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Existence and Multiplicity of Solutions for a
Biharmonic Kirchhoff Equation in R5∗

Ziqing Yuan1,† and Sheng Liu2

Abstract We consider the biharmonic equation ∆2u−
(
a+ b

∫
R5 |∇u|2dx

)
∆u

+ V (x)u = f(u), where V (x) and f(u) are continuous functions. By using a
perturbation approach and the symmetric mountain pass theorem, the ex-
istence and multiplicity of solutions for this equation are obtained, and the
power-type case f(u) = |u|p−2u is extended to p ∈ (2, 10), where it was as-
sumed p ∈ (4, 10) in many papers.
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1. Introduction

We consider the existence and multiplicity of solutions for the following biharmonic
equation ∆2u−

(
a+ b

∫
R5

|∇u|2dx
)
∆u+ V (x)u = f(u),

u(x) = u(|x|) ∈ H2(R5),

(1.1)

where V ∈ C(R5,R), f ∈ C(R,R). Biharmonic equations appear in many areas, for
example, some of these problems arise from different areas of applied mathematics
and physics such as surface diffusion on solids, Mircro Electro-Mechanical systems,
and flow in Hele-Shaw cells (see [7]). Also, this kind of equations can describe the
static deflection of an elastic plate in a fluid and the study of traveling waves in
suspension bridges [6, 15]. These equations have been discussed by many authors.
Indeed, if we replace f(u) by f(x, u) and set V (x) = 0, and a domain Ω ⊂ R3,
problem (1.1) becomes the following biharmonic elliptic equation of Kirchhoff type∆2u−

(
a+ b

∫
R5

|∇u|2dx
)
∆u = f(x, u) in Ω,

u = ∇u = 0 on ∂Ω,

(1.2)
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which is related to the general form of the following stationary analogue of the
equation

utt +∆2u−
(
a+ b

∫
R5

|∇u|2dx
)
∆u = f(x, u), x ∈ Ω. (1.3)

Equation (1.3) is used to describe some phenomena appearing in different engineer-
ing, physical, and other scientific fields, because it is regarded as a good approxima-
tion for describing nonlinear vibrations of beams or plates [2, 4]. For example, on
bounded domains, Zhang and Wei [19] used the mountain pass theorem and linking
theorem to obtain the existence and multiplicity of results for the following problem{

∆2u+ a∆u = λ|u|q−2u+ f(x, u) in Ω,

u = ∇u = 0 on ∂Ω,
(1.4)

where Ω ⊂ RN is a smooth bounded domain, a is a constant, f ∈ C(Ω̄×R,R) and
1 < q < 2. If λ = 0, An and Liu [1] obtained the existence of solutions of (1.4).
By using critical theorems, the multiple results of (1.4) were proved in [9]. Some
related results can be found in [8, 10,16] and the references therein.

As the presence of term
∫
Ω
|∇u|2, problem (1.1) is no longer a pointwise identity

and therefore, this equation is viewed as an elliptic equation coupled with non-
local terms. The competing effect of the non-local term brings some mathematical
challenges to the analysis, and also makes the study of such problems particularly
interesting. Another difficulty lies in proving the boundedness of PS-sequences,
which is very important to use variational methods. In many papers, in order to
get the boundedness of PS-sequences, such as in [11], the authors need to assume
p > 4 in (H2) and the famous AR-condition. While in our paper, we relax p > 2
and drop the AR-condition.

In order to state our main results, we give the following hypotheses.

(H0) V (x) = V (|x|) for any x ∈ R5, and infx∈R5 V (x) := V0 > 0;

(H1) f ∈ C(R,R) and limt→0
f(t)
t = 0;

(H2) lim sup|t|→∞
|f(t)|
|t|p−1 <∞ for some p ∈ (2, 10);

(H3) For α ∈ ( 13 ,
2
5 ), t ̸= 0, f(t)t ≥ (2 + 5α)F (t) > 0, where F (t) =

∫
R5 f(t)dt;

(H4) |f(t)| ≤ c1|t|+ c2|t|s−1, s ∈ (2, 10);

(H5) F (−t) = F (t), ∀t ∈ R.

Note that if b = 0 in problem (1.1), and it transforms into the following bihar-
monic equation

∆2u− a∆u+ V (x)u = f(u), (1.5)

which does not depend on the nonlocal term
∫
R5 |∇u|2 any more. In contrast to

problem (1.5), the nonlocal term makes problem (1.1) more complex in finding
sign-changing solutions. The main difficulties are as follows:

(1) We don’t have the following decomposition

Î(u) = Î(u+) + Î(u−), ⟨I ′(u), u±⟩ = ⟨I ′(u±), u±⟩,

where Î is the energy functional of (1.5) given by

Î(u) =
1

2

∫
R5

(|∆u|2 + a|∇u|2 + V (x)u2)−
∫
R5

F (u).
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Then, we use the method of invariant sets of a descending flow to seek sign-
changing solutions of problem (1.1).

(2) Since the nonlinear term can be written as f(u) = |u|p−2u with p ∈ (2, 4),
it becomes apparent that the associated energy functional lacks a linking
structure. This implies that the direct use of the minimax argument is not
viable. Hence, we must employ a perturbation method by introducing a higher
order term, denoted by µ|u|q−2u, to restore the linking structure.

(3) Without the coercive condition of V and if 2 + 5α in (H3) is smaller than 4,
the method described in [13] is unable to demonstrate the boundedness of PS-
sequences. To address this challenge, we propose introducing an additional
perturbation term λ∥u∥2α2 u on the left side of the equation.

Our main results are the following.

Theorem 1.1. If (H0) − (H4) hold, then problem (1.1) has at least one radially
symmetric ground state sign-changing solution.

Theorem 1.2. If (H0)−(H5) hold, then problem (1.1) has an unbounded sequence
of radially symmetric solutions.

This paper is organized as follows. In Section 2, we present an auxiliary problem
and some necessary preliminary knowledge. We prove our main results in Section
3.

Throughout this paper, we denote by c1, c2, ... different positive constants in
different places.

2. Existence

In order to discuss this problem, we define the following Hilbert space

E =

{
u ∈ H2

r (R5) :

∫
R5

V (x)u2 <∞
}

with the inner product

⟨u, v⟩ =
∫
R5

(∆u∆v + a∇u∇v + V (x)uv)

and the norm

∥u∥ =
√
⟨u, v⟩ =

(∫
R5

|∆u|2 + a|∇u|2 + V (x)u2
) 1

2

.

The associated energy functional I : E → R of problem (1.1) is given by

I(u) =
1

2

∫
R5

(|∆u|2 + a|∇u|2 + V (x)u2) +
b

4

(∫
R5

|∇u|2
)2

−
∫
R5

F (u),

from which we derive that I is a well-defined C1 functional in E, and its derivative
is

⟨I ′(u), v⟩ = ⟨u, v⟩+ b

∫
R5

|∇u|2
∫
R5

∇u∇v −
∫
R5

f(u)v, ∀v ∈ E.
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We now begin to show the existence of ground state sign-changing solutions to
problem (1.1). The lack of the AM-condition makes it is very difficult to prove the
boundedness of PS-sequences of problem (1.1). In order to prove Theorem 1.1, we
need to introduce a perturbed problem, which is used to overcome this difficulty.
Setting α ∈ [ 13 ,

2
5 ), λ, µ ∈ (0, 1] and q ∈ (max{p, 6}, 10), we consider the following

modified problem∆2u−
(
a+ b

∫
R5

|∇u|2dx
)
∆u+ V (x)u = fλ,α,µ(u),

u ∈ E,

(2.1)

where fλ,α,µ(u) = f(u) + µ|u|q−2u− λ
(∫

R5 u
2
)α
u. It is obvious that Iλ,µ is a well

defined functional in E, and its derivative is given by

⟨I ′λ,µ, v⟩ = I ′(u)v + λ

(∫
R5

u2
)α ∫

R5

uv − µ

∫
R5

|u|q−2uv, ∀u, v ∈ E.

From [18] we introduce a Pohoẑaev identity for problem (2.1), which will be used
later.

Lemma 2.1. Let u be a critical point of Iλ,µ in E for (λ, µ) ∈ (0, 1]× (0, 1]. Then,

1

2

∫
R5

|∆u|2 + 3

2
a

∫
R5

|∇u|2 + 5

2

∫
R5

V (x)|u|2 + 1

2

∫
R5

⟨∇V (x), x⟩|u|2

+
3

2
b

(∫
R5

|∇u|2
)1+α

− 5

∫
R5

(
F (u) +

µ

q
|u|q

)
= 0.

For each u ∈ E, we can see that the following equation

∆2v −
(
a+ b

∫
R5

|∇u|2
)
∆v + V (x)v + λ

(∫
R5

u2
)α

v = f(u) + µ|u|q−2u (2.2)

has a unique weak solution. In order to construct the descending flow for Iλ,µ, we
give an auxiliary operator Hλ,µ : u ∈ E, where v = Hλ,µ(u) is the unique weak
solution of problem (2.1). It is evident that demonstrating a solution u for problem
(2.1) is tantamount to proving u as a fixed point of Hλ,µ.

Lemma 2.2. The operator Hλ,µ is well defined and continuous.

Proof Suppose that {un} is a sequence in E converging to u as n → ∞. Let us
define v = Hλ,µ(u) and vn = Hλ,µ(un). Then∫

R5

(∆vn∆w + a∇vn∇w + V (x)vnw) + b

∫
R5

|∇un|2
∫
R5

∇vn∇w

+ λ

(∫
R5

u2n

)α ∫
R5

vnw =

∫
R5

f(un)w + µ

∫
R5

|un|q−2unw, ∀w ∈ E,

(2.3)

and∫
R5

(∆v∆w + a∇v∇w + V (x)vw) + b

∫
R5

|∇u|2
∫
R5

∇v∇w + λ

(∫
R5

u2
)α ∫

R5

vw

=

∫
R5

f(u)w + µ

∫
R5

|u|q−2uw, ∀w ∈ E.

(2.4)
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We need to prove that ∥vn − v∥ → 0 as n → ∞. (H1) and (H2) deduce that for
any ϵ > 0, there is cϵ > 0 such that

|f(t)| ≤ ϵ|t|+ cϵ|t|p−1. (2.5)

Putting w = vn in (2.3), one has

∥vn∥2 + b

∫
R5

|∇un|2
∫
R5

|∇vn|2 + λ∥un∥2α2
∫
R5

v2n

≤
∫
R5

(ϵ|un|+ cϵ|un|p−1)|vn|+ µ

∫
R5

|un|q−1|vn|,

which means that from Hölder inequality, {vn} is bounded in E. Assuming that
vn ⇀ v0 in E and vn → v0 in Lr(R5) for r ∈ (2, 10) after extracting a subsequence,
by (2.3), we derive∫

R5

(∆v0∆w + a∇v0∇w + V (x)v0w) + b

∫
R5

|∇u|2
∫
R5

∇v0∇w

+ λ

(∫
R5

u2
)α ∫

R5

v0w =

∫
R5

f(u)w + µ

∫
R5

|u|q−2uw, ∀w ∈ E.

(2.6)

Thus, v0 is a weak solution of equation (2.2), implying that v = v0 due to its
uniqueness. Additionally, by testing with w = vn − v in equations (2.3) and (2.4),
and then subtracting, we obtain the following expression:

∥vn − v∥2 + b

∫
R5

|∇un|2
∫
R5

|∇(vn − v) + λ∥un∥2α2
∫
R5

|vn − v|2

=b

∫
R5

(|∇un|2 − |∇u|2)
∫
R5

∇v∇(vn − v) + λ(∥un∥2α2 − ∥u∥2α2 )

∫
R5

v(vn − v)

+

∫
R5

(f(un)− f(u))(vn − v) + µ

∫
R5

(|un|q−2un − |u|q−2u)(vn − v),

(2.7)
which follows from Sobolev’s embedding inequality that vn → v in E as n → ∞.
Thus, Hλ,µ is continuous.

Lemma 2.3. (i) I ′λ,µ(u)(u−Hλ,µ(u)) ≥ ∥u−Hλ,µ(u)∥2 for all u ∈ E,

(ii) ∥I ′λ,µ(u)∥ ≤ ∥u−Hλ,µ(u)∥(1 + c1∥u∥2 + c2∥u∥2α) for all u ∈ E, where c1 and
c2 are two positive constants.

Proof Noting that Hλ,µ is a solution of (2.1), we derive∫
R5

(∆Hλ,µ(u)∇(u−Hλ,µ(u)) + a∇Hλ,µ(u)∇(u−Hλ,µ(u))

+ V (x)Hλ,µ(u)(u−Hλ,µ(u)) + b

∫
R5

|∇u|2
∫
R5

∇Hλ,µ(u)

+ µ

∫
R5

|u|q−2u(u−Hλ,µ(u)) + λ∥u∥2q2
∫
R5

Hλ,µ(u)(u−Hλ,µ(u))

=

∫
R5

f(u)(u−Hλ,µ(u)) + µ

∫
R5

|u|q−2u(u−Hλ,µ(u)),
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and

I ′λ,µ(u)(u−Hλ,µ(u)) =

∫
R5

∆u∆(u−Hλ,µ(u)) + a∇u∇u∇(u−Hλ,µ(u))

+ V (x)u(u−Hλ,µ(u)) + b

∫
R5

|∇u|2
∫
R5

∇u∇(u−Hλ,µ(u))

+ λ∥u∥2α2
∫
R5

u(u−Hλ,µ(u))−
∫
R5

f(u)(u−Hλ,µ(u))

− µ

∫
R5

|u|q−2u(u−Hλ,µ(u))

= ∥u−Hλ,µ(u)∥2 + b

∫
R5

|∇u|2
∫
R5

|∇(u−Hλ,µ(u))|2

+ λ∥u∥2α2
∫
R5

u(u−Hλ,µ(u)),

which means that I ′λ,µ(u)(u−Hλ,µ(u)) ≥ ∥u−Hλ,µ(u)∥2 for all u ∈ E.
Notice that for any φ

I ′λ,µ(u)φ =

∫
R5

[∆(u−Hλ,µ(u))∆φ+ a∇(u−Hλ,µ(u))∇φ+ V (x)(u−Hλ,µ(u))φ]

+ b

∫
R5

|∇u|2
∫
R5

∇(u−Hλ,µ(u))∇φ+ λ∥u∥2α2
∫
R5

(u−Hλ,µ(u))φ.

Then ∥I ′λ,µ(u)∥ ≤ ∥u−Hλ,µ(u)∥(1 + c1∥u∥2 + c2∥u∥2α).

Lemma 2.4. For fixed (λ, µ) ∈ (0, 1]× (0, 1] and for c < d and τ > 0, there exists
δ > 0 (which depends on λ and µ) such that ∥u−Hλ,µ(u)∥ ≥ δ if u ∈ E, Iλ,µ ∈ [c, d]
and ∥I ′λ,µ(u)∥ ≥ τ .

Proof Fixing η ∈ (4, q), then for u ∈ E, we have

Iλ,µ(u)−
1

η
⟨u, u−Hλ,µ(u)⟩ =

η − 2

2η
∥u∥2 + b

η

∫
R5

|∇u|2
∫
R5

(∇u−∇Hλ,µ(u))∇u

+ λ
η − 2(1 + α)

2η(1 + α)
∥u∥2α2 +

λ

η
∥u∥2α

∫
R5

u(u−Hλ,µ(u))

+

∫
R5

(
1

η
f(u)u− F (u)

)
+
η − 4

4η
b

(∫
R5

|∇u|2
)2

+
q − η

qη

∫
R5

|u|q.

Noting |f(t)| ≤ ϵ|t|+ cϵ|t|p−1,

|Iλ,µ(u)|+
1

η
∥u∥∥u−Hλ,µ(u)∥ ≥

(
η − 2

2η
− ϵc

)
∥u∥2

+
b

η

∫
R5

|∇u|2
∫
R5

(∇u−∇Hλ,µ(u))∇u

+
η − 4

4η
b

(∫
R5

|∇u|2
)2

+
q − η

qη
µ

∫
R5

|u|q

+ λ
η − 2(1 + α)

2η(1 + α)
∥u∥2α+2

2

− cϵ∥u∥pp +
λ

η
∥u∥2α2

∫
R5

u(u−Hλ,µ(u)).
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Then,

∥u∥2 + b

(∫
R5

|∇u|2
)2

+ µ∥u∥qq + λ∥u∥2α+2
2 − cϵ∥u∥pp

≤c(|Iλ,µ|+ ∥u∥∥u−Hλ,µ(u)∥+
λ

η
∥u∥2α2

∫
R5

|u||u−Hλ,µ(u)|

+
b

η

∫
R5

|∇u|2
∫
R5

|∇u−∇Hλ,µ(u)||∇u|).

(2.8)

It follows from Sobolev’s inequality and Hölder’s inequality that

b

η

∫
R5

|∇u|2
∫
R5

|∇u−∇uHλ,µ||∇u| ≤ c

(∫
R5

|∇u|2
)
∥u∥∥u−Hλ,µ(u)∥,

and
λ

η
∥u∥2α2

∫
R5

|u||u−Hλ,µ(u)| ≤ c∥u∥2α2 ∥u∥∥u−Hλ,µ(u)∥. (2.9)

From (2.8), (2.9) and Young’s inequality, we have

∥u∥2 + b

(∫
R5

|∇u|2
)2

+ µ∥u∥qq + λ∥u∥2α+2
2 − cϵ∥u∥pp

≤ c(|Iλ,µ|+ ∥u∥∥u−Hλ,µ(u)∥+ ∥u∥2(∥u−Hλ,µ(u)∥2 + ∥u∥4α2 )).

(2.10)

Proceeding by contradiction, assume that there exists {un} ⊂ E with Iλ,µ(un) ∈
[c, d] and ∥I ′λ,µ∥ ≥ τ such that ∥u−Hλ,µ(u)∥ → 0 as n→ ∞. Then, for sufficiently
large n, we deduce that

∥u∥2 + b

(∫
R5

|∇u|2
)2

+ µ∥u∥qq + λ∥u∥2α+2
2 − cϵ∥u∥pp ≤ c(1 + ∥u∥4α2 ). (2.11)

Now, we assert that {un} is a bounded sequence in E. Otherwise, for ∥un∥ → ∞,
from (2.11), one has

∥u∥2 + b

(∫
R5

|∇u|2
)2

+ µ∥u∥qq + λ∥u∥2α+2
2 − cϵ∥u∥pp ≤ c. (2.12)

It should be noted that, for any c1 > 0, there exists a corresponding value of c2 > 0
such that the inequality t1+α > c1t − c2 holds. By applying this inequality to the
equation t = ∥un∥22 in (2.12), we can derive the following result:

∥un∥2 + b

(∫
R5

|∇un|2
)2

+

∫
R5

(µ|un|q + λc1|un|2 − cϵ|un|p)− c2 ≤ c. (2.13)

Noting that 2 < p < q, we can select a sufficiently large c1 such that the inequality
λc1|t|2+µ|t|r−cϵ|t|p > 0 holds for any t ∈ R. Consequently, (2.13) leads to a contra-
diction. Hence, our claim stands true, indicating that the sequence {un} is bounded
in E for any fixed (λ, µ) ∈ (0, 1] × (0, 1]. Combining this claim with Lemma 2.3,
we can conclude that ∥I ′λ,µ(un)∥ → 0 as n→ ∞, which presents a contradiction. □

In order to obtain sign-changing solutions, we begin by defining the positive and
negative cones as follows: P+ := {u ∈ E : u ≥ 0} and P− := {u ∈ E : u ≤ 0}.Next,
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for any ϵ > 0, we define P+
ϵ as the set of elements in E whose distance to P+

is less than ϵ. Similarly, P−
ϵ is the set of elements in E whose distance to P− is

less than ϵ. Here, the distance between an element u and a set p± is given by
dist(u, p±) = infv∈P± ∥u−v∥. Importantly, it should be noted that P−

ϵ = −P+
ϵ .Let

us denote W = P+
ϵ ∩ P−

ϵ . We can easily observe that W is a symmetric and open
subset of E, and E \W contains only sign-changing functions. Furthermore, we
define the critical points of Iλ,µ as K = {u ∈ E : I ′λ,µ(u) = 0}, and we let E0 denote
the set obtained by removing these critical points from E. For any c ∈ R, we define
Kc = {u ∈ E : Iλ,µ(u) = c, I ′λ,µ(u) = 0} and Icλ,µ(u) = {u ∈ E : Iλ,µ(u) ≤ c}.

In the following, we aim to show that for sufficiently small ϵ, any sign-changing
solution of (2.1) lies within the set E \W .

Lemma 2.5. There exists ϵ0 > 0 such that for ϵ ∈ (0, ϵ0),

(i) Hλ,µ(∂P
−
ϵ ) ⊂ P−

ϵ and every nontrivial solution u ∈ P−
ϵ is negative;

(ii) Hλ,µ(∂P
+
ϵ ) ⊂ P+

ϵ and every nontrivial solution u ∈ P+
ϵ is positive.

Proof We only need to prove that Hλ,µ(∂P
−
ϵ ) ⊂ P−

ϵ , and the other case is similar.
For u ∈ E, define v := Hλ,µ(u). Since dist(v, P−) ≤ ∥v+∥, by Sobolev’s inequality
and (f1)− (f2), for any ϵ > 0, there exists cϵ > 0 such that

dist(v, P−)∥v+∥ ≤ ∥v+∥2 = ⟨v, v+⟩

≤
∫
R5

f(u)v+ − b

∫
R5

|∇u|2
∫
R5

∇v∇v+ +

∫
R5

|u|q−2uv+

− λ∥u∥2α2
∫
R5

vv+

≤
∫
R5

f(u+)v+ +

∫
R5

|u+|q−2u+v+

≤
∫
R5

(ϵu+v+ + cϵ|u+|p−1v+) +

∫
R5

|u+|q−2u+v+

≤ c[ϵdist(u, P−) + cϵdist(u, P
−)p−1 + dist(u, P−)q−1]∥v+∥,

which means that

dist(v, P−) ≤ c[ϵdist(u, P−) + cϵdist(u, P
−)p−1 + dist(u, P−)q−1].

Remember that there exists ϵ0 > 0 such that for ϵ ∈ (0, ϵ0), and then

dist(Hλ,µ(u), P
−) = dist(v, P−) < ϵ.

Therefore, Hλ,µ(u) ∈ P−
ϵ , for any u ∈ P−

ϵ . □

Since Hλ,µ may not be locally Lipschitz continuous, it needs to construct a
locally Lipschitz continuous vector field which inherits its properties. Using the
proof of Lemma 2.1 in [3], we obtain the following lemma.

Lemma 2.6. There exists a locally Lipschitz continuous operator Tλ,µ : E → E
such that

(i) ⟨H ′
λ,µ(u), u− Tλ,µ⟩ ≥ 1

2∥u−Hλ,µ∥2;

(ii) 1
2∥u− Tλ,µ∥2 ≤ ∥u−Hλ,µ∥2 ≤ 2∥u− Tλ,µ∥2;

(iii) Hλ,µ(∂P
±
ϵ ) ⊂ P±

ϵ , ∀ϵ ∈ (0, ϵ0);
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(iv) if Iλ,µ is even, then Tλ,µ is odd.

In the following, we claim that the functional Iλ,µ satisfies the (PS)-condition.

Lemma 2.7. Assume that there exist {un} ⊂ E and c ∈ R, such that Iλ,µ(un) → 0
for any fixed (λ, µ) ∈ (0, 1] × (0, 1] as n → ∞. Then, there exists a convergent
sequence {un}, denoted as {un} for simplicity, such that un → u in E, with u ∈ E.

Proof For η ∈ (4, p), we derive

ηIλ,∥un∥2+µ(un)− ⟨I ′λ,µ, un⟩

=
η − 2

2
+
b(η − 4)

4

(∫
R5

|∇un|2
)2

+ λ
η − 2(1 + α)

2(1 + α)
∥un∥2(1+α)2

+

∫
R5

(f(un)un − ηF (un)) + µ
q − η

η

∫
R5

|un|q.

As argued in the proof of Lemma 2.4, {un} is bounded in E. Passing to a sub-
sequence, suppose that there exists u ∈ E such that un ⇀ u in E, and un → u
strongly in Lr(R5) for r ∈ (2, 10).

Since
⟨I ′λ,µ(un)− I ′λ,µ, un − u⟩

=∥un − u∥2 + b

∫
R5

|∇un|2
∫
R5

|∇(un − u)|2

+ b

(∫
R5

|∇un|2 −
∫
R5

|∇u|2
)∫

R5

∇u∇(un − u)

−
∫
R5

(f(un)− f(u))(un − u) + λ∥un∥2α2
∫
R5

(un − u)2

+ λ(∥un∥2α2 − ∥u∥2α2 )

∫
R5

u(un − u)

− µ

∫
R5

(|un|q−2un − |u|q−2u)(un − u),

the boundedness of {un} in E deduces that

b

(∫
R5

|∇un|2 −
∫
R5

|∇u|2
)∫

R5

∇u∇(un − u) → 0,

λ(∥un∥2α2 − ∥u∥2α2 )

∫
R5

u(un − u) → 0

as n→ ∞. Similary,

µ

∫
R5

(|un|q−2un − |u|q−2u)(un − u) → 0 as n→ ∞,

from which un → u in E as n→ ∞.
Now, we give a deformation lemma to functional Iλ,µ whose proof is similar

to [13, Lemma 3.6].

Lemma 2.8. (Deformation lemma) Let S ⊂ E and c ∈ R such that ∀u ∈ I−1
λ,µ([c−

2ϵ0, c+2ϵ0])∩S2δ, ∥I ′λ,µ(u)∥ ≥ ϵ0, where ϵ0 is given in Lemma 2.5 and S2δ := {u ∈
S, dist(u, S) < 2δ}. Then for ϵ1 ∈ (0, ϵ0) there exists γ ∈ C([0, 1]×E,E) such that

(i) γ(t, u) = u if t = 0 or if u ̸∈ I−1
λ,µ([c− 2ϵ1, c+ 2ϵ1]);
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(ii) γ(1, Ic+ϵ1λ,µ ∩ S) ⊂ Ic−ϵ1λ,µ ;

(iii) Iλ,µ(γ(·, u)) is not increasing for all u ∈ E;

(iv) γ(t, P+
ϵ ) ⊂ P+

ϵ , γ(t, P−
ϵ ) ⊂ P−

ϵ , ∀t ∈ [0, 1];

(v) if f is odd, then γ(t, ·) is odd, ∀t ∈ [0, 1].

In the following we introduce a critical point theorem. Let P,Q ⊂ E be open
sets, M = P ∩Q, Θ = ∂P ∩ ∂Q and W = P ∪Q.

Definition 2.1( [14]){P,Q} is called an admissible family of invariant sets with
respect to J at level c, provided that the following deformation property holds: if
Kc \ W = ∅, then there exists ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0), there exists
η ∈ C(E,E) satisfying

(i) γ(P̄ ) = P̄ , γ(Q̄) = Q̄;

(ii) γ|Jc−2ϵ = id;

(iii) γ(Jc+ϵ\W ) ⊂ Jc−ϵ.

Theorem 2.1. ( [14]) Assume that {P,Q} is an admissible family of invariant
sets with respect to J at any level c ≥ c∗ := infu∈Θ J(u), and there exists a map
ψ0 : ∆ → E satisfying

(i) ψ0(∂1∆) ⊂ P and ψ0(∂2∆) ⊂ Q,

(ii) ψ0(∂1∆) ∩M = ∅,
(iii) supu∈ψ0(∂∆) J(u) < c∗,

where ∆ = {(t1, t2) ∈ R2 : t1, t2 > 0, t1 + t2 ≤ 1}, ∂1∆ = {0} × [0, 1], ∂2∆ =
[0, 1] × {0} and ∂0∆ = {(t1, t2) ∈ R2 : t1, t2 > 0, t1 + t2 = 1}. Define c =
infψ∈Γ supu∈ψ(∆)\W J(u), where Γ := {ψ ∈ C(∆, E) : ψ(∂1∆) ⊂ P,ψ(∂2∆) ⊂
Q,ψ|∂0∆ = ψ0|∂0∆}. Then c ≥ c∗ and Kc \W ̸= ∅.

In order to employ Theorem 2.1 to prove the existence of sign-changing solutions
to problem (2.1), setting P = P+

ϵ , Q = P−
ϵ and J = Iλ,µ, we need to show that

{P+
ϵ , P

−
ϵ } is an admissible family of invariance sets for the functional Iλ,µ at any

level c ∈ R. Since Kc ⊂ E, if Kc \W = ∅, the functional Iλ,µ satisfies the (PS)-
condition and Kc is compact, one has 2δ := dist(Kc, ∂W ) > 0.

Lemma 2.9. For any r ∈ [2, 10], there exists m > 0 independent of ϵ such that
∥u∥q ≤ mϵ for u ∈M = P+

ϵ ∩ P−
ϵ .

Lemma 2.10. If ϵ > 0 is sufficiently small, then Iλ,µ(u) ≥ ϵ2

4 for all u ∈ Θ =

∂P+
ϵ ∩ ∂P−

ϵ , i.e., c∗ ≥ ϵ2

4 .

The proof of the above two lemmas are similar to that in [12]. Here, we omit
their proofs.

Proof of Theorem 1.1. We use Theorem 2.1 to prove the existence of sign-
changing solutions to problem (2.1). Set X = E, P = P+

ϵ , Q = P−
ϵ , and J = Iλ,µ.

Choose S = E\W in Lemma 2.8, then we can obtain that {P+
ϵ , P

−
ϵ } is an admissible

family of invariant sets for the functional Iλ,µ at any level c ∈ R. Now, we divide it
into three steps.
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Step 1. Choose φ1, φ2 ∈ C∞
0 (B1(0)) such that supp(φ1) ∩ supp(φ2) = ∅ and

φ1 < 0, φ2 > 0, where Br(0) = {x ∈ R5 : |x| < r}. For (t, s) ∈ ∆, define
φ̃(t, s) = R2[tφ1(R·)+ sφ2(R·)], where R > 0 will be determined later. It is easy to
see that for t, s ∈ [0, 1], φ̃(0, s)(·) = R2sφ2(R·) ∈ P+

ϵ and φ̃(t, 0) = R2tφ1(R·) ∈ P−
ϵ .

By virtue of Lemma 2.10, for small ϵ > 0,

Iλ,µ(u) ≥
ϵ2

4
for small u ∈ Θ = ∂P+

ϵ ∩ ∂P−
ϵ , (λ, µ) ∈ (0, 1]× (0, 1].

Thus, c∗ = infu∈Θ Iλ,µ(u) ≥ ϵ2

4 for any (λ, µ) ∈ (0, 1] × (0, 1]. Let ut = φ̃(t, 1 − t),
for t ∈ [0, 1]. Note that

ρ = min{∥tφ1 + (1− t)φ2∥2 : 0 ≤ t ≤ 1} > 0.

Then ∥ut∥22 ≥ ρR−1 for u ∈ φ̃(∂0△). It follows from Lemma 2.10 that φ̃(∂0△) ∩
P+
ϵ ∩ P−

ϵ = ∅. A direct computation shows that∫
R5

|∇ut|2 = R

∫
R5

(t2|∇φ1|2 + (1− t)2|∇φ2|2) =: RB1(t),∫
R5

|∆ut|2 = R3

∫
R5

(t2|∆φ1|2 + (1− t)2|∆φ2|2) =: R3B2(t),∫
R5

V (x)|ut|2 ≤ R−1 max
x∈B1(0)

V (x)

∫
R5

(t2|φ1|2 + (1− t)2|φ2|2) =: R−1B3(t),∫
R5

|ut|q = R2q−5

∫
R5

(tq|φ1|q + (1− t)q|φ2|q) =: R2q−5Bq(t),(∫
R5

|ut|2
)1+α

= R−(1+α)

(∫
R5

(t2|φ1|2 + (1− t)2|φ2|2)
)(1+α)

=: R(1+α)B1+α
3 (t),∫

R5

|ut|2+5α = R5α−1

∫
R5

(
t2+5α|φ1|2+5α + (1− t)2+5α|φ2|2+5α

)
=: R5α−1B2+5α(t),

where q ∈ (max{p, 6}, 10). Since F (t) ≥ c1|t|2+5α − c2 for any t ∈ R,

I(ut) =
1

2

∫
R5

(|∆ut|2 + a|∇ut|2 + V (x)u2t ) +
b

4

(∫
R5

|∇ut|2
)2

−
∫
R5

F (u)

+
1

2(1 + α)
∥ut∥2(1+α)2 − µ

q

∫
R5

|ut|q

≤ R3

2
B2(t) +

aR

2
B1(t) +

1

2R
B3(t) +

b

4
R2B2

2(t) +
1

2R(1+α)(1 + α)
B1+α

3 (t)

− c1R
5α−1B2+5α(t) + cc2R

5 − µR2q−5

q
Bq(t)

→ −∞ as R→ +∞
for any fixed (α, µ) ∈ (0, 1]× (0, 1], we can choose R large enough such that

sup
u∈φ̃(∂0∆)

Iλ,µ(u) < c∗ := inf
u∈Θ

Iλ,µ(u).

Since Iλ,µ satisfies the assumptions of Theorem 2.1, the number

cλ,µ = inf
φ∈Γ

sup
u∈φ(∆)\W

Iλ,µ(u)
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is a critical value of Iλ,µ satisfying cλ,µ ≥ c∗. Therefore, there exists uλ,µ ∈ \(P+
ϵ ∪

P−
ϵ ) such that Iλ,µ(uλ,µ) = cλ,µ and I ′λ,µ(uλ,µ) = 0 for (λ, µ) ∈ (0, 1]× (0, 1].

Step 2. Passing to the limit as λ→ 0 and µ→ 0, according to the definition of
cλ,µ, we know that for any (λ, µ) ∈ (0, 1]× (0, 1],

cλ,µ ≤ cR := sup
u∈φ̃(∆)

I1,0(u) <∞, (2.14)

where cR is independent of (λ, µ) ∈ (0, 1] × (0, 1]. Without loss of generality, let
λ = µ. Take a sequence {λn} satisfying λn → 0+, then there exists a sequence of
sign-changing critical points {uλn

} of Iλn,µn
, which is still denoted by itself, and

Iλn,µn
(un) = cλn,µn

. Now, we prove that {un} is bounded in E. According to the
definition of Iλ,µ, one has

cλn,µn =
1

2

∫
R5

(|∆un|2 + a|∇un|2 + V (x)u2n) +
b

4

(∫
R5

|∇un|2
)2

−
∫
R5

F (un) +
1

2(1 + α)
∥un∥2(1+α)2 − µ

q

∫
R5

|un|q,
(2.15)

1

2

∫
R5

|∆un|2 +
3

2
a

∫
R5

|∇un|2 +
5

2

∫
R5

V (x)|un|2 +
1

2

∫
R5

⟨∇V (x), x⟩|un|2

+
3b

2
b

(∫
R5

|∇un|2
)2

+
5λ

2

(∫
R5

u2n

)1+α

− 5

∫
R5

(F (un) +
µ

q
|un|q) = 0.

(2.16)

Multiplying (2.15), (2.14) and (2.16) by 2,-1, and α respectively and adding them
up

2cλn,µn =
α

2

∫
R5

|∇un|2 +
3α

2
a

∫
R5

|∇un|2 +
5α

2

∫
R5

V (x)|un|2

+

(
λ

1 + α
+

3

2
λ

)
∥un∥2(1+α)2 +

α

2

∫
R5

⟨∇V (x), x⟩|un|2

+

(
3α

2
− 1

2

)(∫
R5

|∇un|2
)2

+

∫
R5

[f(un)un − (2 + 5α)F (un)]

+ µ

∫
R5

(
1− 1

q

)
|u|q.

By condition (H3), we have

10cR >
7

2

∫
R5

|∆un|2 +
5

2

∫
R5

|∇un|2,

from which ∫
R5

|∆un|2 < c,

∫
R5

|∇un|2 < c. (2.17)

On the other hand, from (2.14), (2.15) and hypotheses (H0), (H1) and (H2),
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we infer that for all small ξ > 0 such that

cR >
1

2

∫
R5

|∆un|2 +
a

2

∫
R5

|∇un|2 +
1

2

∫
R5

V (x)|un|2 +
∫
R5

(F (un)−
µ

q
|un|q)

>
1− ξ

2

∫
R5

V (x)|un|2 − cξ

∫
R5

u10n − 1

q

∫
R5

|un|q

>
1− ξ

2

∫
R5

V (x)|un|2 − cξS
2∗

(∫
R5

|∆un|2
) 2∗

2

− 1

q

∫
R5

|un|q.

(2.18)
From interpolation inequation, Hölder’s inequality and Young’s inequality, we ob-
tain that for ξ > 0, there is cξ > 0 such that∫

R5

|un|q ≤
(∫

R5

|∇un|2
)− q

8+
5
4
(∫

R5

|un|2∗
) 5

22∗ ( q
2−1)

≤ ϵ

(∫
R5

|∇un|2
)− q

16+
5
8

+ cξ

(∫
R5

|un|2∗
) 5

42∗ ( q
2−1)

≤ ϵ

(∫
R5

|∇un|2
)− q

16+
5
8

+ cξS
5
4 (

q
2−1)

(∫
R5

|∆un|2∗
) 5

8 (
q
2−1)

.

(2.19)

Combining (2.17), (2.18) and (2.19), we immediately derive that {un} is bounded
in E. In view of (2.14) and Lemma 2.10, we infer that

lim
n→∞

I(un) = lim
n→∞

(
Iλ,µ(un)−

λn
2(1 + α)

∥un∥2(1+α)2 +
µn
q

∫
R5

|un|q
)

= lim
n→∞

cλn,µn
= c∗ >

ϵ2

4
.

Furthermore, for any ψ ∈ C∞
0 (R5),

lim
n→∞

I ′(un)ψ = lim
n→∞

(
I ′λn,µn

(un)ψ − λn∥un∥2α2
∫
R5

unψ + µn

∫
R5

|un|q−2unψ

)
= 0,

which means that {un} is a bounded PS-sequence for I at level c∗. Thus, there exists
u∗ ∈ E such that un ⇀ u∗ in Lr(R5) for r ∈ (2, 2∗). The similar argument of Lemma
2.7 leads to I ′(u∗) = 0 and un ⇀ u∗ in E as n → ∞. Hence, un ∈ E \ (P+

ϵ ∪ P−
ϵ ),

and then u∗ is a sign-changing solution of (2.1).
Step 3. Define

c̄ := inf
u∈Ω

I(u), Ω := {u ∈ E \ {0}, I ′(u) = 0, u± ̸≡ 0}.

Based on Step 2, we have Ω ̸= ∅ and c̄ ≤ c∗, where c∗ is given in Step 2. From the
definition of c̄, there is {un} ⊂ E such that I(un) → c̄ and I ′(un) = 0. Using the
earlier arguments, we can obtain that {un} is bounded in E. Arguing as in Lemma
2.7, there exists a nontrivial u ∈ E such that I(u) = c̄ and I ′(u) = 0. Furthermore,
we deduce from ⟨I ′(un), u±n ⟩ = 0 that for any ϵ > 0 there exists cϵ > 0 such that

c

(
∥u±n ∥2p +

∫
R5

|u±n |2
)

≤ ∥u±n ∥2
∫
R5

f(un)u
±
n =

∫
R5

f(u±n )u
±
n

≤ ϵ

∫
R5

|u±n |2 + cϵ

∫
R5

|u±n |p ≤ ϵ∥u±n ∥22 + cϵ∥u±n ∥,
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which together with the boundedness of {un} in E, implies that ∥u±n ∥p ≥ c. Hence
∥u±n ∥ ≥ c, and then u is a ground state solution to problem (1.1). Thus, the proof
is complete.

3. Multiplicity

In this section, we show that problem (1.1) has an unbounded sequence of critical
values. In order to obtain infinitely many solutions, we introduce the symmetric
mountain pass theorem [17].

Lemma 3.1. Let E be a real Banach space and I ∈ C1(E,R) with I even. Suppose
I(0) = 0 and I satisfies (PS)-condition and

(i) there exist constants ρ, α > 0 such that I|∂Bρ ≥ α;

(ii) for all finite dimensional subspaces Ẽ ⊂ E, there exists an R = R(Ẽ) such
that I(u) ≤ 0 for u ∈ Ẽ \BR(Ẽ).

Then I possesses an unbounded sequence of critical values.

Proof of Theorem 1.2. Since E is a reflexive and separable Banach space, there
exist ei ⊂ E and e∗i ⊂ E∗ such that

E = span{ei|i = 1, 2, ..., }, E∗ = span{e∗i |i = 1, 2, ..., },

and

⟨e∗i , ej⟩ =

{
1, i = j,

0, i ̸= j.

For the sake of convenience, we set Ei = span{ei}, Yk =
⊕k

i=1Ei and Zk =⊕∞
i=k Ei. It is easy to see that Iλ,µ(0) = 0, and Iλ,µ is even. From (H1) and (H4),

we derive
|F (u)| ≤ ϵ

2
|u|2 + c|u|s.

Hence,

Iλ,µ(u) ≥
1

2

∫
R5

|∆u|2 + a

2

∫
R5

|∇u|2 + 1

2

∫
R5

V (x)|u|2 + λ

2(1 + α)

(∫
R5

u2
)1+α

+
b

4

(∫
R5

|∇u|2
)2

− ϵ

2

∫
R5

|u|2 − c

∫
R5

|u|s − µ

q

∫
R5

|u|q

≥
(
1

2
− ϵ

2
c

)
∥u∥2 − c∥u∥s − c∥u∥q.

Since 2 < s and 2 < q, there exists ρ0 > 0 such that for all 0 < ρ < ρ0 we derive
inf{Iλ,µ(u) : ∥u∥ = ρ} > 0. We now assert that Iλ,µ → −∞ as ∥u∥ → +∞, ∀u ∈ Yk.
By virtue of hypothesis (H3), we have

Iλ,µ(u) =
1

2

∫
R5

|∆u|2 + a

2

∫
R5

|∇u|2 + 1

2

∫
R5

V (x)|u|2 + λ

2(1 + α)

(∫
R5

u2
)1+α

+
b

4

(∫
R5

|∇u|2
)2 ∫

R5

F (u)− µ

q

∫
R5

|u|q

≤1

2
∥u∥2 + λ

2(1 + α)
∥u∥2(1+α)2 +

b

4
∥∇u∥42 − c∥u∥2+5α

2+5α − µ

q
∥u∥qq.
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Since Yk is a finite-dimensional space, all norms of Yk are equivalent. Given q >
2+5α and q > 4, it follows that Iλ,µ(u) → −∞ as ∥u∥ → +∞. Notably, Iλ,µ(0) = 0
and Iλ,µ is an even function. By considering V = Yk(dim Yk = k) and Y = E
(codim Y = 0), as well as utilizing the symmetric mountain pass theorem and
Lemma 2.7, we can deduce that for any fixed µ ∈ (0, 1] and j ≥ 2, there exists a
sequence {uλ,µ ⊂ E} such that Ijλ,µ(u

j
λ,µ) = cjλ,µ, I

′
λ,µ(u

j
λ,µ) = 0, and cjλ,µ → ∞.

Following a similar approach to the proof of Theorem 1.1, for any fixed j ≥ 2, the
sequence {ujλ,µ}λ,µ∈(0,1] is bounded in E, which implies the existence of a constant

c > 0 independent of λ and µ such that ∥ujλ,µ∥ ≤ c. Without loss of generality, let

us assume that ujλ,µ ⇀ uj∗ in E as µ→ 0+. Since Iλ,µ(u) ≤ I1,0(u), we can further

assume that cjλ,µ → cj0,0 as λ, µ → 0+. Consequently, we can show that ujλ,µ → uj∗

in E as λ, µ → 0+, where uj∗ satisfies I ′(uj∗) = 0 and I(uj∗) = cj0,0. We claim that

cj0,0 → ∞ as j → ∞.

Claim: There holds cj0,0 → ∞ as j → ∞.
Hypotheses (H1) and (H2) deduce that

Iλ,µ(u) ≥
1

2

∫
R5

|∆u|2 + a

2

∫
R5

|∇u|2 + 1

2

∫
R5

V (x)|u|2 −
∫
R5

F (u)− 1

q

∫
R5

|u|q

≥1

2

∫
R5

|∆u|2 + a

2

∫
R5

|∇u|2 + 1

2

∫
R5

V (x)|u|2 −
∫
R5

(
V0
4
u2

+
cV0

q
|u|q

)
− 1

q

∫
R5

|u|q

≥1

2

∫
R5

(|∆u|2 + a|∇u|2 + Ṽ (x)|u|2)− c

q

∫
R5

|u|q := H(u),

where Ṽ (x) := V (x) − V0

2 and cV0 , c > 0 are constants. Note that the bounded-
ness of PS-sequence is not hard to verify for energy functionals which satisfy the
famous AR-condition. As a result, with some suitable modification, the methods of
functional Iλ,µ are still valid for H. Without any perturbation, this means that the
functional H satisfies all conditions of Lemma 3.1, and has an unbounded sequence
of critical values denoted by dj , i.e., dj → +∞ as j → ∞. Since cjλ,µ > dj , taking

λ, µ → 0+, we immediately obtain cj0,0 > dj → +∞ as j → +∞. Thus, problem
(1.1) has infinitely many sequence of critical values, which completes the proof.
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