ok ZER30<t<T o

1/2
A o
lugisa = sup ([ IFCe M)

||f||L°°L2H{ ‘=sup </ ||f t,¢, || : dt) 1/2~

ZER3

The main results of this paper are stated below. First, we are concerned with
the global existence of the perturbation g in the space Xj.

Theorem 1.1. Let -3 <7y <1,0<s<1,v+2s>—1and k>25. There are ¢y >0 and
C > 0 such that if it holds that Fy(x,v) =u(v)+go(x,v) >0 with gy € Xy satisfying

10l x, <eo,
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then the Cauchy problem on the Boltzmann equation (1.1) or (1.4) admits a unique global
solution F(t,x,v) =u(v)+g(t,x,0) >0 with g € L*(0,00; X} ) satisfying the estimate

18(8)Ilx, <ClIgollx, (1.9)
for all t >0. Moreover, g can be decomposed into
g(t/va) :gl (t/x/v)‘f‘\/ﬁgZ(t/x/v)/ (110)

where g1(t,x,v) and g (t,x,v) with g1(0,x,v) = go(x,v) and g»(0,x,v) =0 enjoy the
following more precise estimates. If 0 <y <1, then there are constants A >0 and C >0
such that

sup { [[e**g1(5)]|%, +1g2(5)13 }

0<s<t

+ [l

forall t >0. If =3 <y <0, then for any 1 <p < (k—22)/|vy|, there is a constant C >0
such that

sup { g1(5)1%, +11(1+5)°81(5) %, ., +Ig2(5) 113 }

0<s<t

+/0t{||gl(5)||§<;+H(1+S)Pg1(s)’

forall t>0.

2
% g2(0)lIB pds < Cllgolk, (1.11)

2 ’ )
% Fls@)lbas<Clolk,  (.12)

Notice that in the decomposition (1.10) the first part g1 (,x,v) carries the full
initial data go(x,v) and admits the polynomial decay in large velocity and expo-
nential or arbitrarily large polynomial decay in large time, while the second part
V182 (t,x,0) with zero initial data has the exponential decay in large velocity in
the weighted sense.

Furthermore, the long time behavior of the second part /71> (t,x,v), in partic-
ular, the time-decay of g»(t,x,v), is indeed dominated by the interplay between
the transport operator and the degenerate non-negative definite symmetric oper-
ator in case of the whole space, which gives only the polynomial rate in large time
similar to the one for the heat equation. Motivated by [25], we adopt a Fourier
transform based approach to treat the slow time-decay of g»(f,x,v) or equiva-
lently the original function g(t,x,v) in the low-regularity function space LéL%,k.
To obtain an explicit rate in large time, we additionally require g for initial data
20(x,v) to belong to the space LgLZZJ/k with 3/2 < p <co. Precisely, the main result
is stated as follows.
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Theorem 1.2. Let —3<y<1,0<s<1,7+25s>—-1,k>22,3/2<p<coand

(723(1—1) —2€q
p

with €1 >0 arbitrarily small. Then:

(1) For 0<+y <1, there are g >0 and C >0 such that if

||gA0||LgL3]/k+ 180l 1, <€0,

then the solution to the Cauchy problem on the Boltzmann equation (1.1) or (1.4)
obtained in Theorem 1.1 satisfies

1881z, <CO+H 2 (I8l 212 + g0l ) (113)
forall t>0.

(2) For =3 < <0, there is €9 >0 and C >0 such that if
I80l2iz, + 5ol e

then the solution to the Cauchy problem on the Boltzmann equation (1.1) or (1.4)
obtained in Theorem 1.1 satisfies

A —c/2( 1 ~
182, <CO+ (gl gz, +lsolxe) — (114)
forall t>0.

Remark 1.1. For the very soft case —1 <y +25<0,—3/2+s <7 <0, a similar result
was obtained in [14].

For those solutions constructed in Theorem 1.1 that allow the velocity pertur-
bation to be only polynomial instead, we say that they are solutions with poly-
nomial tail in large velocity. The study of this kind of solutions in kinetic theory
could trace back to Caflisch [9] that first proposed the decomposition of solutions
of the form ¢ = /Mg ++/Mg» with two Maxwellians of distinct temperatures
and deduced the corresponding L?NL® estimates in velocity variable for both
g1 and g». In fact, one of two exponential weights can be reduced to be only
polynomial, cf. [19-21]. Furthermore, the velocity-pointwise estimates on the
Boltzmann collision term weighted by the polynomial velocity functions were
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tirst considered by Arkeryd et al. [6, Proposition 3.1] and the technique has led to
many applications [26,27] for the fluid dynamic limit problem on the Boltzmann
equation.

In the case of homogeneous Boltzmann equation with hard potentials in the
torus, Mouhot [35] established the spectral gap-like estimates to construct solu-
tions in some enlarged function spaces corresponding to the slow velocity de-
cay. Later, Gualdani et al. [30] gave a systematic study for estimates on the re-
solvents and semigroups of non-symmetric operators which can be applied to
the linearized Boltzmann equation in the torus. With such general theory, Mis-
chler and Mouhot [34] also obtained the solution with polynomial tail for kinetic
Fokker-Planck equation. There have been a lot of works on slow decay solutions
after those aforementioned results. Interested readers may refer to Carrapatoso
and Mischler [13] for the nonlinear Landau equation with Coulomb potentials in
the torus, Briant and Guo [8] and Briant [7] for the cutoff Boltzmann equation in
general bounded domains, and the references therein.

In the non-cutoff Boltzmann with hard potentials case, Alonso et al. [4] first
got the solutions in Sobolev spaces and used the Di Giorgi argument to further
deduce the well-posedness in L>NL> space in [5]. See also several recent works
by the first author of this paper together with his collaborators including [11,12]
for the non-cutoff Boltzmann equation with soft potentials and [10] for Boltzmann
equation with soft potentials under the cutoff assumption.

Among the literature mentioned above, the space variable x always lies in the
torus or bounded domain. In case of the whole space R3, due to the unbounded
property of the spatial domain, for instance, the Poincaré inequality fails, it seems
not direct to adopt the same approach for studying the problem. Motivated by [9]
as well as [19], the second and third authors of this paper together with Liu [18]
tirst proved the well-posedness of polynomial tail solutions for the Boltzmann
equation with cut-off assumption in the whole space. We should also emphasize
that the enlarged functional spaces are useful when we consider the kinetic shear
flow problem such that one can control the polynomial growth caused by the
shear force, see [19-21] as mentioned before as well as [23] and many references
therein.

We also recall that many classical results in the symmetrical linearized Boltz-
mann operator case have been widely obtained, where the solution to the equa-
tion is set in the form of F = u+,/jif such that the linearized operator is self-
adjoint in L2 without any velocity weight function. In fact, for the general mathe-
matical theory of Boltzmann equation, one may refer to [15,16,28] and references
therein. In the specific setting under the perturbation near global Maxwellian,
Ukai [38] first obtained the global existence, uniqueness and large time behavior
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of solutions for hard potentials with angular cutoff. For the extensive literature,
we only list some of the classical ones, which also provide powerful tools for our
current work, see [31,36,37] for soft potentials, [32] for general bounded domains,
and [1,3,29] for non-cutoff case.

In the current work, the main difficulties are in three aspects. One is that the
linearized operator is not self-adjoint on L2. Secondly, the spatial domain we con-
sider is the whole space which is unbounded. The last aspect in contrast to [18]
is caused by the non-cutoff potentials so that we need to carefully select function
spaces for existence and time-decay. If one looks at the cut-off case in the torus,
then the semigroup e~ 5! generated by the linearized operator B:=—0v-V,;— L en-
joys the exponential decay for hard potentials and subexponential decay for soft
potentials in L2 ,((0)*) such that the nonlinear term can be bounded in terms of
the Duhamel’s formula. Due to the non-symmetric operator and the lack of spec-
tral gap, it is even harder to obtain the polynomial time decay in case of the un-
bounded domain R3. Hence, we introduce a structure to decompose the equation
to be a coupling system as in (3.1) and (3.2). As mentioned before, such structure
was used in Caflisch’s work [9] though the velocity perturbation is still exponen-
tial. We formulate the exact system for the whole space that explains how the
slow time-decay in the symmetric case affects the solution, causing a difference
with the ones in torus or bounded domain. For the coupling system, we prove
that the first unknown g1, which carries the full initial data g, enjoys polynomial
tail in large velocity and fast time decay (either exponential for hard potentials
or arbitrarily large polynomial for soft potentials), and the second unknown g»,
which satisfies zero initial condition, is dominated by the degenerate symmetric
linearized operator and hence has slower time decay due to the interplay with
the transport term in R3. The coupling mechanism makes the time decay of the
tull solution ¢ = ¢1+,/1ig2 be controlled by the slower one, which corresponds
to the symmetric component. This fast vs slow (or exponential vs polynomial)
time-velocity decay property was partially used to study the cut-off case in [18]
and we shall extend it even for the non-cutoff case in this paper. In particular,
the faster time decay of g; can be derived in the existence result and the almost
optimal time decay for g» can be obtained under an extra condition.

Another major difference compared to the cut-off case in [18] is caused by the
coupling of g1 and g, in the way that

()= [ Ult=s)Kig(5)ds,

where U is the operator for the symmetric linearized problem. Hence we see
that if one wants to obtain the L2 or L*® decay, one needs some L! control on <1
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since U behaves as a heat diffusive operator. But, the equation for g; contains
the nonlinear collision operator which is difficult to do the L! estimate for the
non-cutoff kernel. To overcome this, a Fourier transform based space LéﬂLg is
applied to deduce the time decay. This space was used to study the low-regularity
solution of the non-cutoff Boltzmann equation in [25] motivated by the Wiener
algebra applied in [22] to study the torus situation. Moreover, since the estimate
(2.3) in the non-cutoff case is not optimal, that is, there is an extra 2s in the norm
on the right-hand side which cannot be bounded by the energy or dissipation
tunctional. This causes that the existence and uniqueness cannot be established
in such low-regularity function space in this paper. Instead, we use the Sobolev
space with the interpolation technique to take care of this difficulty.

2 Preliminaries

In this section, we consider the Boltzmann collision operator Q(f,g).

Lemma 2.1 ([33, Theorem 1.1]). Suppose —3<y<1,0<s<1,y+2s>—1. Let w1, wy €
R,a,b € [0,2s] with wy+w, =7+2s and a+b=2s. Then there exists a constant C, for

any functions f,g,h we have:

(1) If y+25>0, then

(e, f)l <C(ligl gl ) Wil g £ -

+25+(—wq) t+(—w,)
(2) If y+25s=0, then

[(Qh).f) | <C(lgllyy,, +lgllza ) Whlg,, 1111,

where wy =max{d,(—wq) T+ (—wy) T}, with § >0 sufficiently small.

(3) If =1 <y+25<0, then

(@) )| <C (s, gz Mkllag,, |l

W,

where wy=max{—(y+2s),7+2s+(—w1) T+ (—wy) " }.
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Lemma 2.2 ([12, Lemma 2.3]). Suppose that —3 <<y <1. For any k> 14, and functions
g, h, we have

»(Q<h,u>,g<v>2k)»sHb<cose>smk—<3+ﬂ/29H Mllz lgllyz
Ly

2 0,k+7/2 v kt/2

+Crl|h[ 12

vk+7/2-1/2

I8l

vk+7/2-1/2

0
- . k20
= Hb(c089)81n 2 'Lé Hh”Lg,kw/zHg”L'zZ;,kH/z

+Ci |||l ;2

vk+v/2-1/2

lg] LY ki s2-1/2
for some constant Ci > 0.

Lemma 2.3 ([12, Theorem 3.1]). Suppose that —3<y<1,0<s<1,7+2s>—-1,k>14
and G=pu+g>0. If there exist A1, Ay >0 such that

G20, [Glly>A1 (Gl +IG]ogr < A2,

where
IFlluioge = [, |F(@)log (1+[F(@)])do,

then there exist some constants 71, Cy > 0 such that

1 . 20
Q6.1 6 <L otcostsie | 17, sl ~ClflE
0

[

2
+Cellflliz, g, e, +Cellglliz IF e, @)

Gathering the two lemmas above, we have

Corollary 2.1. Suppose that —3<vy<1,s€(0,1),y+2s>—1,k>14 and G=u+g>0.
If there exist Ay, Ax >0 such that

G20, [Glly=41 Gl +1IG] g < A2,
then there are constants §,Cj > 0 such that

(Lf.f(0)*)+ (Q(g.f).f (0)*)
= (Q(u+8.£).f(0)*)+ (Qf.1), f (0)*)
<=dllfls,, ,+ClfITa+Cellghz If s,

+Cullflliz, Nl oMl 22)
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The following estimates are about a commutator on the collision operator Q
with weight ().

Lemma 2.4 ([12, Lemma 2.4]). Suppose v € (—=3,1],v+2s>—1and k>14,g, f,h are
smooth. Then we have

({20 Q(8.) Qg () F).h(w)")|
<Cullflliz Il oIl

vk+v/2 vk+y/2

+Cullgliz Il MRl o

(%

Lemma 2.5. Suppose vy € (—3,1],s € (0,1),y+2s > —1. For any functions f,g,h and
k>14, we have

k
(Q(f.8),h(v)*)
<Cullflz min{ gl g, oo gl ol )

(%

gl Iy, el 23)

Proof. 1t is straightforward to see

(Q(f.8)h(0)*) <[(Q(s, (0) ). n{0)*) | +] () Q(8.f) — Qg (v)" ), (0)") .

One has from Lemma 2.1 that

[(Q(g/(0)* ), 1 (0))]|

< Cell £l L31a min { Hg“Hs,kw/z ||h||st},k+'y/2+Zs’ ||g||st;,k+'y/2+Zs ||h||st},k+v/2 } ’

(%

which, together with Lemma 2.4, yields (2.3). O

3 Global existence

In this section, we prove Theorem 1.1. First resolve the problem (1.4) into a cou-
pling system of g1 =g1(t,x,v) and g2 = g»(t,x,v) where g1 and g satisfy

0:g1+0- Vg1 =Lpg1+Q(81,81) +Q(v182,81) +Q(81,/1S2), (3.1)
0:192+0-Vigr=Lgr+Lpg1+1(g2,92) (3.2)

with
21(0,x,v) =g0(x,v)=Fy(x,v)—u(v), g2(0,x,0)=0.
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The linear and nonlinear operators L and I" above are respectively defined by

Lf:=%Q( ff)+7 (VEf1),
(3.3)

— L
[(g.f):= ﬁQ(\/ﬁgz\/ﬁf),

we note that L and £ are different operators. The linear operators £z and Lp
above are respectively defined by

Lpg(t,x,0):=p""?(0) Axm(v)g1 (t,%,0), (34)
EDgl(t/x/U) = (ﬁ_AXM(U))gl(t/x/U)/ (3'5)

where 0 < x) <1 is a smooth cutoff function such that for any M >0, xp(v) =1
if |[v] <M and xp(v) =0 if |v| >2M. Here the constants A and M are chosen
in Lemma 3.2 such that (3.9) holds. By setting ¢ = g1+,/}ig2, it is direct to see
that ¢ is the solution to (1.4). In order to prove the global existence, we first
estimate g using (3.1). The following lemmas are important for bounding the
nonlinear terms.

Lemma 3.1. Suppose that -3 <y <1,0<s<1,v+2s>—1and G=u+g>0. Then
there is a constant 6 > 0 such that if there exist A1, Ay >0 satisfying

G=>0, |[Gl=4A, HGHL%,Z—i_ |Gl L10gL < A2,
then for k> 14, there are A and M for the operator Lp, and a constant Cy, such that
(Lof f(0)")+(Q.f).f()™)
<=0lfllks,, ,+Cellflliz N8llms,,., Ml ,
+Ck||g||L2 Ml (3-6)

vk+y /2

Proof. We have from the definition of Lp in (3.5) that

(Lof,f(2))+(Q(8.f).f (0)*)
= (L, f(0))+(Qg. ). f(0)*) = (Axm(v)f.f),
which, combining with (2.2), yields
(Lof.f0)*)+(Q(s.f).f(2)*)
S_5||f||H§/k+,y/2+Ck||f||LZZ;_CA”XM(U)](Hi%

2
+Cellflliz gl oI F s, o+ Cellglie JIF R BD)
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A direct calculation shows that

—||f||H o Gl +CAlxm () F I,

2/]R3/]R3 0) 27 (1— XM(U))-I-XM(ZJ))|f(tlxlv)|2dv
_Ck“f“L%+CA||XM(U)]C||%%

:/R3/R3 (g—Ck<v>—2k—7) <U>2k+7(1—XM(U))|f(t,X,v)|2dv
+/]R3 /]R3 (g _Ck+CA) xm(0)|f(t,x,0)|*dw.

For suitably large M and A, we obtain

o o
(E_Ck<v>—2k—'7> (1—XM(7J)) >0, E—Ck+CA>0,

which leads to
C1FIBe .~ CellFIZs+ CAlLxm(o) 12, >0 (338)
Therefore, by (3.7) and (3.8), one gets
(ﬁDf F1)*) +(Q8.£).f(0)*)
<ol +Cullflliz gl

+Cellglliz I 11

Renaming J/2 to be ¢ since it is an arbitrarily small constant which is independent
of k, then (3.6) holds. The proof of lemma is complete. O

v, k+y /2

Lemma 3.2. Let a be any multi-index such that |a| =0,2 and G = p+g+/ph for
¢ =g(t,x,v) and h=h(t,x,v). Then there is a constant & > 0 such that if there exist
A1, Ay >0 satisfying

G>0, [|G]l=A, ||G||L};,2 +GllL10gL < A2,
then for k> 22, there are A and M for the operator Lp and a constant Cy, such that
[ [ 03 +Q(835F) + Qi 35 F) (0)* 528 fxdo

< =0l fI%; +Cell Fllx g e £l +Cellg i 111
+Cell fllx RNl fllxg +Cellmlle | £11%: - (3.9)
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Proof. For the case « =0, applying (3.6) and L® — L2 —L? Holder’s inequality, one
gets

(Lof.f(0)%)+(Q(Vih+8.f).f (0)%)

2
< _(5”](”Lg(H;,HwZ"'CkHf”L;"L%/MHgHL%HZ/HWZHf”L%HZ/H,y/z

2
+Ck||g||L§°L%,14HfHL%HZs;,sz+Ck||f||L§°LZZJ/14||\/ﬁhHL%HZ/szHf”L%H;/H,y/z

2
+Ck||\/ﬁh“L?L%,MHfHL%HZ,H,Y/y_' (3'10)

Using Sobolev imbedding, it holds that

||f||L;C°°L§,10 §C||f||H,%L§,10 SCmin{”f“H,%L%,lO/||f||H,7;HZ,10}

<Cmin{ | fllx, I fllx; }- (3.11)

It is direct to see

”\/ﬁh”L%HZ,kﬂ/z < C||h||L§H;/_5 < CHPh”L;’;L%"'C” (I_P)h||L§H§,_5
<Clhll 22+ Cll(XT=P)h|[ g2 s+
<C|[rlle +Cl[]lp- (3.12)

Substituting (3.11) and (3.12) into (3.10), we obtain

(Lof. f(0)*)+(Q(VER+8,f).f(0)*)
< =01 fI1%: +Crll Fllx gl £ 11z + Crllg e L f 11
+Cemin{ || fllx,. 1 fl1x; } (1lle 17 0) 1 f 1z +Cllmlle 1115
< =0 fI%: +Cell Fllx gl £l +Cellg i 1 F 11
+Cell flx nllp [ fllx +Celltlle | £11%: - (3.13)

Xy

For the case o =2, similarly it holds

A llkziz , <Comin{ [l flziz oI ks } < Coin {11l £ x;

I/l g, < Clltl i+ Cll (1= PYhl e <Cll + .
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We have

(LD, f (0) 8 + (Q(y/Hh+3,05 ), f (v >2k—8\fx|)
<=0lfllizms ., " +CkHa flliziz, Il . 108

+Ck||\/_h||L°°L2

||\/_ ||L00Hvk+7/2 SH ok-+7/2-8

< -3l +Ck||f||xk 1811x; [1f 1 x; + Ciell8 || x, ||f||x;;
+Cell el £l +Crlltlle 11 £ 1% (3.14)

Combining (3.13) and (3.14), one gets (3.9). The proof of lemma is complete. [

k+’y/2 8

+Ck||g||L°°L2

v,k+v/2-8

Lemma 3.3. Let k >22 and « be any multi-index such that |a| =0,2. Then there exists
a constant Cy such that

[ Jos 20 VI () athd o

<Crllflle llgllx; 1Pl + Mgl [Lf 17 x; - (3.15)
Proof. Using the facts that

I8l ez, < Cmin{lIgl iz 18l mzms b < Cmin{ligllx, 1811x; }
||\/_fHHH <Cllflle+CIA=P)fllmzmz- <Cliflle +Cl fllps

by Lemma 2.1, we have

(Q(&vHf) (0 h) a2
<Ck||g||H2L2 H\/_fHH L2 0,2k+7+2s

< Cemin{|Igllx,, [1811x; } (I flle +11fllp) 1]l x;
<Cillfllegllx; 171l x; +Crcllgllx I f Il 17 x; -

The lemma is thus proved. O

0,21+ /2+42s

171 255

Lemma 3.4. Let k> 22 and « be any multi-index such that |o| =2 and F =+ f. Then
there exists a constant Cy such that

% — @ 2k—8|a| ya
/1113/]1{3 (axQ(F,g) Q(F, 0% g))< v) d hdxdv
<Cr (1 lxe gl g s e ) 1] (3.16)
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Proof. Before the proof of this lemma, we remark that the special weight
(v)k—41219%  which is reduced with derivatives is in order to overcome the growth
of weight comes from collision operator Q, and the reduced coefficient is not
essential; in fact, we only need that it is bigger than 4s. Here, we choose the
reduced coefficient as 4. By the Leibniz rule for the bilinear operator and since
51 =0,|a| >1, the commutator satisfies

05Q(F,.8)—Q(F,058) = Y Capa,Q(0X'F,0%8) = Y Capa, (93 £,05%8),
a1 |#0 1| #0

where ay =a —wq. For each (a1,a47) #(0,2), we have that

‘ /IR |Q(051£,02g) (o) *I*laghdo

< ‘ / Q (03 £, (v)*~*el5%2¢) (o)~ H1la% hdo

’/ I Q @ £,0128) — QA £, (0) ~HIat2g) ) (o) 9t hdo
=:T1+1T5.

By Lemma 2.1 we have

T < G0 ]2 [1(0)* #1004t

Y /2428

For the term [; T1dx, we consider two cases: |a1| = |a2| =1 and ap =0. First, if
|a1|=|az| =1, due to Sobolev embeddings, we have

H'(R’) — L%R’), HY*(R%) < L3(R%),

which implies

[0 e agegl, s

Y /2428

SC(/]RBH@VB?inzdx) (/TsH< k842550213 L >2/3

<CH Vx 2fHL2 /]R3H<v>k—4x(3/2 3/2gHHs X,




C. Cao, R.-J. Duan and Z.-G. Li / Commun. Math. Anal. Appl., 3 (2024), pp. 61-120 77

which implies that

[ <51 71, )

><< Y H<U>k_4a|a§hHL%HZM2), (3.17)

|a|=0,2

The bound for T; with ap =0 also follows from the Sobolev embedding
H3/2+5 (]R3) oy [® (IR3)
with any 4 > 0. In this case, we have

k—4 2
‘Mg” v'y/2+2s

sup || (v)

<v>k—8+25g”2

v’y/Z

§/1R3H<v>k_4(3/2+5)+25_2+46<D 3/2+(5gHHS

Choosing 6 =(1—s)/2, the T; term is estimated. Then we deal with T, term. Due
to Lemma 2.4 and the same argument before, we can easily derive that

o (Dot )
<(Sler gz, )

sl (X007 )
(Tl ol ). e19

We combine (3.17) and (3.18) to get

/RgTzdeCkH(v)“(Vx)Zf

+CkH 14 vx

/N - (92Q(F,g)—Q(F,d%g)) (v)*~81*l 9% hdxdv

L2<ZH yk—lal g )

< Ce|| (@) (V)3 f
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<o ol )
+ck\><v>14<vx>2g\m,v(ZH< )

(oo sy ).

which implies the desired results. It ends the proof of this lemma. O

With the preparations above, we now focus on Eq. (3.1).

Lemma 3.5. Let —3<y<1,0<s<1,v+2s>—1and k>22. There exists a constant
Cy. such that it holds

t
g1 (81 + [ lg1(6)1 s

t
<ol G sup lia(o)l, [ lsr(5)

0<s<t

+sup [31(5)lx, [ lls2(5) s

0<s<t

+ sup Jla(9) s ()15 s 6.19)

0<s<t

for 0 <t <co.
Proof. We apply 9% with |a| =0,2 on both sides of (3.1) to get

010581 +7- V0581 =95 Lpg1+050Q(81,81) +95Q(1/182,81) +95Q(81,/1g2)-

Multiplying the above equation with (v)2~81#[3%¢,  and taking integration over
R3 x IR3, it follows from (3.9), (3.15) and (3.16) that

isz +c5H8xg1 iZH

v k—4]al o k—4la|+7/2

< Ce(llg1 (1) l1x,llg (1 +llga (D1 g2(8) 1 1 (1)l
+lg2(8)lle g (81, )- (3.20)

zdtH Xgl
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By taking summation of the resulting equation over |a| =0,2, one has

d
Sl O, s 1,
< Ce(llg1(1)1x, g1 (D1 +llga (D1 g2 (8) 1l (1)l
+lg2(®) el ).
which yields (3.19). O

Next we prove the time decay estimates g1 in case of hard and soft potentials
respectively.

Lemma 3.6. Let —3<v<1,0<s<1,7+2s>—1and k>22.

(1) For 0 <+ <1, there exists a constant A >0 such that

leMgi ()%, + /OtHeAsgl ()],

ds (3.21)

<ol G sup l¥g1(5) g+ sup lga(6) s+ s liga(s) s
0<s<t 0<s<t 0<s<t

t 2 t
></ |€*°g1(s) || ds+Ck sup He)‘sgl(S)ka/ 1g1(s)] %{;ds
0 k 0<s<t 0
t
+Cisup [[eg1(5)]|y, [ l1g2(5) s
0<s<t 0
for 0 <t <oco.
(2) For =3 <y <0and p>1, it holds that
2 f 2
H(l—l—t)Pgl(t)HXk—l—/O |(1+5)Pg1(s)] x; 8 (3.22)

t
< lgolly G [ I O, ds+Ce sup [(1+501(5)x, [ (o)

0<s<t

ds

+Ci sup (14510, + sup lg2(o)le ) [ 1+90165)
0<s<t 0

X*
0<s<t k

for 0 <t <oco.
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Proof. We first consider 0 <7 <1. From (3.1), for a small constant A which will be
chosen later, we can write the equation of e g1 as follows:

0ieM g1 +0-Vyetg —Aet gy
=LpeMg1+Q(g1,eMg1) +Q (Vg2 eMg1) +Q(eMg1,/Hg2).-

Similar calculation as in (3.20) shows that for || =0,2,

1d
saildesOliae  +oloseNai(®)] iy
<Ge(lleMs1 ()], 51 (1)

+leMg1()]lx g2t lIp e g (t))]

— Al[35eM g1 (8)]| 722

k—4 o]+ /2 v,k—4|a|

2
e I8 (0 + 1 (D11, Vg ()3,

G EPAGIEN

We choose A so small that

1d 2 ) 2
E%Hag‘ceugl(t)HL%L%/I(AM_'_ 5 HE9§‘c€”g1(t)Hg—gq;,kwH p

<Ce( Mg (®)llx 1o g1 g (8 1x; +llg (O[] (D)

Xy
Mg (0] ls2(0) o]l (1)

x;;"' Ig2(t) e He“g1(t)\ if?)

Then by taking summation over || =0,2, one gets

LM%, + eV ()],
gck(}}e“gl(t)kaHe)‘tgl(f)} X;Hgl(t)\lx;+||81(f)||XkH€Mgl(t)} ;Z(;;

+ e g1(8)l| ., Is2(D) I p[le*81(D)]| . +lIg2(B)lle [l g (2) Hik)

Taking time integration and using the Cauchy-Schwarz inequality, (3.21) holds.
We now turn to the case —3 <y <0. It is straightforward to get

0t (14+1)°g14+0v-Vi(14+1)Pg —p(1+1) " 1gy
=Lp(1+)Pg1+Q(g1, (1+1)°81) +Q (182, (1+1)°g1) +Q((1+£)Fg1,/1&2)-
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Similar calculation as in (3.20) shows that for |¢| =0,2 and p >1,

2
ZdtHalX (148 &t ) k—4|a

—PHai(Ht)P‘”Zgl HLsz

vk—4|a

‘-I-éHaﬁ(l—l—t)Pgl(t)

v, k—4la|+y/2
<G| a+081(0) [, | A+0)81 (1)

g (B)llx | (L +0)Pg ()5
H[(1+6)Pg1 (1)l llg2(#)

+lg2(B)lle[|(1+)°g1(t))]

I8

(1+f)pg1(f)} X

%)

We should treat the term

Sllox(1+)F g (t —p||35 (D281 () 1212

HL2H ok—4lal+7/2 ok—4la|
carefully. For the case that 1+t>1/(x(14|v|)"7), one has

" _ 2
pllos 1+~ 251 ()]

<xp|05(1+1) gl()

o k—4al ok—dlal+y/2

Then we choose k so small that

S|t (1+0Pg ()|

vk 4|al+y/2

—KPHai(Ht)"gl [

0, k—4|a|+y/2

<ol

v k— 4\sz—’y/2

For 1+t<1/(x(1+]v|)7), we have

pHai(l-l-t)P—l/Z HLZLZ <CH8§(1+|ZJ|)_M+7/2

Ol

v,k— 4\&\

Collecting (3.23), (3.25) and (3.26), we obtain (3.22).

81

(3.23)

(3.24)

(3.25)

(3.26)

O

To prove the existence of g, we also need the stability of g,. Recall (1.7) and

(1.8).
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Lemma 3.7. Let 0<s<1,—-3 <y <1and y+2s> —1. For any p >1, it holds that

20613+ [ ga(6)lfods

<G sup lga(s)le [ ll226) o

0<s<t
+ sup lg2(5) e sup ||<1+s>ﬂg1<s)||x8) (3.27)
0<s<t 0<s<t

for 0<t<oco.
Proof. Applying 9* and multiplying 9%¢ to (3.2), taking inner product over R3 x
R3 and from arguments in [2,3,29], we have

1d

S i ll8 ()1 43022 (1)1B,

<Clig2(t)lle 182(1)1 +C| (£581(#),82(#))

+C Y |(£805g1(1),9582(1) |- (3.28)
|a|=2

Using the definitions of £p and X} norm in (3.4) and (1.5), one has

(o818 <Ci [ [ Ig1(tx0)ga(t,x,0)ldxdo

<Crligr(®)llz lIg2()1l 2,
<Cr(1+8) P+ g1 (1) || lIg2(8) e (3.29)

Similarly,
| (L£p0%g1(1),0582(1) | < C(1+)~P[|(1+1)°1(H) [ . llg2()le- (3.30)
Combining (3.28)-(3.30), we obtain
o (B +ol8a ()1
<Cllg2(t)llellg2(DID +Ce(1+8) [ (1+1)Pg1(t) | [Ig2(8) e,

which gives (3.27) by taking integration over [0, ]. O

With these lemmas in hand, we are ready to prove Theorem 1.1 now.
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Proof of Theorem 1.1. For 0<<1 and k>22, a suitable linear combination of (3.19),
(3.21) and (3.27) shows that

sup {[1g1(5) 1%, +[|e"*g1(5) 3, +ll2()13 }
0<s<t

[ {1060 By 115) [ + o (6) 13 s

2 1/2
< Cellgolk, +Ci sup {llg1(5)II%, +|*g1() [, +ll2()13 }
0<s<t

< [ {160 B+ s 5) g2 )15 s

Therefore, there exists a constant €y such that if ||go ||§<k <¢o then

sup {[1g1(5) 1%, +[|e**g1(5) 3, +lI2()1 }

0<s<t
t
[ {l816) 1B +lle16)]

<Cllgoll%,,

which yields (1.11). Therefore, we obtain (1.9) for hard potentials by (1.11) and
the fact that

2
o lga(t)[b s

18(E) 1x, < llg1 (D)l x + Il /g2 () [l x,
<llg1(8) I x, +Ciellg2(8)]] - (3.31)

For soft potentials —3 <y <0, we have from (3.19), (3.22) and (3.27) that for p>1,
it holds

sup {Ilg1 (&)1, +[| (1+5)°21(5) [ 3, +lg2(5)113}

0<s<t
+/Ot{||gl (s) ||%(Z + H (1+5)Pg1 (S)‘

’ 1/2
<Cullgolld, +Ci sup {lls1 ()3, + [ 15081 6)f5, . +ls25)113}
0<s<t e

2 2
x:,, Fllga)Ib s

t
2
<[ {1+ 10471, +lga(s) b s

Thus, there exists a constant €y such that if || g0||§<k < gp such that (1.12) holds.
Then (1.9) follows from (3.31) and (1.12). Also we let p< (k—22) /|| such that the
condition k+p7y > 22 is satisfied. Also we require k >25 such that 1< (k—22)/|v|.
Thus, the proof of Theorem 1.1 is complete. O
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4 Time decay of g1 in Lg

To obtain the time decay of the solution g, we should study g; and g, respectively.
From our proof of global existence, we expect exponential time decay for g; when
0 << <1, and arbitrarily large polynomial decay when —3 <+ < 0. Taking the
Fourier transform to (3.1) and (3.2) with respect to x, it holds

g1 +iv-Z§ =LpGi+Q(81,61) +Q(/182.81) +Q($1,VHiS2), 4.1)
0t$>+iv- §g2—Lg2+£Bg1+l"(gA2,gA) 4.2)

with the initial data
£1(0,¢,0)=g0(&,v) =Fo(§,0) —pu(v), 2(0,&,0)=0.

Here we denote

We mention that the Fourier transform prevents us from directly getting the ex-
istence in L%ﬂLg. After Fourier transform, it is difficult to obtain inequality like

(2.1), because now the integral becomes

(01,6 (@), (0% (0)) 12

/]R3/]Rz/52 /1R3 1(E—0,9,)8(¢,0)

—§(E— 0,01 (4,0) ) dbdodo, (o) 3 (&,0)do

We notice the functions ¢3(¢,v) and ¢1(¢,v) are no longer the same function,
so (2.1) is not valid now. There is an additional (v)?* in the dissipation norm
which can not be absorbed by the left hand side. We need some new approach to
control the nonlinear terms by the obtained existence in Theorem 1.1.
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4.1 Estimates for0<y<1

We prove the exponential decay for g; now.

Lemma 4.1. Let 0<y<1,k>14,p>1 and g be a solution to (4.1), then there exists
a constant Cy >0 such that

He/\tg\lHLgL%‘)L%,k—i_He 81HL”L2H B /2

At

T 1/2
~ AE =~ >
SCk“gO“Lnglk"'Ck(He tngLgL"T‘JL%,k_F||g2||L§L%°L%> (/0 | sdt)

+CkHeMgA1HLE’L%@L;Z)/I(||8A2||L%L2TH5*- (4.3)

Proof. A direct calculation shows that

oM@y +iv-EeM G — AeM G
=Lpe'§i+Q(eV81,81) +Q(viga,e81) +Q(eM g1, Viig2)-

We multiply (v)?*e*§; to (4.1) and take real part and integrate over [0, T] x RS to

get

sl ~vA( [ eV <ff€>!!i;kdt)m
<VaIG @, + ([ RelLoes %) (21 5

#( ) re(Qe a0, ) ey N

+< [ Re(Q(vEg ). (e e ) C)dt)l/z

+</OTRe( (Mgh, i) (050G ) (1.2 )1/2

=V2/|8(@)ll;2, + L+ bt I+ L. (44)

For I, by letting ¢ =0 in (3.6), we have

IlS—\/EHe“& HLsz (4.5)

k+7/2
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Using (2.3), it holds that

(Q(M'g1,81) (8), (o) e Vg (1.2)) |

<Ce [ Mg (te=0ll,z 18 (40N, oo G 00 e,
G [ EE=Olz [ GO e VGO e, AL (G6)
Then it is direct to see
1/2
=G </ / He“gl (t,5—1) HL2 Hg1 )HHvk+'y/z+st Mgl (£,) HHSH /Zdﬁdt)
+ck(/ [ g =0l VG Ol
1/2
At
<G D) Wzdedt) . 47)

By Cauchy-Schwarz inequality, one has that

2 1/4
<G [ (Ll ae-ols M6, . ) i)
1/4
() Il )
o [ fulae-ole Jeswol,
1/4
<(f Il o)

sww@@wymﬂﬂ

2 1/2
oy ([ ([l G 0E-0l: 800, . ie) i)

2 172
+Ck,17</ </ 1g1(t,&—¢) ||L2 He)‘tgl té)‘ ‘L /2d€> dt) ) (4.8)

2 1/4
dé) dt)
k+7/2
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We further use Minkowski inequality to get

L <n]|e"81(0)]| 2

vk+7/2

1/2
+C [ ([ Ieae-0l% Iaol, ) d

1/2
- 2
G [ ([ 18106018, e G0l ar) d
which further yields
RGOl o [ VG EOl s IOl
+Coy [, 18160 zmﬂZWMA Gl (4.9)
Similar arguments as in (4.6)-(4.9) show that
< nlloMa
B L<nlles @l ag,
+Ch [ IVARE= Oz lVG O 2yt

+Coy [ VG @= 0z IVAR(Oll 315, ¢

G [ M@0z IVA0)

+Coy [ IVAE=Dllr2 51 (0)
From the facts that

VS Olzn:,,  +HIVEROgw, <
H\/ﬁgZ(C_E)HL‘;’L%,k <Ckllg2(6—0) ||L°T°L%f

al

|| LZT Hz,k+7/2+2s

H LZTHzS;,k+7/2d£'

Cill&2(0) I 2 prge»

we have

I+ 15 <n]|e" g1 (@) 12

vk+v/2

+Ck77/ 182(6—¢ ||L°°L2H6Mg1 O] 2 23 at

vk+y/2+42s

G [ MGE=0 g1z 18203 -0 (4.10)
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Combining (4.4), (4.5), (4.9) and (4.10), it holds

1D + VR Dl VIV 31,
<V220@lez +nlle @Ol zpe,
%@M/megfuwyhﬂﬂhHmmﬂﬁ
+Ck17/ g1 (6= 112, He“gl Ol 2 2H3 HW‘M
-I—Ck,7/ 1§2(6—0) O] 2 2p HWMSCM
%{MAﬂW&GJHg%MﬂM@wM~ @11

Noticing

g1 (6= 112, SHeMgAl(C—E)HLsz /

Ollizree,J<lleai(o)

max{ | §1(0) 2

Ky /2+2 vk+v/2 H L%"HZSJ,k+’y/2+ZS,
we first choose A and # small enough to get
[ 512, +olle G e,
<qm<my+Q/Hw%é‘ﬂquW%l’MHHW%“
+Ck/ 182(8 =)l 12 Mg HLZHSHWHZSdE

40 [ M@0 0z 1830 i et

Then taking Lg norm and using Minkowski inequality again, we have

s HLé’L;oLgfk‘MHe 81 HL”LzHs ® /2

< ||gA0||LgL§k+Ck<HeMA HL”LwLZ + Hg2||LpL°°L2>

+CkHe“gA1\}L5L$L5k||gz|lLéLzTHg*- 4.12)

H L1L2 Hv 4y /2425
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By definition of L; L Hj

o k-+/242s NOTM, ONe has

T 1/2
At o — At & 2
L A g M 2 1S P O I

1/2
= <C>‘3/2‘< /T<C>3+He“gi(t,§)}§s dt) dc,

R3 0 0,k+7/242s

where —3/2— and 3+ are defined to be —3/2—xp and 3+« for some sufficiently
small xp > 0. Using the Cauchy-Schwarz inequality, we obtain

1/2
Af ~ —_3—
He 81 HLélfLZTHS,k+'y/2+2s sC (/]R3 <‘:> dg)

T 3+ || M 2 12
x( /0 /R3<é> e gl(t,é)!!H;Mz%dédt)

1/2
—C (/()THe)‘t(§>3/2+gA1(t,§) Hisz dt) . (4.13)

¢ o k+y/242s

By Plancherel theorem, Sobolev embedding and the definition of X in (1.6), one
gets

- T 1/2
He 81 }}L};L%‘Hz,k+7/2+25 =C </0 He &1 HH%HZSJ,kw‘—’Y/Z—i—stt)
T 1/2
Aty |2
<C ( /O leMg: | thsdt) . (4.14)

Hence, (4.3) follows from (4.12) and (4.14). The proof of lemma is complete. [

4.2 Estimates for —3 <y <0

Lemma 4.2. Let —3 <y <0,k>18 and g1 be a solution to (4.1). For any 1 <p <
(k—14) /||, there exists a constant Cy >0 such that

10+ Gilligrz +|A+O G iz

k+/2

<Gl goll LEL2, +Cillg LgLZTL%,kw/z—m

R R T , 1/2
+Ck(H(1+t)Pg1HLgL%°L%,k+ngHLE’L%"L%) (/O [(1+£)°g1] x;;%ﬂsdt)

+CkH(1+t)pg/\1HL?L%"L%,k“g/E“LéLZTHg*‘ (4.15)
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Proof. 1t is straightforward to see from (4.1) that

0;(1+1)P g +iv-E(1+1)°& —p(1+1)P1gy
=Lp(1+0PG+Q((1+6)°g1,81) +O (Vg (1+1)F§)
+Q((1+1)P g1, /1iS2)- (4.16)

Similar arguments as in (4.4)-(4.11) show that for k> 14,
+t)° g1 2 + +t) 2 +1) 212
[+ gt 2 +oll A+ G @ 2 p: - = VRIA+O 28 @) 21

vk+v/2
<||g0(¢ )HLZ ""7” 1+t )81(8 HLZHSk+ /2

+Ck;7/ H 1+t 'Ogl (: £ HLOOLZ ||g1( )HL 2 s dg

v,k+7y/2+2s

+Ck’7/ 181(&—2¢) ||L°°L2 H (1+)Pg1 (£ HLZH at

vk+v/2

4oy [ NBE Oz T+PG Oy,

vk+y/2+42s

+Ck,l7/]R3H A+0GE =0 gz, 18203 -t

Then we take LY norm and use Minkowski inequality, Plancherel theorem and
Sobolev embedding as in (4.12)-(4.14) to get

\/_H 1+t P28 HL”LzL2

1/2
. dt
Xic+8425 )

o~ N
+Ci [ (1+1) glHL?LO;L%,ngZHLéLZTHg*' (4.17)

H(1+t ngLpL“’Lz +5H (1+1) pngLpLsz

v,k+v/2

<||g0||LpL2 +Ck<H 1+t pngLPLooLZ +||g2||LpLooL2 (/ H 1+t pgl‘

~ _1 2 A~ .
For the term 6| (1+¢)° ¢y ||LEL%"H;,k+fy/2_ Vol (1+t)° 12 ”LE’LZTL:},,,(’ it follows from

similar arguments as in (3.24) and (3.25) that if 14+t >1/(x(1+|v|)") for some
x>0, one has

\/_H (1+8)P~ 28 HLPLZLZ <\/7H (1+2) pngLpLsz ’ (4.18)
If1+t<1/(x(1+]v|)7), it holds

\/_H 1+t P2 HLPLZLZ <f||81||LPL 212 (4.19)

v,k+y/2—py
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Then choosing x to be small, (4.20) holds from (4.17)-(4.19). Note that as we will
prove later, the estimate on g; requires the order of velocity weight to be larger
that 14, so here we also let k>18 and p< (k—14) /|| to guarantee k+/2—py>14
and 1< (k—14)/|v|. O

From (4.15), we see that for oy <0, in order to obtain the time decay, we also
need to bound || || L1302 for some large k. The following lemma provides the
estimate of such term. The details are almost the same as Lemma 4.2 and thus

omitted.

Lemma 4.3. Let —3 <y <0,k>14 and g, be a solution to (4.1). There exist constants
6,Ci >0 such that

181 ||L§L‘%°L%/k+5“g1 ||L§L%"stz,k+’y/2

T 1/2
~ ~ ~ 2
< HgOHLé’L%/k—i_Ck(Hgl||L§L°T°L%/k+||g2||L§L‘}°L%) (/O ||g1||X;+8+25dt)

+Ck||g\1||L§L°T°L5,k||g/\2||L%L2TH5*' (4~20)

5 Time decay of g, in L;NL]

We can prove the stability of g» for both hard and soft potentials. However, the

time decay should be proved in two cases, y+2s >0 and y+2s <0 respectively.

The important inequality ||f|;2 < [/f]l2 S C||f |l will be frequently used
v v,7+2s

in case of y+25>0. On the other hand, such inequality no longer holds when
7+25<0. Therefore, we need extra velocity weight to compensate the dissipation,
as we will see in the third subsection.

51 L;NL[ estimates on g,

We first bound the nonlinear term in (4.2). The following lemma is given in [25,
Lemma 3.1].

Lemma 5.1. For 0<s<1and v>max{—3,—3/2—2s}, it holds that

(C(£.9)().H(©)| < C/]R3 FE=ON2 18Oy |A-P)H(E) |y dl.  (6.1)

Then we have the following inequality for g».
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Lemma 5.2. Let max{—3,—3/2—2s} <y<1,0<s<1,p>1,p>1 and g, be a solution
to (4.2). Recalling A and M are two constants in the definition of Lg in (3.4), and

c=3 (1—1) —2€7,
p

where €1 >0 is arbitrarily small. There are constants C >0 and C 4 1 such that
<C 172 Nla+8Pet
Am\lngLleLz A [+ gi(t)]

1/4
2
. dt
XS*’y/Z )
+C||&2 HL%L"T"L% |(I-P)g> ||L1L2HS*

+C||<S’A2||L}:L;°L%H(1+t U/ZA HLleLz, (5.2)

||<S’A2||L};L°T°L%,+ | (I_P)g\ZHLéLZTHi*

182l ppsrz + 1 X=P)&2ll 212 1y

<CamlBll eyl 1+ ﬂ\%izp

+C||82||LgL%°L%H(I_ )gZHLlLZHS*
+C||§2||L§L%°L%H(1+t U/ZA HLlLooLZ (5.3)

forany T >0 and p > 1, where C4 p; depends only on A and M.
Proof. Multiplying $, to (4.2), taking real part and integrating over [0,T] xIR3,
one gets

G001 = [ RelLga @)1 0)dt+ [ RelLagi @) (1)

= [ Re(F(g.0).5) (.0)

We have the coercivity estimate from [3, Proposition 2.1] that for some small con-
stant o,

(Lg.8)12 < =0l (I-P)glEs.,
which, together with the Cauchy-Schwarz inequality, yields

, T 1/2
8@+ ([ 111-Pha(62) g )

1/2

<(/ TRengz,gAzxt,a)dt) 7 (f TRe<f<§z,§z>,§z><t,¢>dt) RCY
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By the definition of Lp in (3.4), one has
T 1/2
() Re(agi @) w00
T 1/2 ~ ~ 1z
<( [ 0 Axuls 0,600 (060t
T 1/2
<Cann ([ Igi(6) I3l 200

1/2
<Camllga(¢ i@(/ ||g1t§||det) . (5.5)

Using (5.1) and the Cauchy-Schwarz inequality, we have

(/ |(F($2,82),82) ( té}dt)m
<o([[(f1e0e-0lalg o) «)
([P

T 1/2
<o ( [ 10-Pgaie0) et
r 2\ 1/2

We further use the Minkowski inequality and Holder’s inequality to get
T 1/2
([ 1@ ) ol

<o([10-Pgeo )

+Cy [ NGOl a0 3t 7

Then by substituting (5.5) and (5.7) into (5.4) and choosing 7 to be small enough,
one gets

182(E) | o2 + I{T=P}&2(&) [ 2 s
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1/2
<Camlg @2, ([ g0l )
+C [ 186 =028 (403 - (5.8)
It holds by taking integral over ]Rgr and using the Cauchy-Schwarz inequality that

||<‘>§\2HL1L‘}°L%+H(I_P)g/EHLlLZHS*
1/2
1 2 ~ ~
<CAM/ 182(8 |L£°L2 (/ 181(¢,¢) ||L2dt) S+ ClIg2llrrprallg2ll iz ps

1/2
gcA,MHgT\ZHL%,L%‘)L% (/1113/0 HgAl(t/@)HL%dtdé{) +C||§2HL%L%"L%H@HL%L%H;*" (5.9)

Applying the Cauchy-Schwarz inequality as in (4.13), one has

([ [ s ae)

<C(/ / 1+ @) 184817 zdé‘dt)l/4

5 1/4
gc(/o H(l—l—t)pgl(t)HH%L%dt) : (5.10)

Then we obtain from (5.9), (5.10) and the definition of X} in (1.6) that

||g/\2||L%L°°L%+||(I_P)<§\2||L%L2TH5*

T 1/4
1/2
<Camligalio ([ N0 078100, i)
+CHgZHLéL‘}°L%Hg\ZHLéLZTHZ*' (5.11)
Since ¢ >1, then
H@HL%LZTHS* < ||(I_P)8A2||L1L2HS*+C||(07/E 5)||L1L2
<IA-P)& s +C / sup (144)](a,b,0)(8,2)]d

30<t<T
/2/\
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We deduce (5.2) from (5.11) and (5.12).
By the fact that

183151352 12l oy < V2 pigra |l psz e

similar arguments as in (5.5)-(5.8) show that
||<‘>§\2HL§L<%°L%+H(I_P)gAZHLgLZTHg*
T p/2 1/p
<Can( [, ([ 181601 IGO0 a)
+C||§2||L§L%°L%Hg/}—”LéLZTHz*'

A direct application of the Cauchy-Schwarz inequality gives

T p/2 N\ 1/p
(L) Igeolalaeoln) )
p/4 1/p
<C</ 182 I;Zfo?(/ |(1+6)° G (1,8) Hdef) dg)

1/2

<C||g2||iéiooL2H 1+t ngLpLZLZ

for any p >1. We have from (5.13) and (5.14) that

||<‘>§\2HL”L°°L2+ H (I_P)gAZHLPLsz*

1/2 1/2 ~ ~
<cAMuganéM||<1+t>Pg1||L¢L2L2+cngz||L§L$L%||gz||LéL%Hg*.

Then (5.3) follows from (5.12) and (5.15). The proof of lemma is complete.

95

(5.13)

(5.14)

(5.15)

O

From (5.2) and (5.3), one notices in order to close the apriori estimate, we
should control the term ||(14t)7/%& || I3 As we will see later, when we esti-

mate ||(14+£)7/% % || Ly We will further need to bound || (| V. |/(V))(@,b,¢)|| 113

Therefore, we should estimate the macroscopic term before we turn to the time-

weighted term. Then it is necessary for us to study the problem

{atf+v~vxf—Lf:H,
£(0,x,v)= fo(x,0).

(5.16a)
(5.16b)



96

In the symmetric case, it is easily seen that we should take H=T(f,f) when we
turn to the nonlinear problem. Thus, H should be microscopic. However, when
we use (5.16) to study g» which satisfies (3.2), we should let H=Lpg1+T(g2,$2),
which is no longer purely microscopic. Then the way we study the Eq. (5.16) is
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slightly different from [17,25] that we remove the condition PH =0.

Lemma 5.3. Let max{—3,—3/2—2s} <y<1,0<s<1,1<p<coand f be a solution

to (5.16) with an inhomogeneous term H= H(t,x,v). Then it holds that

‘ |V
(Vi)

(af,b7,¢)

. §C||f0||Lng,+Hf||LgL°T°L%,+H(I_P)f“L’gL%HZ*

L7L%
T 1 5 1/4

forany T >0.

Proof. Taking inner product of the Eq. (5.16a) with the 5 velocity moments

1/2
]/t/

1 1
R (e R e N Tl OL

with 1 <j,m <3 for the Eq. (5.16a), we obtain the fluid-type system

where

\

ataf+bef:(pt1/2,H),
b + Vi (af +2cf)+ V- O((I-P)f) = (vp/2, H),
atcf—i—%Vx-bf—l—%vx-A((I—P)f) = (%(|v|z—3)y1/2,H),

01 [Ojun (1=P) £) +26/ 6, + ;b1 +Db] = Oy (r+1n),
A ((I-P)f) +0jcf =Aj(r+h),

®jm (f)= ((vjvm—l)y1/2,f), O(f)= (®jm (f))lgj,mg?,’
N) =15 (0P =5) . f), A= (M) e

r=—0-V,(I-P)f, h=—L(I—P)f+H.

It is direct to see that

O IAU)] < Conin {[| £ 3,11 f [l }-

p/2 1/p
Zdt) dg) (5.17)
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Let af,bf := (f){ ,IAﬂg ,Bg ),éf and f denote the Fourier transformation of a/,bf,cf
and f respectively, then we rewrite the above system in terms of 4/,b/,¢f and f

(0 +ig-b = (u/?,H), (5.18a)
b +ig(af +28f) +ig- @ ((1-P)f) = (vou'/?, H), (5.18b)

aféf+%ié‘-ﬁf+%i§-A((I—P)f) = (6(|U|2—3)V1/2/H)1 (5.180)

3 (@ (1—P) f) +28/6;,,] +ig;b1, +i§mz§{ =0, (#+1h), (5.18d)
L0iA;(I-P)f) +ig;ef = Aj(8+1h). (5.18¢)

From the Eq. (5.18e), we integrate by parts to get

A o I GNP L 5.19

Combining (5.19) and (5.18c) gives
| . igief &7
ot (A]((I_P)f)'1+|§|2>+1+|<§|2| ’

A 1_ 4

— (A=) T [+ en (-1

g
Integrating the above equation over [0,T], one has

2
5 &f |2dt
0 1+]§,‘|2

R R T
<Cllfol, +CHf||‘iooL%+K% /

\*-»
/\
Q
[
o
I
W
N—
=
NIH
o
~_
~_
| I
~_

1+ (’Bf’2+’€f’2)dt

\A ls T_le
Kl/ !€|2 at+C [ o | AP far

2_3)ul/? H)‘ dt+C / A e+ dt,
/ 1+|f§|2 ( (ol =3} o 1+[C?
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where k71 >0 is a small constant which will be chosen later. We take the summation
of j=1,2,3 to get

ClE ( 2 )”2
el Ol

<C||f0||L2+C||f||L°°L2+CK1

S (/()T]bflzdt / |Cf!2dt)1/2]

V1+][¢]?
A=PAHP N g
+Cy, </ 1+’€|z dt) +CWH(I_P)JEHLZTH§*

o1 2 \ V2 TIAG+R)?,\ 2
1) " [ AR
*(/0 e G I B s e

Then by the fact that

< TIAGE+R)? /|@m+1h|2 )1/2
o 1+[g +[¢l?

1/4 1/2
<c||(1- P)f||Lsz*+C</ %dt) ,

it holds

1/2
1|§-||5|2 ( [ |Af|2dt)

R . |§| T"fz 1/2 T o 1/2
<Cllfolly2+CllF |l eor2 +Crey —a (/ b dt) +(/ é dt)
I foll .2+ ClI £ | o2+ Crex iz | o |07 | 1e
f r 1 7 4,1/4) |2 V2
+Ca (=P e Co (| 1y (Bt Pae) 520

Similar arguments show that

1/2
\/1|i|W< [ 16 <Clillg+Clli

+sz7$|§’2 [(/0 mszdt) 1/2+ (/O |l$f|2dt) 1/2]
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A - RN
+CK2||<I—P>f||LzTH;*+cKZ( [l (AP

H 2 )”2

1+|§’2(/| 2dt) (5.21)
A < 12 )”2
el O

2 2 4 Taro 12 T o 1z
<C FC|| Il wratC—tol / b dt) +</ 2 dt)
1ol +Cl gz 1+!€|2[< 9 e

+Cl[(T=P) 1 12 g5 (5.22)

Hence, by a linear combination of (5.20)-(5.22), then choosing x; and x, to be small
enough and taking Lg norm, we obtain (5.17). O

Notice that our study of macroscopic quantities is valid for
max{—3,-3/2—-2s} <y <1

and will be used later when we estimate the soft potentials. Substituting f = ¢»
and H=Lpg1+1(g2,£2) into (5.17), we obtain the following result.

Lemma 5.4. Let max{—3,—3/2—2s}<y<land 1<p<oco. Let g, be a solution to (4.2)
with an inhomogeneous term H=H (t,x,v). Recalling A and M are two constants in the
definition of Lg in (3.4). Then it holds that

Vil 2n .
H <|v|> (8,5:6)

< % - 0 *
2 ngHLgL"T"L%'i'“(I P)gZHLé’LZTHg
&hT
+CArM||gA1“LgLZTL%+C||§2||L§L‘%°L%Hg\ZHLéLZTHZ* (523)

for any T >0, where Cy4 pp depends only on A and M.

Proof. We have the inequality which is proved in [25, Lemma 3.4] that for any
$€S(R3) and 1< p < o, there exists Cp >0 such that it holds

([ iodamre)”

< C(P“fHLé’L%OL%||g||LéL2TH§*
L? )
¢
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for any T > 0. Then it is straightforward to get

(/1113 (/OTH_lW (F($2,862), 14| dt)P/ng)l/P

< C||§2HL?L?L%H@HL}:LZTHZS,*' (5.24)

By the definition of Lp in (3.4), one has

T 1 12 p/2 1/p
(oo () opal(eosinrfae) )
T 1 s p/2 1/p
SCA,M(/]R3 </0 WH&HL%W) d@)

< CA,MHg\l HL?L%L%' (5.25)
Therefore, (5.23) follows from (5.24) and (5.25). O
Then the following lemma is a direct result from Lemmas 5.2 and 5.4.

Lemma 5.5. Let max{—3,—3/2—2s} <y <1,p>1and g, be a solution to (4.2). There
exists C >0 such that

o - |v ’ AT oA
el gig12 0= Pl gz + [ 2t b0

172
LiI3

5 1/4
. dt
X8—'y/2 )

+Camlgilli i+ Clg gz 140728l yrers (526)

T
<Caml@lifss( [ I1a+0Pgi00)

+C||g2||L};L;°L% [(I-P)g> ||L};L2TH5*

Val (22
||g2||LpLooL2+||(I P)g2||LPL2Hs*+H ’ x a b,C)

L;L%
el 100G g2 2+ Cl ol (=PI
LI )81 LEIZ13 8203 821l LLi2 g

<Camllg2|l
/2 -~
—I—CA,MHgl||L§L%L%+C|Igz||L§L%oL%H(1—|—t U HL1L°°L2 (5.27)

forany T >0 and p>1, where C p1 depends only on A and M which are two constants
in the definition of Lp.
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Later we will need the time-weighted macroscopic estimate. We can prove the
following lemma for max{—3,—3/2—2s} < <1, which will be later used in both
hard and soft cases.

Lemma 5.6. Let max{—3,—3/2—2s}<y<1,0<s<1,3/2<p<o00,0=3(1-1/p)—2¢,
where € >0 is arbitrarily small and f be a solution to (5.16) with an inhomogeneous term
H=H(t,x,v). Then it holds that

H(lth)”/z%(ﬁf,fof,éf)

X

(5.28)

172
LLI3

SCHfOHLéL%"‘H(lJFt)U/Zf LéL"T‘JL%—i_H(1+t)0/2(I_P)fHLéL%H§*

! o2 L in o 1/4y2 )1/2
+ ]R3</0 (1+t1) 1+|§|2}(H,y )’ dt e

+' |V"|> (/b ,¢)

(Vx

LEL%
forany T >0.
Proof. Integrating by parts, it is direct to get

o ) £ i(ff]-cAf
(1+¢)70; A]((I—P)f),1+|§|2

—d

o . £ igféf
(1+1) A]((I—P)f)fm

e
—o(144)7! <A]-((I—P)f),%>. (5.29)

From (5.29) and the Eq. (5.18¢), one has
2

g
+ 1+ —L_|ef)?

0
f 1+¢]?

N
(1+1)7 (A].((I—P)f),%>
_ (A].((I—P)f),(1+t)vlf|/§|2 Eg.l%hr%g./\ ((I—P)f— (%(!v|2—3)y1/2,ﬁ))D

X x Af A iz oA
—l—(Aj(ﬁ‘—i—ﬂl),(l—i—t)(flf]raz)+0.(1+t)0—1 (A]-((I—P)f),%faz),

which further yields by similar calculations as in the proof of Lemma 5.3 that

Q[ N A
S ([ 0P <@+ IO+ F Ol
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T 1/2 T 1/2
ahf12 olaf|2
e (/O (1+1)7|6] dt) +(/O (1+6)7|&| dt) ]
. A T o 1 Yo, 1/4) (2 1/2
o (0 (=) fll g+ o [ (0 el (Bt Pt

+ </0T(7(1+t)‘7_1 (Aj((I—P)f),lfjgz)dt) 1/2. (5.30)

We can see that except for the last term on the right hand side above, other terms

can be estimated in the same way as in Lemma 5.3. Hence, we now estimate the
last term above as follows:

T o iEe
/0 (1+44)71 (Aj((I—P)f)f%> dt

r P |1=P)f|2,
< 1+8)7 24 Cp—— 0 |

+Cxk 7@

We substitute the above inequality into (5.30) and integrate over ]Rg to get

foits ([ aeorierpar) e

<Cllfoll iz +CIA+Dfllpppgrs +Co |1+ T=P) fll 113 e

+CK/ _ 18 (/T(1+t)‘7|l§f|2dt)l/2+(/T(1+t)”|éf|2dt)l/2]d§
" Jr VI+(E]? | \Jo 0
T 1 N 5 1/2
+Cu [, (/0 (40" el (L)) dt) dz. (5.31)
Similarly,

T A 1/2
Jrege (h 0

<Cllfolliz +ClIA+6)7Fll 22

@y </OT(1+t)g|aAf|2dt)1/2+</0T(1+t)‘7|i7f|2dt)1/2]

VI+[E?
1

A T -~
+Call (140 (1P Con (| 47 1l (Bt P

+Cxp

1/2
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4 r 2\
+CK2\/TW</0 (14-1)7¢/] dt) : (5.32)

However, the estimate of &/ is slightly different from above. We first repeat simi-
lar procedure as above to get

T 1/2
\/%WUO (1+t)”|ﬁf|2dt)

<Cllfolliz +ClIA+7Fll 2

¢l </0T(1+t)g“3f|2dt)1/2+</0T(1+t)‘7 6f|2dt)1/2]

+C——2
V1+[g)?

) T 1/2
+C||(1+t)‘7(I—P)f||LzTH5*-|—(/O (1+t)”1<bf ZéTCP)dt) . (533)

We should take care of the last term above for high and low frequency parts. If
|&|>1, by the Cauchy-Schwarz inequality and the fact that |¢| <|Z|?, it is straight-
forward to see

o (o)

S| fi2 e r 2£12 1z
SW[“(/O (14+8)7|&f] dt) +CK3</O (1) || dt) ] (5.34)

If || <1and 1/(1+t) < |¢], it holds

Ty (oS ) T”
[/0 (1+1) <b,1+|€’2 dt

1/2 1/2
< gl K3</0T(1+t)‘7|ﬁf|2dt> +CK3</OT(1+t)U|Bf|2dt) ] (5.35)

VI[P

If |¢|<1and 1/(1+t)>|¢|, one has

[ avor(vfige)a] <[ [ e wiona]

T 1/2 ) 1/2
<teler2 il () i) el [ 167 }
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which further implies
T 1t <Af iga ) T/z
/IR3 Uo W (Ve ) %
/ 7y T p/2 T p/2 1/p

(5.36)

Pr2
Li3

by Holder’s inequality and the fact that —op’/2> —3. We combine (5.33)-(5.36),
then choose x3 to be small to get

forls ([[avorwrar) s

< C||f0||L1L2+C|| (1+f)”f||L1LooLz

C/W\/%W K/ (1+t)‘7|f1f]2dt)1/2+ (/OT(lth)" €f|2dt)1/2} dz

R P>f||L1Lsz*+H IVl (ot )

. (5.37)
LiL%

Hence, we deduce (5.28) by collecting (5.31), (5.32) and (5.37), and choosing

and x, to be small. O

Substituting f=g» and H=/Lpg1+I(g2,92) into (5.28) and using similar argu-
ments as in the proof of Lemma 5.4, we obtain the following result.

Lemma5.7. Let max{—3,—3/2—2s} <y<1,0<s<1,3/2<p<o0,0=3(1-1/p)—
where € >0 is arbitrarily small and g, be a solution to (4.2). Then, it holds

19/
(Vi)

<Cl A+ |y +ClA+DT2(1-P)

Vil /o s 4
<’Vi|> (4,b,¢)

+CH(1+t 0/2/\HLlLOOLZHgZ“LlLZHS* (5.38)

H (1+t)7/2 (a,b,¢)

172
L(;L

HLlLZHS*

+|

+Caml| (140728 1212

Pr2
LI}
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for any T >0, where C4 pp depends only on A and M which are two constants in the
definition of Lp.

5.2 Decay estimates for y+2s>0

With Lemmas 5.5 and 5.7, we can prove the time-weighted estimates now. Note
that now we require 7y +2s > 0. Our main purpose of this subsection is to deduce
Lemma 5.9.

Lemma 5.8. Let —25s<7<1,0<s<1,3/2<p<coand c=3(1—1/p)—2€ wheree>0
is arbitrarily small. For any T >0 and p > 1, it holds that

H(H't U/zA HL1L°°L2+H 1+t 0/2(1 P g2HL1L2HS*

1/4
<Comll+0° 2@l s ( [T N+0r 000 o)
-v/2

"'CH(l"'t U/ZAHLleLZH(I P)g2||L1L2HS*+CH (1+t 0/2AHL1L°°L2

+Cry H(Ht)mﬁ(a,l},é)

<Vx> L};LZT
~ IVl 2 [Vl 5,
I—P Sk Te— \ ,b/ /b/ ’ N
+C”<H( @l |17y 000 ur 1@ 0y ) O

where 1> 0 is an arbitrarily small constant and C p1 depends only on A and M which
are two constants in the definition of Lp.

Proof. Similar arguments as in the proof of Lemma 5.2 show that

H(l"H 0/2A HL1L°°L2+H 1+t 0/2(1 P gZHLlLZHS*

1/4
i)
/2

1/2
+CH<1+t"/ZAHL1Lsz+Cf/ (/ 1+ Mg 12 zdt) dé.  (5.40)

<Canll 00728l s () NP0

Ol A28l g3 T D)@ 13

It remains to estimate the last term above. It is direct to get

e, (/ (107 Ig2; zdt)mdé
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<V [, (/ 1+ Y|(1-P)& | zdt)l/zdé‘

1/2
o [ ([ a0 ieglza)
=Nh+). (541)

For J;, by

(145771 < (1+f)"‘11(1+f)—197/ﬁ+ I+ 130/ 5

\/_(1+t) +Cy,
it holds that
1/2
h<f/ (/ {\F(l”) CU}H(I—P)g\Z“%%dt) d¢
<l (1+0° 2 A=P)G | 12 e+ Coll =Pl 1131 (5.42)

For J,, we decompose

T 1/2
= 1+4)7 P& |2 dt) d
p=ve [ () asortieglia)

T c—1 =~ |12 12
o[ ([aentipaihe) a
=21+ 22 (543)

Similar arguments as in (5.42) show that

[Vl (7

(Vi) LiL% (Va) Ll
By the fact that
1+ D gy reyiepsvat A0 Lan1syiep/ve

<(1+
17||

T(lth) +Cyle)” —2(r-1),
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we get

Ul 2 —2(c—1) 2 1z
=@ [ ([ Eaenrkreca e b ipgia) a

|V
(Vi) LiL%

) 1/2
- 211pPay 2
S N o 6.5)

For the second term on the right hand side in (5.45), an application of Holder’s
inequality leads to

T 1/2
C ([ lePIpg dt) d
[ e ([ leRiegali) e

=Gy </§<1’€| " d@) v </§<1 </ |§’ 1P| Zdt) p/zdg) ”

Vx|
(V)

§C17H(1+t)‘7/2 (a,b,¢)

<Gy, (a,b,¢)

(5.46)

’
Pr2
LgLT

where 1/p'4+1/p=1. The last inequality above holds since cp’ >—3 by our choice
of o and p. It follows by (5.43)-(5.46) that

J»<Crn H (141)7/2 gj (a,b,¢)

LiL7
+Cy ’ [Va| (a,b,¢) + H Vs (a,b,¢) : (5.47)
LiL% (Vi) LpL%
Thus, (5.39) holds by collecting (5.40)-(5.42) and (5.47), and choosing 1 to be
small enough. O

Combining Lemmas 5.7 and 5.8, the following result can be directly deduced
by a linear combination of (5.38) and (5.39), and choosing 77 to be small.

Lemma 5.9. Let —2s <y <1,0<s<1,3/2<p<o0and c=3(1—1/p)—2¢, where
€ >0 is arbitrarily small. For any T >0 and p >1, it holds that

(T -~ o o 4 AT A
H(H‘t & HL1L°°L2+H (1+¢) /2(1 Pg2HL1L2HS*+H(1+t) /Z%WI%LC)

172
L3
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T 1/4
<Camll1+072@ 1 7e2 </ la+orsa®ly; dt)

"'CH(H't 0/2AHL1L°°L2||(I P)g2||L1L2HS*+CH (1+t 0/2AHL1L°°L2
|V

(Vi) ) L§L2T>

+CA1MH(1+’E)U gAlHLéL%L%' (5.48)

(a,b,¢) (a,b,e

Vil
+c<u<l P>gz\|LleHs*+H'

§

172
LgLT

5.3 Decay estimates for y+2s <0

In this case, we should estimate g» with an additional velocity weight. Then we
need the following lemma on L, where the proof is given in [3,24,29].

Lemma 5.10. It holds
(Lg,<v>2kg)Lg,25||g||%s* Ck”g“LZ (Bx)’

where 6, C;, >0, and Bg denotes the closed ball in ]Rf, with center at the origin and radius
R>0.

We now bound the velocity weighted LéL°T°LZZJ norm of g.

Lemma 5.11. Let k>0,max{—3,—3/2—2s} <y <2s,0<s<1and g, be a solution to
(4.2). There exists Cy, > 0 such that

‘ Vsl (a,b,¢)

||g2||L1L°°L2 +[[(T— P)g2||L1L2HS*+’
Lir2
¢-T

1/4
<CAM||82HL1L0<>L2 (/ H 1+t pg1 ’ Xirs- v/zdt)

+Ck||g2||L%,L‘}°L%,kH (145728 HL1L°°L2

+Camlgillz e +Celle2llnrgre NA-P)&2llri2 s, (549
where C4 pp depends only on A and M which are two constants in the definition of L.

Proof. Our proof mainly contains three parts which are the high frequency part
of ¢» and the low frequency part of (I-P)g,. Recalling the low frequency part
of Pg; is given in (5.23), then we take suitable linear combination to get our result.
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We start with the low frequency part of (I—P)g;. Recall that g>(0) =0, applying
(I-P) to (4.2), multiplying with (v)%(I—P)$», integrating over [0,T] xRS and
using Lemma 5.10, one gets

H(I_P)gAZHL%OL%'k+H(I_P)gAZHLZTH;fk
<C|| ((I—P)EBg?,(zJ)zk(I—P)gAz)HLZ;JerH(I—P)gAZHLZTL%(BR)
T A | )

+Pliv-Z(1-P)g2], (0)*(1-P)g3) ) do

1/2
i)

Integrating over IR%, the last two term on the right hand side above can be boun-
ded by similar arguments as in [25, Lemma 4.3], then we have

1Pl ez HIOPBI0,
k ~
<C|((1-P)Lpg1, (0)* 1-P)g HL‘léKlL%—i_CkH(I_P)g2||L[.1:L2TH5*
Vil on N N
‘ = (a,b,¢) 2+Ck||g2HL%L°T°LZZJkH(1+t )72 HL1L°°L2
et T o
+Ck||g\2||LéL°T°L§,kH(I_P)gEHLéLZTHg*‘ (5.50)

Now we concentrate on ||((I—P)£B§1,<v>2k(l—P)gA2)||L‘15‘ 12 By the definition
of Lp in (3.4) and the fact that ||Pg||sz <C|/gll2, one has

r 1/2
(/0 Re((I—P)ﬁBgAlr@)zk(I—P)gz)(tlg)dt)
1/2
SC(/OT”(I—P)ﬁBg?(fzé‘)lle |-P)&(t,2)1l,2 dt)
1/2
<cla-PLsg @I ([ 10-Pgeols )

1/2
<Caml2@I}2 ( [ 5000 dt) ,
which yields by the Cauchy-Schawarz inequality and Sobolev imbedding that

| (=P Lsgi, (0> (1-P)g)

2
<1kt
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T 1/2
<Camll@ @102 ( L. ||gﬁ<t,c)||Lgkdtdé)
1/4
<Camllg2(¢ iﬁ@y (/ R31+t @ gte )Hﬁtﬁﬂ)

1/4
2
SCA,MHgZ( )Hi{?iooLz (/0 H(l‘f‘t)pgl(t)HH%L%/kdt) . (5.51)
Recalling the definition of X in (1.6), then it follows from (5.50) and (5.51) that

I0-P&ally ezt NA-P)Bly 2

|g]<1™T

1/4
<Camllgallffer ( / ||<1+t>Pg1<t>||%(;+8_mdt) +Cell 1=P) 13

IVl 0z s
ab,¢é
(Vx>( ) LiLZ

+Ck||g\2||LéL%°L§,k“ (I_P)g\Z“LéLZTH;,*k.

+Cg

+Ck||<‘>§\2HLéL%°L%/kH (1+4)7/%g; HL1L°°L2

We turn to the high frequency part of ¢». By similar calculations as above, we
obtain

||g2||L‘1 A LFL2, ||g2||L‘1€‘>1L2H§fk

1/4
<Canllgalliflsr (/0 l+8° g (O dt) +Cell 1= P)all 113

k+8—
IVl o1 s
ab,cé
<Vx>( ) LiLZ%

+Ck||g/\2HL%L‘%°L%/kH (I—P)S'AzuLéLZTH;fk- (5.52)

+Cy

+Ck||g\2||LéL‘}°L§,k H (1+t 0/2 : HL1L°°L2

We note that (5.26) is also valid for soft potentials. Then taking suitable linear
combination with (5.2), (5.23), (5.26) and (5.52), we get (5.49). ]

Then we have the following result for Lg norm of ¢,. The proof is very similar
to Lemma 5.11 and thus omitted.

Lemma 5.12. Let k>0, max{—3,—3/2—2s} <y <25,0<s5<1,3/2<p<o0 and g, be
a solution to (4.2). There exist C,C4 1> 0 such that

'!Vx

(2,b,0)

||g2HLPL°°L2 H(I I)g2||L‘”L2HS* '
LP12
ebT
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<CAM||g2||iéiooL2 [(1+¢) pngLPLZLZ +Ck||g/\2||L§L‘}°L§/kH(1+t U/ZAHLleLZ

+CA,M||g1 “Lé’LZTL%+Ck||§2“L§L‘%°L%/kH (I_P)g/\Z HL%LZTHZS;,*,(' (553)
where C 4 p1 depends only on A and M which are two constants in the definition of L.

With the LéﬂLg estimate of ¢, we now turn to the time weighted estimate.
Note that in this case, we should bound

/2 ~ o ~ o |v | AT A
(48728l 112 +[1A+) /Z(I‘P)gz”LéL%Hf,i‘k+H(1+t> ALLD

172
LLI3

Recall that in Lemma 5.8 for 0 <+ <1, except for the additional term

T 1|52 12
14+8)777 |25 24t ag,
Vo (f a0 igla) a

all other terms can be calculated in the same way as the case without the time
weight. Now for 7y <0, the approach is similar as in Lemma 5.8, and we should
focus on the extra terms induced by the derivative of time weight.

Lemma 5.13. Let k> 0,max{—3,-3/2—2s} <y <25,0<s<1,3/2<p<o00,9, be
a solution to (4.2) and o =3(1—1/p)—2e where € >0 is arbitrarily small. There exist
constants Cy,C4 p >0 such that

H (1 +t)0/2§2 HL%L‘}‘JLZ%J( + H (1 +t)0/2 (I-P)& HL%LZTH;fk (5.54)

o/2 ’vX’ PPN
+ H (1+41¢) ) (4,b,¢)

1/4
dt)
k+8 v/2

+CkH(1+t U/ZAHLlLWLZ +Ck” 1+t U/ZAHLlLZLZ

<Canla+02 @l ([ I0+ral,

—|—CkH(1—|—t U/Z’\HLlLOOL2 H(I P)gQHLleHs*

| Vyl

o (4,b,¢

§

I.)
L7L%

where C 4 \1 depends only on the two constants A and M in the definition of L.

+Cr [ IT=P) G2l ;172 s —l—H
< L L7H vk+o|y+2s/2 <vx> LéL%
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Proof. Similar arguments as in the proof of Lemma 5.11, by dividing (1+1)7/2¢>
into high frequency part of (1+1)7/2g5, the low frequency part of (1+#)7/2(I—
P)$> and the low frequency part of (1+)7/2Pg;, taking linear combination, one
gets

I (1+t)0/2g/\2HL[.1:L‘}°L%,k+ f (1+t)0/2(I_P)gA2HLéL%HZTk

o/2 |VX’
(Vi)

<Caml||(14+)72g; Hi@%z (/TH(lJrf)pgﬂt)!

(a,b,¢)

# e

1/4
2 dt)
k+8—v/2

+CkH(1+t U/ZAHLlLWLZ +CkH 1+t U/ZAHLlLWLZ H(I P)g2||L1L2HS*

1/2
+Cell (187281111213 + C §|<1</0 (1+t)‘7_1||(I—P)gA2||i%kdt) dz

1/2
el ([ )
1/2
+c/ (/ (1407 Y| 5? 2dt) de. (5.55)

We only need to estimate the last three terms on the right hand side above. Denote

r 1/2
- 1+4)77 I—PAZdt) dz,
P= e (/0 G (U 97 21 778 ¢

T 1/2
= [ aor g a) e
&1 \Jo ok

T 1/2
= [ ([ @0 i) e

We first consider J3 and J; for two cases. When 1/(1+t) <75(0v)7+%, by 1 <
2|¢*/(1+]¢|?) for || >1 and

12117, <Cll(I-P)g& |7 2 +C||P82||L2 ,
v,k

we have

1/2
e [ ([lasor gl o) e
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! 112 2 1/2
i / 1+ TIPS dt) d
|621( 0 ( ) 1+’€'|2H gZ“L%,k (:
r 1/2
<C (/ (1+t)¢7||(I—P)g}”?i2 dt) dg
R 0 k+7/2+s

T o |§|2 2 d 1/2d
+C / 14t P3G t) .
lczl( 0 (0 1+|f§|2|| gZHL%+7/2+s ¢

By the fact that ||PgA7_||le <Cy|(a,b,¢)|, one gets

Ja+Ja<Crl|(1+1)72(1-P)g HL%LZTH;*k

+Ck;7H(1+t)"/2 Vsl (a,b,¢) : (5.56)
(Vi) LiL7
When 1/(1+t) >1(v)77%, since ¢ —1>0, a direct calculation shows that
(1_|_t)¢7—1 SCU <U>(U—1)|’y+25\’
which yields
T 1/2
pnsc [ ([ asortia-pglE a)
T 1 18P perz g
+C / 144)7 P dt) d
|§>1< 0 1+ 1+|€‘|2H gZHLik ¢
-~ Vaxl o
< I_P Sk e— 1\ ,b, . 7
<Gyli( )82||L3L2THUMWS‘ 2T Chn <vx>(ﬂ ¢) - (5.57)
Then it follows from (5.56) and (5.57) that
~ Vil o s .
J+]a<Cy||(14+6)72(1=P) G| ;1,2 1o +Cit '(1+t)‘7/2 [Vl (a,b,¢)
¢-T vk <Vx> L%L%-
+Cyll(T=P)&2 || 172 s+ K @(a,é,a) (5.58)
U LgLTHv,k+<7\’y+25\/2 & (Vx> L%L%
For |5 we have
1/2

g -1 12
B [ ([ oo tia-pglta)
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T 1/2

1+6)7 P& 2 dt) d

<[ ([ asnetipaibae) e
T 1/2
1+6)7 &3 dt) d

[ ([ g e

T 1/2
<Js+]st - (/0 (1+t)”—1||1>g3||§%dt) dg. (5.59)

Since J3+ /4 is bounded by (5.58), we only need to estimate the last term on the
right hand side above. We still consider it in two cases. When 1/ (1+t) <5|¢|?, it
is straightforward to get

! L 2

1/2
< |<1(/ (o leR Pl ) g

<cy H(1+t)0/2%(a,é,a)

. (5.60)
LiL%

On the other hand, when 1/(1+t) <#[¢|?, by (14+t)7"1<C, &) ~2(e=1) we have

T 1/2
1+1)77 1| Pg |2 dt) d
[ ([ aenripgiar) i
1/2
§C77/§ 1|§! 4 </ HPg2||7i2dt) dE,
Then an application of Holder’s inequality shows that
T 1/2
1+8)7 | Pg |2 dt) d
[ ([ asoripgiar) ac
1y p/2 1/p
<C / P(fd) (/ P(/ P dt) d) .
- l’]( |<1’€| g ‘<1|€’ || gZH 2 g

Recalling c=3(1—1/p)—2¢, we have 0 < p’o < 3, which leads to

" e ) V.
/|§<1</o (1+) ”PgZHL%dt> dg<Cy

(V)

(a,b,¢) (5.61)

Pr2
Li3
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Then we combine (5.60) and (5.61) to get

! . N

V|
1+t 0'/2 | X
( ) <Vx> LéL%

It follows from (5.58), (5.59) and (5.62) that

Vx|

(@be) (V)

(a,b,¢)

<Cn ' (5.62)

|

Pr2
LiL3

Js<Crl|(1+¢)7/3(1-P) )82 112 b, +Cot

'(1+tf)"/2 <|Vx’> (a,6,¢)

172
LiI3

\V4
O O-P@l, Gy ]

v,k+0|y+2s]/2

(a,b,)

172
Li3

(5.63)

PZ.
LI}

By (5.58), (5.63) and (5.55), we see that (5.54) follows by selecting a sufficiently
small #. The proof of Lemma 5.13 is complete. 0

6 Proof of Theorem 1.2

In order to make the proof clearer, we define the norms in terms of g; and ¢

|@N@:ﬂ3gﬂﬁwﬂ’ Mﬂﬂ“—w &Mhhuﬂﬂ

% 12:H82HL1LwL2*‘Hg2“LPLwL2*‘H 1'+t 0/2/\HL1L“L2’
o

(a,b,¢)

(I P)g2||L1L2Hs*+ ’

172
LLI3

a ,b,0)

Y7

Pr2
Li3

AN v A ~ A
+H(Ht)“”(l—l’)ngLleHs*+ H(1+t>0/2M<a,b,c)
¢rTe (Vi)

The definitions above are mainly for the case vy >0. For soft potentials, we should
define the other group of norms as follows:

'F“(l'kt)péaW‘L§L$Lgk'

172
Li3

Is1llg;:=Igireez,,
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Iotllgg = 18izezmy . +NA+D°G iz

g2l =1llpsepnz, L 1l pieist I (1/i,;/)‘i7/2g/\2}}LéL°T°L%,kr

Ig2lg- = | (I_P)gzHL?:LZTHifkwwzwz H (gj (@) L2
+H(I_P)g/\ZHLé’LZTH;j‘k_i_H%(ﬁ'aé) iz
+H(1+t)”/2(I—P)gEHLngTH;,*k“LH(Ht)m%(ﬁ’g’é) oy

Proof of Theorem 1.2. We divide the proof into three parts. When 0 <+ <1,g; has
exponential time decay in Lg and g» has polynomial decay in LéﬂLg. When 7y <0
and y+2s >0, both g; and g, decay in polynomial time weight. When y+2s <0
and y+2s>—1,¢1 and g» have polynomial decay in time with additional velocity
weight. Now we go to the details of the proof. For k> 22, we first choose A and
M in the definition of Lg (3.4) as in Lemma 3.2 such that Theorem 1.1 holds. Then
we see the constants A and M now depend only on k.

Casel. 0<y<1.
Combining (4.3) and (5.48), it holds that

gl gr+ g1l g +lI82ll 2+ llg2ll -

T
~ A
Sck<‘|g0||L§L§k+/0 He tg1||%(lt+8+25dt

T 2 2 At
+</0 le gl(f)\xgmdf) + e 81\\@%)

2
+Ck(||gl\|;2;;+||81\|;2;;*+Hg2||17g+||gz\|yg*) : (6.1)
Note that we have

T 1/2
I = [ () N ) e
T 1/2
<c( [ [ @ g0 et
T
<c( [ lesiwol

1/2
2
. dt . 6.2
. ) 6.2)
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Then it follows from (6.1), (6.2), (1.11) and the fact 842s < 10 that there exists
a constant € such that if

||<‘>§EJHL€PL§,k+ ||80HXk+10 <€,
then
1810l g+ llgall g+l g2llgs + 82l g < Ck(HngLgLi,k—i_ ||80ka+10)/
which implies (1.13).

Case 2. y<0and y+25>0.

Similar arguments as in (6.1) and (6.2) show that by (4.15), (4.20), (5.26), (5.27)
and (5.48), one has

811 % + 1811l e+ +- g2l g 182

<Ck<||30||L”L /2 +/ H 1+i’ Pgl

+ </0T 11+ g1(8)] ingdt) UZ)

2
+Ce (g1l g5+ st + g2l + 255 )

Hence, by choosing p=3/2, there exists a constant €y such that if

‘|ngLgL%77+||gOHXk+14 geOI
then
Il + e+ Iglig+gallgge <Ce(Igollzz +gollxn)- 63
Case 3. y+2s<0and y+25>—1.
Similarly as above, by (4.15), (4.20), (5.49), (5.53) and (5.54), we have
Ig1lx; +1lg1ll g +lIg2llyy + g2l

+ck/ |a+6Pg | dt

< Ck ||gO || LpL2 X]t+«y/2 pY+8+2s

1/2
+Ck (/ H 1+t pgl( )} X;+a\y+25\/2+8 'y/zdt)

2
+Ce(llg s+l g+ g2 gy + gl )

v,k+v/2—p
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Hence, choosing p=3/2, by the fact that

min{—'y—i—S—i—ZS,%a]'y—i—Zs] +8—%} <14,

there exists a constant €y such that if
HgAOHLgL%_,YJF||80HXkH4 < e,
then
I+t 5 +lig2lly +lgalsp, <Ce(I@ligsz +lsollns)- (69

Hence, we obtain (1.14) by (6.3) and (6.4). The proof of theorem is complete. [
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