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Abstract. In this paper, we propose a numerical methodology for finding the closed-loop Nash equilibrium
of stochastic delay differential games through deep learning. These games are prevalent in finance and eco-
nomics where multi-agent interaction and delayed effects are often desired features in a model, but are intro-
duced at the expense of increased dimensionality of the problem. This increased dimensionality is especially
significant as that arising from the number of players is coupled with the potential infinite dimensionality
caused by the delay. Our approach involves parameterizing the controls of each player using distinct re-
current neural networks. These recurrent neural network-based controls are then trained using a modified
version of Brown’s fictitious play, incorporating deep learning techniques. To evaluate the effectiveness of
our methodology, we test it on finance-related problems with known solutions. Furthermore, we also develop
new problems and derive their analytical Nash equilibrium solutions, which serve as additional benchmarks
for assessing the performance of our proposed deep learning approach.
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1 Introduction

Stochastic delay differential games combine game theory and stochastic control problems
with delay. These control problems encompass various models applicable to economics,
advertising, and finance. For instance, in determining a firm’s optimal advertising policy,
Gozzi and Marinelli [10] consider a model which incorporates the delayed impact of ad-
vertising expenditures on the firm’s goodwill. Similarly, in finance, optimal investment
and consumption decisions could also take into account delayed market features as is
done by Pang and Hussain [23]. Furthermore, these delayed stochastic control problems
can often be extended to incorporate interaction with competitors, who can influence both
the underlying system dynamics and the objectives of individual actors. In the context
of such scenarios, the stochastic control problem with delay can be further extended to
a stochastic delay differential game. This framework captures the interaction among all
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participants (or players) who select their controls to optimize their objectives. The controls
of each player affect the system dynamics, which are modeled as a system of stochastic de-
lay differential equations (SDDEs). The outcome of the game is represented by the concept
of Nash equilibrium, which is a collection of all players’ choices, ensuring that no player
has the incentive to deviate unilaterally.

Despite introducing mathematical and computational challenges, incorporating delay
is crucial for developing more complex and realistic models that capture real-world phe-
nomena. For instance, in the analysis of systemic risk, Carmona et al. [6] model bank
lending and borrowing as a stochastic differential game without delay, assuming a spe-
cific form of bank repayments at time t. To enhance the model’s realism, the same authors
in collaboration with Mousavi [5] consider banks that must repay their borrowings at
time t by time t + τ, introducing a delayed factor into the governing dynamics. While this
model effectively captures the nature of delayed repayments, it also increases the math-
ematical and computational complexity of the underlying problem. However, given the
widespread occurrence and realistic nature of delayed problems, it is essential to address
the computational challenges they present.

The primary reason for these difficulties lies in the inherent dimensionality of the prob-
lem. Stochastic differential games already face the curse of dimensionality when the num-
ber of players, denoted as N, is large. Adding to this inherent complexity, stochastic delay
differential games introduce a possibly infinite-dimensional component, as the drift and
volatility of the associated SDDE depend on the entire path. To formalize this, we note that
one can employ the approach of dynamic programming to characterize the value func-
tions associated with the closed-loop Nash equilibrium through a system of Hamilton-
Jacobi-Bellman (HJB) equations, enabling the determination of Nash equilibrium controls.
However, the resulting HJB equations in the delayed case involve derivatives with re-
spect to variables in an infinite-dimensional Hilbert space as detailed in the book by Fab-
bri et al. [8, Section 2.6.8]. Numerically solving this HJB system would require an addi-
tional high-dimensional approximation to handle the infinite dimensionality arising from
the delay. However, deep learning methodologies are natural choices for solving problems
with high dimensionality and have been used in similar instances. For example, Fouque
and Zhang [9] parameterize the optimal control with neural networks to solve a mean field
control problem arising from an inter-bank lending model with delayed repayments, and
Han and Hu [14] solve the stochastic control problems with delay using neural networks.

To address the challenge of high dimensionality in these problems, we propose a deep
learning-based method that effectively handles the delay. Inspired by the approach pre-
sented in [14], which utilizes recurrent neural networks (RNNs) to solve stochastic con-
trol problems with delay, we introduce an algorithm for finding the Nash equilibrium of
stochastic delay differential games. Specifically, we parameterize players’ controls using
RNNs and approximate their objective functions by sampling the game dynamics under
these RNN-based controls. The parameters of the RNNs are then optimized using the
concept of deep fictitious play, as introduced in [12,16]. The utilization of neural network-
based control functions enables us to reformulate the problem in a finite-dimensional
setting. Now, the optimization for a given player revolves around selecting the neural
network parameters. Moreover, employing RNNs, in particular, allows us to effectively
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capture the influence of delay in players’ controls, as RNNs have the capability to learn
the appropriate memory dependencies present in the true Nash equilibrium controls.

Separately, we introduce a new class of problems motivated by portfolio optimization
with delayed dynamics and competition among portfolio managers [2, 18, 19, 23]. These
problems arise from a model where portfolio managers trade in a financial market, con-
sidering tax consequences and being incentivized to perform well on both an absolute and
relative basis. Specifically, there is a delay between when taxes are realized and when they
become due. We summarize our results for these new problems in Sections 3.1 and 3.2,
with full motivations provided in Appendix A and proofs in Appendix B.

We then validate the proposed deep learning algorithm numerically on a set of prob-
lems with known closed-form solutions. This includes the new class of problems that we
introduce and solve in this paper as well as the model introduced in [5] to study the sys-
temic risk in bank lending. By considering both new and existing problems, we assess the
accuracy of our proposed method using their closed-form solutions as benchmarks. Our
numerical experiments confirm the success of our algorithm in approximating the true
Nash equilibrium for all the problems considered.

The outline of the paper is as follows. In Section 2, we introduce the mathematical
description of stochastic delay differential games and define the notion of closed-loop
Nash equilibrium. In Section 3, we formulate and provide analytical solutions for the
closed-loop Nash equilibrium of the stochastic delay differential games we later solve nu-
merically using our proposed algorithm. Specifically, we devote Sections 3.1 and 3.2 to
present the new problems and their solutions. The model construction of these problems
can be found in Appendix A, while the proofs of their solutions are in Appendix B. In Sec-
tion 4, we propose a numerical algorithm for approximating stochastic delay differential
games, and in Section 5, we demonstrate the numerical results of our algorithm compared
to the known solutions of the considered problems. Finally, we provide some concluding
remarks in Section 6.

2 The mathematical problem

We define the problem mathematically following the similar setup in [14] for stochastic
control problems with delay. The general problem we consider begins with an SDDE
system, where the delay can be potentially present in both the state variables as well as
the controls. Formally, on a complete probability space (Ω,F , P), we have the N-player
stochastic delay differential game driven by the dynamics

dXα
t = µ

(

t, Xα
[t−τ,t], α[t−τ,t]

)

dt + σ
(

t, Xα
[t−τ,t], α[t−τ,t]

)

dWt, t ∈ [0, T],

Xα
t = ζ(t), t ∈ [−τ, 0],

αt = φ(t), t ∈ [−τ, 0),

(2.1)

where Xα is the state process which takes values in R
n, and α = (α1, · · · , αN) is the col-

lection of all players’ controls. Here, αi
t is the strategy or decision of player i at time t

and takes values in the control space Ai ⊂ R
mi . We use the notation Xα

[t−τ,t]
to represent
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the paths of the stochastic process Xα along the interval [t − τ, t], and similar notation
for α[t−τ,t]. We call τ > 0 (deterministic) the length of the delay or simply the delay as
Eq. (2.1) shows that the increment of the state process at time t depends on the entire his-
tory of the state and control processes as far back as τ units in the past. The drift µ and

volatility σ are functionals that map into R
n and R

n×k respectively, and W is a k-dimen-
sional, standard Brownian motion.

We remark that there is a special case in which one can write the state process as X =
(X1, · · · , XN), where Xi is affected only through the control αi. In this instance, Xi is
the private state of player i. In our case, we generically assume Xα

t (ω) ∈ R
n and could

represent a combination of both private states as well as public states – those that are
shared and influenced collectively.

Formally, we define Xα
[t−τ,t]

to be a map from [−τ, 0] to the space of square integrable

random variables L2(Ω) given by Xα
[t−τ,t]

(s) := Xα
s+t. In particular, we seek solutions Xα

to Eq. (2.1) such that for each t ∈ [0, T], we have that Xα
[t−τ,t]

∈ L2(Ω; C([−τ, 0]; R
n)).

Here, the space L2(Ω; C([−τ, 0]; R
n)) is defined as the normed space of C([−τ, 0]; R

n)
valued random variables with the norm given by

‖Z‖L2(Ω;C([−τ,0];Rn)) =

(

E

[

sup
s∈[−τ,0]

|Zs(ω)|2
])

1
2

.

The stochastic path α[t−τ,t] is defined analogously by α[t−τ,t](s) := αs+t, where the stochas-

tic processes (αt)t∈[0,T] belongs to an admissible set A defined later by the set defini-
tion (2.2).

For a fixed choice of controls α, one can consider the existence and uniqueness of the
SDDE (2.1). For this SDDE, one can require µ and σ to be Lipschitz in the second argument
to ensure the existence and uniqueness of a strong solution. To be precise, this Lipschitz
condition is

‖µ(t, x1, α[t−τ,t])− µ(t, x2, α[t−τ,t])‖L2(Ω) ≤ L‖x1 − x2‖L2(Ω;C([−τ,0];Rn)),

‖σ(t, x1, α[t−τ,t])− σ(t, x2, α[t−τ,t])‖L2(Ω) ≤ L‖x1 − x2‖L2(Ω;C([−τ,0];Rn))

for some L > 0 and for all t ∈ [0, T], x1, x2 ∈ L2(Ω; C([−τ, 0]; R
n)). For more details of

the existence and uniqueness theory for SDDEs, we refer to the work by Mohammed [22].
Now that we have defined the SDDE and considered its existence and uniqueness for

a given α, we proceed by specifying the requirements for α. We require that each con-

trol, αi, is in the class of closed-loop controls within an admissible set. The closed-loop

controls are those that take the form αi
t = φi(t, Xα

[−τ,t]
), and therefore represent a decision

at time t based on observation of the state process up to and including this time. Formally,

we define the admissible set of closed-loop controls A
i for player i to be

A
i =

{

βi
∣

∣

∣
βi

t = φi
(

t, Xα
[−τ,t]

)

, φi measurable, φi : [−τ, T]× L2
(

Ω; C([−τ, T]; R
n)
)

→ Ai ⊂ R
mi ,

∫ T

−τ
E

[

∣

∣βi
t

∣

∣

2
]

dt < ∞

}

, (2.2)
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and we denote the product space of admissible controls by A = ⊗N
i=1A

i along with the

control space for all players by A = ⊗N
i=1A

i.

Next, we define the running and terminal costs for player i as f i and gi, respectively.
Here,

f i : [0, T]× L2(Ω, C
(

[−τ, 0]; R
n)
)

× L2(Ω, C
(

[−τ, 0];A)
)

→ R,

gi : L2(Ω, C
(

[−τ, 0]; R
n)
)

→ R

are deterministic measurable functionals. From these functionals, we define the expected

cost Ji for player i to be

Ji[α] = E

[

∫ T

0
f i
(

t, Xα
[t−τ,t], α[t−τ,t]

)

dt + gi
(

Xα
[T−τ,T]

)

]

. (2.3)

We remark that one can also consider games where Ji in Eq. (2.3) defines the reward of
player i rather than cost. In this case, one can cast the problem as one of costs by taking

the cost of player i to be −Ji. Because of this, we will be referring to problems where Ji

represents the cost of player i unless otherwise stated.
The problem we consider is to find the Nash equilibrium in A for the stochastic delay

differential game described in (2.1) and (2.3). The Nash equilibrium is a set of controls
whereupon each player has optimally chosen their own control given the choices of con-
trols for the other players. To be precise, we understand the Nash equilibrium through the
following definition.

Definition 2.1. We say that α∗ = (α∗1, · · · , α∗N) ∈ A is a Nash equilibrium if

Ji[α∗] ≤ Ji
[

α∗1, · · · , α∗i−1, βi, α∗i+1, α∗N
]

, ∀ i ∈ {1, . . . , N}, ∀ βi ∈ A
i. (2.4)

We remark that since A by definition contains the admissible, closed-loop controls, we
call a Nash equilibrium α∗ ∈ A a closed-loop Nash equilibrium.

To summarize, the full problem of finding the closed-loop Nash equilibrium for a sto-
chastic delay differential game is defined through the key components (2.1)-(2.4). In es-
sence, Eq. (2.2) defines the appropriate space of controls, while Eqs. (2.1), (2.3) define

a map from the choices of controls for each player αi ∈ A
i to the cost experienced by

a given player Ji. The condition (2.4) expresses how each player rationally chooses her
strategy based on her own cost, given the choices of the other players, leading to equilib-
rium.

3 Three games with delay

In this section, we present three stochastic differential games with delay. In Sections 3.1
and 3.2, we derive two novel problems that are inspired by [2, 18, 19, 23]. For clarity, we
shall present the mathematical formulations and highlight analytical results below and
defer modeling motivations and intuitions for these new problems to Appendix A and
the proofs of their solutions to Appendix B. In Section 3.3, we briefly review a stochastic
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delay differential game arising from inter-bank lending, as discussed in [5], and summa-
rize the results therein. All three problems will serve as benchmarks for the numerical
methodology we propose in Section 4.

3.1 Competition between portfolio managers with delayed tax effects

We consider a portfolio game between N managers where everyone’s award depends on
both their absolute and relative performance, subject to delayed tax effects. Such a prob-
lem is inspired by the model problems introduced in [23] and [19], and the full intuition
and derivations are elaborated in Appendix A.

Let Xi
t ∈ R be the wealth at time t of an investor i. Her wealth process is influenced

by πi
t ∈ R, the fraction of wealth she chooses at time t to allocate into a risky asset, while

the remaining is left in a money market account accruing at a risk-free rate r ∈ R. At

time t, the investor pays taxes at a rate of µ2 on her exponentially averaged past wealth Yi
t .

Precisely, the dynamics for the wealth of each player i ∈ {1, . . . , N} are given by

dXi
t =

[

(µ1 − r)πi
tX

i
t + rXi

t − µ2Yi
t

]

dt + σπi
tX

i
t dWt, t ∈ (0, T],

Yi
t =

∫ t

−∞
λe−λ(t−s)Xi

s ds, t ∈ (0, T],

Xi
t = ζ i(t), t ∈ (−∞, 0].

(3.1)

Here, W is a 1-D Brownian motion, and the initial wealth ζ i is positive and bounded for
t ∈ (−∞, 0]. The parameter µ1 ∈ R is the mean return of the stock with µ1 > r, and σ > 0
is its volatility from the Black-Scholes model. The parameter λ > 0 is the arrival rate of
tax billings as explained in Appendix A.1. We note that in this case, the length of the delay

is τ = ∞ as seen through the dependency on Yi
t in Eq. (3.1) which itself depends on the

entire path Xi
(−∞,t]

.

We consider two cases for the reward for player i. The first case is based on the constant
absolute risk aversion (CARA) utility and is given by

Ji[π] = E
[

Ui

(

Zi
disc,T − θiZdisc,T

)]

, (3.2)

where 0 < θi < 1, and

Zdisc,T =
1

N

N

∑
i=1

Zi
disc,T, Ui(z) = − exp

(

−
1

δi
z

)

(3.3)

with δi > 0 and Zi
disc defined by

Zi
t = Xi

t + aYi
t , a =

1

2λ

(

−(r + λ) +
√

(r + λ)2 − 4λµ2

)

,

Zi
disc,t = e−(r+λa)tZi

t.

(3.4)
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The second case is based on the constant relative risk aversion (CRRA) utility and given by

Ji[π] = E

[

Ui

(

Zi
disc,TZ

−θi
disc,T

)]

, (3.5)

where 0 < θi < 1 and

Zdisc,T =

(

N

∏
i=1

Zi
disc,T

)
1
N

, Ui(z) =







1

1 − 1/δi
z

1− 1
δi , δi 6= 1,

log(z), δi = 1
(3.6)

with δi > 0 and Zi
disc defined by Eq. (3.4).

From the definition above, we notice that (r + λ)2 − 4λµ2 > 0 must be required, which
essentially means that the tax effect cannot be too large. We further require r + λ > 0,
resulting in a < 0. We also remark that r + λa can be ascribed the meaning of a “tax-

adjusted risk-free rate” and Zi
t can be ascribed the “tax-adjusted wealth”. The utilities in

Eqs. (3.2) and (3.5) have meaningful interpretations, as discussed in Appendices A.2 and
A.4, respectively.

Lastly, for the CRRA case, the admissible set for πi is extended with additional require-

ments, i.e. we will take πi ∈ A
i,

A
i =

{

πi
∣

∣

∣
πi

t = φi
(

t, X[−τ,T]

)

∈ R, φi measurable, ∃K > 0 :
∣

∣πi
tX

i
t

∣

∣ ≤ K
∣

∣Zi
t

∣

∣

}

. (3.7)

With πi ∈ A
i and taking ζ i(t) chosen such that Zi

t = Xi
t + aYi

t > 0 for all t ≤ 0, we

can show for all i, Zi
disc,t > 0 a.s., and therefore the utility given by Eqs. (3.5)-(3.6) is well

defined. This is shown in Appendix B.2.
The solution to the CARA case is summarized in the following proposition.

Proposition 3.1. Consider the stochastic delay differential game defined by the dynamics (3.1)
with reward for each player i ∈ {1, . . . , N} given by Ji = Ji[π] as defined through Eqs. (3.2)-
(3.4). Then, there is a closed-loop Nash equilibrium π∗ given by the controls

πi,∗
t Xi,∗

t =
µ1 − r

σ2

(

δi +
θiδ̄

1 − θ̄

)

1

e−(r+λa)t
,

where

δ̄ =
1

N

N

∑
i=1

δi, θ̄ =
1

N

N

∑
i=1

θi,

and Xi,∗
t satisfies the dynamics in (3.1) associated with πi,∗. More precisely, the Nash equilibrium

strategy at time t is to invest a deterministic dollar amount into the risky asset, independent of the
current wealth level.

Proof. See Appendix B.1.

This proposition characterizes the resulting Nash equilibrium for the CARA case. For the
CRRA case, we have the following result.
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Proposition 3.2. Consider the stochastic differential game with delay defined by the dynamics
(3.1), the reward Ji = Ji[π] for each player i ∈ {1, . . . , N} defined through Eqs. (3.4)-(3.6), and
the admissible space ⊗N

i=1A
i given by Eq. (3.7). Then, there is a closed-loop Nash equilibrium π∗

given by the controls

πi,∗
t =

µ1 − r

σ2

(

δi −
θi(δi − 1)δ̄

1 + θ(δ − 1)

)

Xi
t + aYi

t

Xi
t

,

where

δ̄ =
1

N

N

∑
i=1

δi, θ(δ − 1) =
1

N

N

∑
i=1

θi(δi − 1).

Proof. See Appendix B.2.

3.2 Consumption and portfolio allocation game with delayed tax effects

In addition to the delay effects in investment strategies as analyzed in Section 3.1, here we
also consider players’ consumption strategies which contribute to their relative utility in
the reward. Such a problem without delay was studied in [18].

As before, πi
t represents the fraction of player i’s wealth allocated to the risky asset

at time t. The second control process ci
t is person i’s rate of consumption at time t as

a fraction of her wealth. In addition to the usual admissibility conditions given by Eq. (2.2),

we require that ci
t ≥ 0 for all t ∈ (0, T]. In this case, the wealth dynamics for player

i ∈ {1, . . . , N} are given by

dXi
t =

[

(µ1 − r)πi
tX

i
t + rXi

t − µ2Yi
t − ci

tX
i
t

]

dt + σπi
tX

i
t dWt, t ∈ (0, T],

Xi
t = ζ i(t), t ∈ (−∞, 0],

(3.8)

where

Yi
t =

∫ t

−∞
λe−λ(t−s)Xi

s ds

is the exponentially decayed moving average of past wealth. The parameters are taken as
µ1, r, λ, σ ∈ R : λ, σ > 0, µ1 > r, and µ2 > 0. The results will stay the same if one has
µ2 ∈ R, but only µ2 > 0 corresponds to taxes. We further require that (r + λ)2 − 4λµ2 > 0

and r + λ > 0, as we did in Section 3.1. Again, the length of delay is τ = ∞ as Yi
t in

Eq. (3.8) depends on the entire path Xi
(−∞,t]

.

With the dynamics fully described, we now define the reward function for player i to
be given by

Ji[π, c] = E

[

∫ T

0
Ui
(

Ci
disc,tCdisc,t

−θi
)

dt + ǫiUi

(

Zi
disc,TZdisc,T

−θi
)

]

, (3.9)

where 0 < θi < 1, ǫi > 0, and

Zi
t = Xi

t + aYi
t , a =

1

2λ

(

−(r + λ) +
√

(r + λ)2 − 4λµ2

)

, (3.10a)
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Ci
disc,t = e−(r+λa)tci

tX
i
t, Cdisc,t =

(

N

∏
i=1

Ci
disc,t

) 1
N

, (3.10b)

Zi
disc,t = e−(r+λa)tZi

t, Zdisc,t =

(

N

∏
i=1

Zi
disc,t

)
1
N

, (3.10c)

and the utility function is the CRRA utility given by

Ui(z) =







1

1 − 1/δi
z

1− 1
δi , δi 6= 1,

log(z), δi = 1
(3.11)

with δi > 0.
In this case, we can again interpret r + λa as the tax-adjusted risk-free rate and Zi

t as
tax-adjusted wealth, and the interpretation of the expected utility (3.9) is discussed in Ap-
pendix A.5. This example mainly contrasts with that in Section 3.1 in that each player now
has two controls. This changes the mathematical structure and poses additional numerical
challenges.

Lastly, to ensure the utility in Eqs. (3.9)-(3.11) is well defined, we require that the con-

trols for player i, (πi, ci), live in the admissible set A
i

A
i =

{

(πi, ci)
∣

∣

(

πi
t, ci

t

)

= φi(t, X(−∞,t]) ∈ R × R
+, φi measurable,

∃K > 0 :
∣

∣πi
tX

i
t

∣

∣,
∣

∣ci
tX

i
t

∣

∣ ≤ K
∣

∣Zi
t

∣

∣

}

. (3.12)

With (πi, ci) ∈ A
i and taking the initial path ζ i chosen such that Zi

t = Xi
t + aYi

t > 0 for all

t ≤ 0, we can show for all i, Ci
disc,t, Zi

disc,t > 0 a.s., see details in Appendix B.3.

The characterization of the closed-loop Nash equilibrium is given by the following
proposition.

Proposition 3.3. Consider the stochastic differential game with delay defined by the dynamics
(3.8), the reward Ji = Ji[π, c] for each player i ∈ {1, . . . , N} defined through Eqs. (3.9)-(3.11),
and the admissible space ⊗N

i=1A
i defined by Eq. (3.12). Then, there is a closed-loop Nash equilib-

rium (π∗, c∗) given by the controls

πi,∗
t =

µ1 − r

σ2

(

δi −
θi(δi − 1)δ̄

1 + θ(δ − 1)

)

Xi
t + aYi

t

Xi
t

,

ci,∗
t =



















(

β−1
i +

(

γ−1
i − β−1

i

)

e−βi(T−t)
)−1 Xi

t + aYi
t

Xi
t

, δi 6= 1,

(

T − t − γ−1
i

)−1 Xi
t + aYi

t

Xi
t

, δi = 1,

(3.13)

where

δ̄ =
1

N

N

∑
i=1

δi, θ(δ − 1) =
1

N

N

∑
i=1

θi(δi − 1),
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and the parameters βi and γi are given by

βi =
1

2
(1 − δi)

(

µ1 − r

σ

)2
(

1 −
θiδ̄

1 + θ(δ − 1)

)(

δi −
θiδ̄

1 + θ(δ − 1)
(δi − 1)

)

,

γi = ǫ
−δi
i





(

N

∏
k=1

ǫ
δk
k

)
1
N





θi(δi−1)

1+θ(δ−1)

.

(3.14)

Proof. See Appendix B.3.

3.3 Inter-bank lending model for systemic risk

The last problem we present comes from the study of systemic risk within inter-bank lend-
ing. The particular model we follow is a stochastic delay differential game introduced and
studied by Carmona et al. [5]. In this model, each bank lends/borrows monetary reserves
to/from a central bank with their controls being their pace of lending/borrowing. The
model includes loan repayments after a fixed time τ > 0, which leads to the delayed

component in the SDDE. The log-monetary reserves of bank i, Xi
t, change in a differential

manner with respect to this lending/borrowing dynamics along with some noise. Mathe-

matically, Xi
t satisfies the SDDE

dXi
t =

(

αi
t − αi

t−τ

)

dt + σdW i
t , t ∈ [0, T],

αi
t = 0 ∈ R, t ∈ [−τ, 0],

Xi
0 = ξ i ∈ R.

(3.15)

The cost function for bank i is given by

Ji[α] = E

[

∫ T

0

(

1

2

(

αi
t

)2
− qαi

t

(

X̄t − Xi
t

)

+
ǫ

2

(

X̄t − Xi
t

)2
)

dt +
c

2

(

X̄T − Xi
T

)2
]

. (3.16)

The control αi
t ∈ R is their corresponding pace of borrowing (αi

t > 0) or lending (αi
t < 0)

at time t. Although the level of volatility, σ > 0, is the same for each bank, we have that

{Wi}N
i=1 are independent 1-D Brownian motions meaning that each bank experiences their

own idiosyncratic noise, and

X̄t =
1

N

N

∑
i=1

Xi
t.

A bank’s choice of action is dictated by its incentive mechanisms illustrated through
Eq. (3.16). The main incentive of bank i can be simply stated as a desire to borrow when
they deem their reserves to be too low and lend when deemed too high. In particular,
bank i will arithmetically compare their level of log-monetary reserves to the mean log-

monetary reserves of all banks, X̄, with a preference for bank i to have Xi
t ≈ X̄t. This is

exemplified by the terms qαi
t(X̄t − Xi

t), ǫ(X̄t − Xi
t)

2/2, and c(X̄T − Xi
T)

2/2 in Eq. (3.16).
The parameters q ≥ 0, ǫ > 0 and c ≥ 0 respectively represent the degrees to which a bank
desires:
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1) to borrow when there are too little monetary reserves,

2) to maintain near average capitalization of log-monetary reserves at all times,

3) to have near average capitalization at the final time.

These incentives to have near average levels of log-monetary reserves are balanced by
the bank’s inclination to avoid lending or borrowing all else equal as represented by the

quadratic penalty (αi
t)

2/2 in Eq. (3.16).
The closed-loop Nash equilibrium for the stochastic delay differential game (3.15)-

(3.16) is derived and proven in [5]. The result is restated in the proposition below for
convenience.

Proposition 3.4 ([5, Proposition 6.1]). Consider the stochastic differential game with delay
defined by the dynamics (3.15) and with the reward for each player i ∈ {1, . . . , N} given by
Ji = Ji[α] as defined through Eq. (3.16). Then, there exists a closed-loop Nash equilibrium α∗

given by the control for each player i ∈ {1, . . . , N} by

αi,∗
t = 2

(

1 − N−1
)

[ (

E1(t, 0) + E0(t) +
q

2(1 − N−1)

)

(

X̄t − Xi
t

)

+
∫ t

t−τ

(

E2(t, s − t, 0) + E1(t, s − t)
)(

α∗s − αi,∗
s

)

ds

]

,

where

α∗ =
1

N

N

∑
i=1

αi,∗,

and where E0, · · · , E2 are given by the following PDE system in the region (t, s, r) ∈ [0, T] ×
[−τ, 0]× [−τ, 0]:

E′
0(t) +

ǫ

2
= 2

(

1 − N−2
)(

E1(t, 0) + E0(t)
)2

+ 2q
(

E1(t, 0) + E0(t)
)

+
q2

2
,

∂tE1(t, s)− ∂sE1(t, s)

= 2
(

1 − N−2
)

(

E1(t, 0) + E0(t) +
q

2 (1 − N−2)

)

(

E2(t, s, 0) + E1(t, s)
)

,

∂tE2(t, s, r)− ∂sE2(t, s, r)− ∂rE2(t, s, r)

= 2
(

1 − N−2
)(

E2(t, s, 0) + E1(t, s)
)(

E2(t, r, 0) + E1(t, r)
)

with boundary conditions given by

E0(T) =
c

2
, E1(T, s) = 0, E2(T, s, r) = 0, E2(t, s, r) = E2(t, r, s),

E1(t,−τ) = −E0(t), E2(t, s,−τ) = −E1(t, s).

This Nash equilibrium is derived in [5] by first formulating the delayed problem as a sto-
chastic differential game in an infinite-dimensional Hilbert space, and then characterizing
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the Nash equilibrium through Hamilton-Jacobi-Bellman equations over a Hilbert space
of functions. A thorough discussion of this technique as well as the theory of infinite-
dimensional stochastic control problems can be found in [8].

4 The deep learning algorithm

In Section 2, we presented the mathematical formulation for the Nash equilibrium prob-
lem of a stochastic delay differential game as the collection of conditions (2.1)-(2.4). We
remarked that Eqs. (2.1) and (2.3) allow one to define a map from choices of controls to the
corresponding expected costs of each player. With respect to this map, one can define the
notion of solution as that of Nash equilibrium (2.4), where one searches for such equilib-
rium for “allowed” controls in an admissible set given by Eq. (2.2). To approach this prob-
lem numerically, we will need to approximate the map from controls to cost functions
by discretizing the dynamics of the game and expected cost. Additionally, to make the
space of controls numerically tractable, we will have to represent the controls in a finite-
dimensional space that still respects the closed-loop structure demanded by the problem.
To this end, we describe in Section 4.1 the discretized set-up that allows us to define a map
from a finite-dimensional space of RNN-based controls to the numerically approximated
expected costs of each player. Such a discretization scheme is straightforward, but we de-
cide to include it for the sake of clarity and completeness. Building on Section 4.1, which
focuses on approximating the cost of a single player given a choice of RNN-based controls,
Section 4.2 is dedicated to the algorithm for games with delay. The algorithm we propose
belongs to a broader methodology called deep fictitious play, introduced in [12,16]. In Sec-
tion 4.2.1, we provide a general discussion of the main ideas behind deep fictitious play
and present the precise deep fictitious play algorithm we propose for solving stochastic
delay differential games. Lastly, in Section 4.2.2, we highlight the specific choice of RNNs
used in our implementation, namely the long short-term memory (LSTM) architecture.

4.1 The discrete problem

We now consider the discrete analogue of the stochastic delay differential game defined by
Eqs. (2.1)-(2.3). We represent the SDDE (2.1) numerically by its associated Euler-Maruy-
ama scheme, and the expected cost (2.3) is estimated with an empirical cost computed by
the Monte Carlo method. Instead of searching for controls in the space given by Eq. (2.2),
we parameterize each player’s control through a given RNN which helps to address the
delayed aspect of the problem.

The discrete analogue of the SDDE (2.1) is obtained using the Euler-Maruyama method,
taking into account the delay. This is a natural choice for approximating SDDEs, and its
convergence properties have been well-established in certain cases, for instance, Mao [20]
addresses the case of a single pointwise delay. The discretization of the delay needs to be
done on a case-by-case basis, and we will describe it later.

For step size ∆t > 0, we consider the partition of [−τ, T] given by {tk = k∆t : −Nτ ≤
k ≤ NT , k ∈ Z}, where Nτ = τ/∆t and NT = T/∆t are integers without loss of gen-
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erality1. Then, we define the discrete approximation (X̂k)k through the Euler-Maruyama
scheme

X̂k+1 = X̂k + µ̂
(

tk, X̂k−Nτ
, · · · , X̂k, α̂k−Nτ

, · · · , α̂k

)

∆t

+ σ̂(tk, X̂k−Nτ
, · · · , X̂k, α̂k−Nτ

, · · · , α̂k)∆Wk , k = 0, . . . , NT − 1,

X̂k = ζ(tk), k = −Nτ , . . . , 0,

α̂k = φ(tk), k = −Nτ , . . . ,−1,

(4.1)

where ∆Wk = Wtk+1
− Wtk

from the original Brownian motion W in Eq. (2.1). The value

for α̂k = (α̂1
k , · · · , α̂N

k ) will be determined as the output of N separate RNNs, each player’s
control is parameterized by their own RNN.

We have also approximated the functionals µ and σ occurring in the SDDE (2.1) with
discrete counterparts µ̂ and σ̂. While the functionals µ, σ are generic, there will be natural
choices for their discrete counterparts in some of the common cases that we consider. For
example, the problems occurring in Sections 3.1 and 3.2 contain a delay variable given by
an integral over the past history of the state process. This can be approximated by a nu-
merical quadrature along the partition or through discretization of a separate ODE that
produces this integral. The problem introduced in Section 3.3 contains a delay variable in
the form of pointwise evaluation of the control at a time t − τ. This case is easily dealt
with because the delay evaluation occurs on the partition as we have that τ and T are both
divisible by ∆t.

Having defined the discrete approximation to the SDDE, the numerical approximation
of the expected cost for player i is given by

Ĵi[α̂] =
1

Nbatch

Nbatch

∑
ℓ=1

[

NT

∑
k=1

f i
(

tk, X̂k(ωℓ), α̂k

)

∆t + gi
(

X̂NT
(ωℓ)

)

]

, (4.2)

which is computed by taking Nbatch samples of the discrete Brownian paths given by

{(∆Wk(ωℓ))
NT−1
k=0 : ωℓ ∈ Ω}

Nbatch
ℓ=1 , producing the realized trajectories (X̂k(ωℓ)) through

the discrete dynamics (4.1).
We know that in the continuous setting, each player’s control lives in the admissible

set A
i (2.2) of closed-loop controls, meaning decisions at time t are based on the past

history of X up to and including time t. To capture this closed-loop aspect in the discrete
case, we will require that α̂k = (α̂1

k , · · · , α̂N
k ) be given as outputs of functions of the past

history of the state space, (X̂k′)k′≤k. In particular, each player’s strategy will be given
through the outputs of an RNN of a fixed architecture.

The concept of RNN was first introduced by Rumelhart et al. [25], a work that demon-
strates the implementation of the backpropagation algorithm of a neural network that
includes hidden units. In our case, the RNN structure naturally allows the control for
player i to encapsulate the past history of the state process. We denote the RNN charac-
terizing the actions of player i by φRNN(·; ϑi), where ϑi represents the parameters of the

1If the divisibility is not met, one may perturb ∆t, τ and/or T in order to ensure divisibility of Nτ = τ/∆t, NT = T/∆t.
Generality is still respected as the perturbations of each can be taken to be arbitrarily small.



J. Mach. Learn., 3(1):23-63 36

RNN for player i. Specifically, player i’s control at time tk for the discretized problem is
given as a function of the input sequence (t−Nτ , X̂−Nτ), · · · , (tk, X̂k), or

α̂i
k = φRNN

((

t−Nτ , X̂−Nτ

)

, · · · ,
(

tk, X̂k

)

; ϑi

)

. (4.3)

The map φRNN in Eq. (4.3) inputs a sequence of arbitrary length by defining it through a re-
currence relation. Specifically, the recurrence is on a map we call the RNN cell, or φRNNcell.
The recurrence occurs through a secondary output of the RNN cell called the hidden state,

which we label as hi for player i. In our case, the recurrence starts with an initial value

for hi
−Nτ

by some specific choice hinit. Then, we define the recurrence relation

yi
k, hi

k = φRNNcell

(

tk, X̂k, hi
k−1; ϑi

)

, k = −Nτ + 1, . . . , NT ,

α̂i
k = yi

k, k = 0, . . . , NT − 1,

hi
−Nτ

= hinit.

(4.4)

The time-k map of this recurrence relation defines a map from ((t−Nτ , X̂−Nτ ), · · · , (tk, X̂k))
7→ yi

k = α̂i
k, which is precisely the map we call φRNN in Eq. (4.3). We remark that the hid-

den states hi
k will correspond to each player i as they are dependent on the parameters ϑi.

The key observation is that taking the control to be given by the RNN defined by
Eqs. (4.3)-(4.4) provides us with a reasonable space to approximate the closed-loop con-

trols in Eq. (2.2). For one, we see that α̂i
k, the discrete control output at time tk, now de-

pends on the past trajectory of X̂ up to and including time tk, which encapsulates the
closed-loop property. This also addresses the impact of the delay as the control at time tk

has memory of past events. At the same time, the dimension of the search space of the
control for each player i is reduced to the finite dimension dim(ϑi) < ∞, which allows for
tractability of the Nash equilibrium problem as we will see in Section 4.2.1.

In essence, each player i will select their desired neural network parameters ϑi, deter-
mining their choice of control. With each player’s control chosen, the recurrence relations
given by both Eqs. (4.1), (4.4) are then iterated together, which produces simulated dy-
namics for X̂ . With these simulated dynamics, one can compute the empirical costs for

each player ( Ĵi)N
i=1. This defines a map from “controls” given by the choices of parame-

ters (ϑi)
N
i=1 to the empirical costs ( Ĵi)N

i=1, which will allow us to proceed in Section 4.2.1
with a deep fictitious play algorithm for approximating the Nash equilibrium.

4.2 The numerical algorithm

4.2.1 Deep fictitious play for approximating Nash equilibrium

Deep fictitious play is a broad technique introduced in [12,16] whereby Nash equilibrium
controls are approximated iteratively via deep learning techniques in a manner akin to
Brown’s fictitious play [4]. The primary reason for using deep learning is the high dimen-
sionality in the problem being solved in each iterative step of fictitious play when one has
a stochastic differential game.
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In general, we consider a game defined by a map from choices of controls α ∈ A into
costs J[α]. The idea of fictitious play is to fix all but one player’s control, which leads to
the decoupled optimization problems

inf
βi∈Ai

Ji
[

α1, · · · , αi−1, βi, αi+1, · · · , αN
]

, (4.5)

and then we iterate over the solutions to these optimization problems.

Assuming a unique minimum occurs at βi,∗, we use βi,∗ to inform αi in future iterations
of the optimization (4.5). Doing this for each player i ∈ {1, . . . , N} constitutes one round

of this modified fictitious play. In the case of Brown’s fictitious play, αj in the optimization
problem (4.5) would be given by the empirical average of player j’s control taken over the
previous rounds of play. However, for deep fictitious play methodologies, we will usually

take αj to be the exact control from the previous round of play for memory efficiency
reasons (see [12, Remarks 3.1, 3.2] for more information).

In this approach, we choose Nstages to be the number of stages of fictitious play. Player i
at stage s selects her best response given that all other players are using their strategies
from the previous round. This leads to the theoretical Algorithm 1 below.

Algorithm 1 Modified Fictitious Play

1: Initialize each αi,0 ∈ A
i.

2: for s in 1 to Nstages do
3: for i in 1 to N do
4: αi,s = arg minβi∈Ai Ji

[

α1,s−1, · · · , αi−1,s−1, βi, αi+1,s−1, · · · , αN,s−1
]

.

5: end for
6: end for

In Algorithm 1, αi,s is the control for player i at stage s, and we are assuming that the
minimizer exists and is unique. If it is not unique, we could choose a particular minimizer.
The idea of Algorithm 1 is that the Nash equilibria are characterized precisely by the fixed
points of this iteration. However, the convergence of the method outlined by Algorithm 1
is done on a case-by-case basis. For example, in [16] it is shown that Algorithm 1 converges
for a Linear-Quadratic stochastic differential game.

Next, Algorithm 1 is purely theoretical as it assumes the solution to the optimization
problem (4.5). In reality, (4.5) may be difficult to directly solve due to high dimensional-
ity and may be best approached by deep learning techniques. There are several methods
we may take to solve (4.5) via deep learning and any of these would be considered deep
fictitious play. Namely, the approach in [12] considers the Hamilton-Jacobi-Bellman (HJB)
equation given by the decoupled optimal control problem defined by the optimization
problem (4.5). The HJB solution can be framed in terms of a system of backward SDEs
(BSDEs) which can be solved via the Deep BSDE method introduced by E et al. [7, 13].
Alternatively, the solution of the HJB equation could be approximated with the Deep
Galerkin method introduced by Sirignano and Spiliopoulos [26].

In the case of stochastic delay differential games, the associated HJB equation would be
infinite-dimensional [8]. Because of this, we use a third approach to solve the optimization
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problem (4.5) that is based on the so-called direct parametrization as discussed by Han
and E [11]. This approach was originally introduced for stochastic control problems but
can be extended into the game setting via the iteration in Algorithm 1 as demonstrated
in [16]. In this method, we approach the optimization problems in Algorithm 1 with neural

networks. This is done by taking the control βi to be a neural network and the optimization

is done with gradient descent using the cost function Ji as the loss.
In our case, there are a few steps that must be computationally approximated. First,

we must approximate the true expected cost Ji with its empirical, discrete counterpart Ĵi,
Eq. (4.2). This is computed under controls given by the RNNs, (φRNN(·, ϑ1), · · · ,
φRNN(·, ϑN)), which give the choices of controls for each player defined through Eqs. (4.3)-
(4.4) as discussed in Section 4.1. This leads us to Algorithm 2 which is the basis of our
proposed numerical method.

Algorithm 2 A Deep Fictitious Play Algorithm via Direct Parametrization

1: Initialize each ϑ1,0, · · · , ϑN,0 which are the respective parameters of the N different
RNNs at stage 0.

2: Select Nstages of deep fictitious play based on the computational budget.

3: for s in 0 to Nstages do

4: for i in 1 to N do
5: Compute Nbatch trajectories X̂ of the numerical SDDE (4.1) under the given

controls (α̂j,s)j, where the controls α̂j,s = φRNN(·; ϑj,s+1) for j < i, and

α̂j,s = φRNN(·; ϑj,s) for j ≥ i are defined by Eqs. (4.3)-(4.4) for each player j.

6: Compute the numerical cost Ĵi from Eq. (4.2).

7: Compute via automatic differentiation ∇ϑi,s
Ĵi .

8: Do a gradient descent step or similar (e.g. Adam) on ϑi,s using learning rate lr,

i.e. ϑi,s+1 = ϑi,s − lr∇ϑi,s
Ĵi.

9: end for
10: end for

As before, we consider Nstages of iteration, where φRNN(·, ϑj,s) parameterizes the con-
trol for player j at stage s as selected by the neural network parameters ϑj,s. As motivated
by Algorithm 1, we would then like to compute the optimal ϑj,s holding the other RNN

parameters, (ϑj′,s)j′ 6=j, fixed. In practice, we do a gradient descent step or a sequence of
gradient descent steps to approximate this behavior. Of course, to do this, we will have to

compute the ϑi,s-gradient of Ĵi. This is possible numerically through automatic differenti-
ation [3].

As opposed to Algorithm 1, which involves waiting for an entire stage to use the up-
dated controls, we have found the method to be more effective when the updated controls
are immediately applied in the training at stage s. To achieve this, for player i, we use

controls α̂j,s = φRNN(·; ϑj,s+1) for j < i, and α̂j,s = φRNN(·; ϑj,s) for j ≥ i to simulate the

trajectories X̂ , allowing for the immediate use of the updated parameters to train the con-
trols of player i within the same stage. It is worth mentioning that this corresponds to
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alternating fictitious play in [4], while Algorithm 1 implements the simultaneous fictitious
play.

Lastly, instead of using standard gradient descent, we choose to use the Adam op-
timization which adaptively chooses the learning rate based on the mean and variance
of the gradients involved in the computation of the loss. The choice of using the Adam
optimization over traditional gradient descent is due to it having improved convergence
properties in many cases [17]. This gives us the deep fictitious play algorithm shown
above in Algorithm 2.

To better approximate the argument minimizer in Algorithm 1, several gradient steps

might be needed. However, this would require a new computation of Ĵi and its gradient
with respect to the updated RNN parameters after each gradient descent step, leading to
increased costs.2 Instead, in Algorithm 2, we move on immediately to the next player’s
optimization after a single gradient descent step of the current player. For this reason,
Algorithm 2 is not meant to be a perfect numerical analogue of Algorithm 1, but is instead
merely based on it. Importantly, Algorithm 2 still reflects the property that Nash equilibria
are fixed points of the iteration from an intuitive point of view.3

4.2.2 The long short-term memory recurrent network

Algorithm 2 showcases the numerical method we use to approximate the Nash equilib-
rium controls of stochastic delay differential games using RNN-based controls. It only
remains to specify a precise form of the RNNs as we have presented these networks quite
broadly through Eqs. (4.3)-(4.4). Motivated by the implementation in [14], we choose to
use the specific RNN architecture given by the so-called long short-term memory (LSTM).

The LSTM was first introduced by Hochreiter and Schmidhuber [15] and was built to
effectively handle the vanishing gradient problem. The LSTM will have two variables that
both play the role of the hidden state of an RNN demonstrated in Eq. (4.4). Confusingly,
one is called the hidden state h and the other is the cell state c, although we will see they
are both defined recurrently and therefore act as hidden states with respect to the generic
RNN architecture we have defined by Eq. (4.4). The map φLSTM maps an input vector
(x0, · · · , xk) of arbitrary length to an output, hidden, and cell state through a recursive de-
pendence on its previous outputs of the previous input (x0, · · · , xk−1). The recurrence is
given through a function called the LSTM cell, which we will denote φLSTMcell. In partic-
ular φLSTMcell directly maps the inputs (xk, ck−1, hk−1) to the outputs ck, hk, yk according to

ik = σ(Wixk + Uihk−1 + bi), (4.6a)

2One possibility would be to incorporate having additional gradient descent steps for a single player before moving onto
the next when one is at later stages of play. The idea is that at the beginning stages, since the approximate controls (α̂i,s)i

are not yet close to the Nash equilibrium, it is not as important to fully optimize a single player given the choices of others
since the other players are not yet close enough to the Nash equilibrium. However, at later stages, as the Nash equilibrium
is approached, it may be beneficial to more fully optimize α̂i,s given the choices of the other players.

3Of course it is exceedingly unlikely that controls of the form (φRNN(·, ϑi,∗))i happen to be a Nash equilibrium due
to it being a finite-dimensional object in an infinite-dimensional space. However, if it so happens to be the case that
(φRNN(·, ϑi,∗))i is a Nash equilibrium for Ĵ, and assuming sufficient smoothness of Ĵ, then for each i it holds that
∇ϑi,∗ Ĵi [(φRNN(·, ϑj,∗))j] = 0, and therefore (ϑi,∗)N

i=1 is a fixed point of the iteration.
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fk = σ(W f xk + U f hk−1 + b f ), (4.6b)

ok = σ(Wo xk + Uohk−1 + bo), (4.6c)

ck = fk ⊙ ck−1 + ik ⊙ tanh(Wcxk + Uchk−1 + bc), (4.6d)

hk = ok ⊙ tanh(ck), (4.6e)

yk = Wyhk + by. (4.6f)

Here, ⊙ denotes the Hadamard product. The individual mappings within the LSTM cell
to ik, fk, and ok are known as the input, forget, and output gate respectively. Denoting the
input dimension, dim(xk), to be Ninput, and denoting the hidden dimension Nhidden for the
size of each ik , fk, · · · , hk, we see that each matrix Wi, W f , · · · , Wc is of size Nhidden × Ninput

and the bias vectors bi, b f , · · · , bc are of size Nhidden. The final output is yk ∈ R
Noutput, so Wy

is in R
Noutput×Nhidden and by is in R

Noutput. For player j, the LSTM cell map, φLSTMcell(·; ϑj),

is determined by the choice of parameters ϑj = (W
j
i , · · · , W

j
y, U

j
i , · · · , U

j
c, b

j
i , · · · , b

j
y), rep-

resenting the weight matrices and bias vectors in Eq. (4.6) specifically for player j.
With the cell-map, φLSTMcell, specified by Eq. (4.6), the choice of controls in Eq. (4.1) is

determined by taking player j’s control at time tk to be

α̂
j
k = φLSTM

(

(−τ, X̂−Nτ ), · · · , (tk, X̂k); ϑj

)

,

where this mapping φLSTM(·; ϑj) is given by the forward iteration of the recurrence rela-
tion

xk = (tk, X̂k), k = −Nτ , . . . , NT,

y
j
k, c

j
k, h

j
k = φLSTMcell

(

xk, h
j
k−1, c

j
k−1; ϑj

)

, k = −Nτ + 1, . . . , NT − 1,

α̂
j
k = y

j
k, k = 0, . . . , NT − 1.

(4.7)

In the cases where the dimension of the state process is equal to the number of players

(i.e. n = N), we will choose h
j
−Nτ

= c
j
−Nτ

= (X̂
j
0, 0, · · · , 0) ∈ R

Nhidden to start the forward

iteration, following the implementation in [14]. Note that xk = (tk, X̂k) is a vector in R
1+n,

as X̂k is a vector in R
n for each k. This means that while the input dimension is fixed

Ninput = 1 + n, one is free to choose the size of the hidden dimension, Nhidden, depending

on the user’s desired size of the network. In our implementation, we choose Nhidden = 26.

4.2.3 Implementation details

For computational efficiency, we may not be inputting a single sample of (tk, X̂k) into the
LSTM as indicated by Eq. (4.7), but rather a so-called “batch” which contains Nbatch paths
of X̂ determined by respective Nbatch samples of Brownian paths.

Precisely, we can augment the operations in the Euler-Maruyama method (4.1) so that

it iterates over a batch (X̂k(ωℓ))
Nbatch
ℓ=1 which is represented as a matrix in R

n×Nbatch . This

is done by generating Nbatch samples of the Brownian increments (∆W k(ωℓ))
Nbatch
ℓ=1 . The

drift µ̂ and volatility σ̂ are extended to act pointwise across the batch dimension.
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The control given by the neural network must also be able to provide the respective
outputs for each sample of X̂ along the batch dimension by acting pointwise across the
batch dimension. Note that a generic linear layer x 7→ Wx + b extends to the mapping
(x1, · · · , xNbatch

) 7→ W(x1, · · · , xNbatch
) + (b, · · · , b), with the property that xi 7→ Wxi + b.

Because of this, we see that the map φLSTMcell in Eq. (4.6) naturally acts pointwise along the
batch dimension. To have the LSTM defined by Eqs. (4.6)-(4.7) extended to act pointwise
on the batch, we will take the input vector xk to be

xk =
(

tk, X̂k(ωℓ)
)Nbatch

ℓ=1
∈ R

(1+n)×Nbatch .

We notice that this will imply that h
j
k, c

j
k in Eq. (4.7) must also be tensorized along this

batch dimension and we will have ck, hk ∈ R
Nhidden×Nbatch . For the operations in Eq. (4.6)

to act on a batch, we will have to resize the bias vectors bi, · · · , bc ∈ R
Nhidden to be of size

R
Nhidden×Nbatch by repeating their original values across the batch dimension. The matrices

Wi, · · · , Wc will remain the same size of R
Nhidden×(1+n).

The end result is the ability to work with the map from the choice of controls

(φ1
LSTM(·, ϑ1), · · · , φ1

LSTM(·, ϑN)) to the cost function Ĵi in Eq. (4.2) in a tensorized form.
From a computational perspective, we avoid looping over each sampled trajectory to com-
pute the numerical cost function (4.2). This tensorization is especially useful when work-
ing with automatic differentiation supported libraries such as PyTorch or TensorFlow, as
these tensorized operations can be easily and automatically parallelized [1, 24].

5 Numerical results

In Section 3, we have presented three stochastic delay differential games with analytical
formulas of their closed-loop Nash equilibrium. In each case, we now numerically approx-
imate the closed-loop Nash equilibrium for N = 10 players via our proposed numerical
method, Algorithm 2 in Section 4.2.

We introduce below in Section 5.1 the precise details of our numerical experiments
that serve as a reference point for the construction of the plots shown in Sections 5.2-5.4,
the parameter values used for each of these problems, and an important implementation
detail for the problems with infinite delay. In Sections 5.2-5.4 we present and interpret the
numerical results for each of the considered problems.

5.1 Numerical results methodology

5.1.1 Costs/rewards over training

For typical machine learning problems, one usually has a training curve – a plot of the loss
function over the course of training, which serves as an initial gauge of the effectiveness of
training. While the loss function for each player can be seen through the player’s empirical
cost (4.2), the controls are meant to approximate a Nash equilibrium, the trajectory of each
player’s loss function over the course of training is not an appropriate measure of the
effectiveness of training in this case. The impact of training can be better seen through
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the relative error of these costs under the LSTM controls to that corresponding to the true
Nash equilibrium controls.

Therefore, for every 20 rounds of deep fictitious play (DFP) within Algorithm 2, we
compute the 2-norm relative error

Relative 2-Norm Error =
‖ Ĵ[φLSTM]− Ĵ[α∗]‖2

‖ Ĵ[α∗]‖2
, (5.1)

where Ĵ[φLSTM] and Ĵ[α∗] respectively are the vectors containing the empirical cost for
each player under the LSTM controls (φ1

LSTM, · · · , φN
LSTM) defined in Eqs. (4.6)-(4.7) and

the true Nash equilibrium controls (α∗1, · · · , α∗N) of the mathematical problem defined
by Eqs. (2.1),(2.3). We then plot this relative 2-norm error as it evolves over the course of
training for each of the problems we consider throughout Sections 5.2-5.4.

5.1.2 Comparison of state and control trajectories

After training, we have the collection of LSTM control functions for each player,
(φLSTM(·; ϑi))

N
i=1. We demonstrate the ability of these surrogate functions to approximate

the true Nash equilibrium controls by comparing the trajectories of both control and state
processes under both the LSTM and true Nash equilibrium controls for a given sample of
Brownian motion.

This is done by selecting a single realization of the discrete Brownian motion’s path

(∆Wk(ω))NT−1
k=0 , and with this given noise simulate the discretized dynamics (4.1) once

under the Nash equilibrium controls and again under the LSTM controls. We then com-
pare the dynamics given the two different choices of controls. The plots of these dynamics
are shown for each problem occurring throughout Sections 5.2-5.4. Each player is dis-
tinguished with a given color, while solid and dashed lines correspond to the dynamics
under LSTM controls and Nash equilibrium controls respectively. Lastly, while we have
performed the training for 10 players to demonstrate the methodologies’ ability to handle
larger games, we will only plot 5 out of 10 players’ trajectories for the sake of visual clarity.

5.1.3 Model parameters

The model parameters chosen for the numerical experimentation of each problem are
shown through Tables 5.1-5.4 below. We express a dependency on i for parameters specific
to player i, e.g. δi = 3/10 + 4(i − 1)/9 in Table 5.1 is player i’s risk tolerance parameter.
Here, we are still using the indexation i ∈ {1, . . . , N = 10}. Note that in Tables 5.1-5.3, we

write Xi
(−∞,0] = xi

0, indicating the initial path for each player is taken to be constant.

Table 5.1: Parameters for CARA case of competition between portfolio managers with delayed tax effects.

N T µ1 σ r λ µ2 δi θi Xi
(−∞,0]

= xi
0

10 10.0 0.08 0.2 0.04 2.0 0.01 3/10 + 4(i − 1)/9 3/10 + 4(i − 1)/9 2 + (i − 1)/10
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Table 5.2: Parameters for CRRA case of competition between portfolio managers with delayed tax effects.

N T µ1 σ r λ µ2 δi θi Xi
(−∞,0]

= xi
0

10 1.0 0.08 0.2 0.04 1.0 0.2 3/10 + 4(i − 1)/9 3/10 + 4(i − 1)/9 1 + (i − 1)/20

Table 5.3: Parameters for consumption and portfolio allocation game with delayed tax effects.

N T µ1 σ r λ µ2 ǫi δi θi Xi
(−∞,0] = xi

0

10 2.0 0.08 0.2 0.04 1.0 0.01 50.0 3/10 + 4(i − 1)/9 3/10 + 4(i − 1)/9 1 + (i − 1)/20

Table 5.4: Parameters for inter-bank lending model.

N T σ q ǫ c τ Xi
0 = ξ i

10 1.0 .05 1.0 2.0 0.25 0.25 1 + 0.1 · 1.15i−1

5.1.4 Approaching the infinite delay cases

We remark on an approximation used in the infinite delay cases appearing in the problems
in Sections 3.1 and 3.2 whose numerical results we display in Sections 5.2 and 5.3. In both
cases, the delay is contained through the variable

Yi
t =

∫ t

−∞
λe−λ(t−s)Xi

s ds.

While one option is to truncate the delay resulting in a truncated integral for which
a standard numerical integration approach can be applied, this is not necessary. The rea-

son is that in each of these problems, one can show Yi
t satisfies the ODE relation dYi

t =
λ(Xi

t − Yi
t )dt, allowing us to approximate Yt through the forward Euler discretization.

Moreover, when the initial path Xi
(−∞,0] is constant, we can easily see that Yi

0 = Xi
0,

which greatly simplifies the discrete SDDE iteration by altogether avoiding integration,
and therefore the truncation of τ = ∞ is no longer important for Yt. However, we still
must impose some finite truncation to the delay τ in order for the forward iteration of
the LSTM as described in Eq. (4.7) to be initialized at some finite −Nτ . For the numerical
results shown in both Sections 5.2 and 5.3, we have used τ = 1.0 as the truncation for the
infinite delay.

5.2 Results for competition between portfolio managers with delayed tax
effects

5.2.1 CARA case

We consider now the problem of competition between portfolio managers with delay tax
effects, Eq. (3.1), in the CARA case where the rewards are given by Eqs. (3.2)-(3.4). In our
numerical experiment, we select the parameter values as shown in Table 5.1.
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For this problem, we lower the learning rate throughout training by taking it to be
10−2 for the first 500 rounds of DFP, 10−3 for the next 500, and 10−4 for the remaining 700
rounds. The impact of this training on the approximation of the true Nash equilibrium
rewards is shown in Fig. 5.1 as explained in Section 5.1.1. The decreasing relative 2-norm
error that plateaus at a level near 10−3 indicates a successful training of the controls. On
one hand, this demonstrates that the rewards simulated under the LSTM controls are close
to the true Nash equilibrium rewards. However, we are also interested to see how the
trajectories themselves compare under both LSTM and true Nash equilibrium controls.
Following the methodology in Section 5.1.2, we compare the trajectories under the LSTM
controls to their true Nash equilibrium counterparts, and the resulting plots are shown
in Fig. 5.2. We see that the state process trajectories are nearly identical under both true
and LSTM controls respectively. At the same time, the LSTM controls themselves are not
only approximating the absolute level of control, but adapting to noises within the state
process as illustrated by the LSTM controls matching the shape of the Nash equilibrium
controls.

Figure 5.1: The relative 2-norm error (5.1) over the course of training between ( Ĵ1, · · · , ĴN) under the LSTM
controls and the true Nash equilibrium controls for the CARA case. The length of training is measured in terms
of rounds of DFP. We take Nbatch = 215 in the computation of ( Ĵ1, · · · , ĴN) according to Eq. (4.2). For a specific
round of DFP, we calculate 10 trials of the relative 2-norm error, as defined in (5.1), and plot its mean in blue
and represent the range of one standard deviation by the gray shaded region.

5.2.2 CRRA case

We now consider the problem of competition between portfolio managers with delayed
tax effects, Eq. (3.1), in the CRRA case where the rewards are given by Eqs. (3.5)-(3.6).
In our numerical experiments, we select the parameters for this problem as shown in Ta-
ble 5.2. For this problem, we lower the learning rate throughout training by taking it to
be 10−2 for the first 500 rounds of DFP, 10−3 for the next 500, and 10−4 for the remain-
ing 500 rounds. The approximation of the empirical rewards under the LSTM controls to
that under the true Nash equilibrium controls (see Section 5.1.1 for details) is examined by
Fig. 5.3 below. The relative 2-norm error decreasing throughout training and plateauing
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Figure 5.2: Left: A sample path of the wealth processes for players 1, 3, 5, 7, and 9 (each player corresponds to
a unique color) under the true Nash equilibrium controls (dashed) and the trained LSTM control (solid). Right:
True Nash equilibrium controls (dashed) vs LSTM controls (solid). Controls represent the fraction of total wealth
allocated to the risky asset at time t for a given player.

Figure 5.3: The relative 2-norm error (5.1) over the course of training between ( Ĵ1, · · · , ĴN) under the LSTM
controls and the true Nash equilibrium controls for the CARA case. The length of training is measured in terms
of rounds of DFP. We take Nbatch = 215 in the computation of ( Ĵ1, · · · , ĴN) according to Eq. (4.2). For a specific
round of DFP, we calculate 10 trials of the relative 2-norm error, as defined in (5.1), and plot its mean in blue
and represent the range of one standard deviation by the gray shaded region.

at levels near 10−5 indicates that the training is successful and the rewards experienced
under the LSTM controls are approximating the rewards experienced under the true Nash
equilibrium controls. Fig. 5.4 below allows us to compare the paths induced by these
trained controls to their true Nash equilibrium counterparts. As indicated by Fig. 5.4, we
see that the numerical methodology results in LSTM controls that accurately depict the
true Nash equilibrium dynamics of the problem in question. The corresponding wealth
processes under the true and LSTM controls are nearly identical, while the paths of the
LSTM controls themselves are coinciding well with their true counterparts.
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Figure 5.4: Left: A sample path of the wealth processes for players 1, 3, 5, 7, and 9 (each player corresponds to
a unique color) under the true Nash equilibrium controls (dashed) and the trained LSTM control (solid). Right:
True Nash equilibrium controls (dashed) vs LSTM controls (solid). Controls represent the fraction of total wealth
allocated to the risky asset at time t for a given player.

5.3 Results for consumption and portfolio allocation game with delayed tax
effects

We now consider the consumption and portfolio allocation game with delayed tax effects
given by Eqs. (3.8)-(3.11). For our numerical experiments, we select the value of the pa-
rameters as shown in Table 5.3. In this example, we use 10−2 as the learning rate for the
first 500 rounds of DFP, 10−3 for the subsequent 500 rounds, and 10−4 for the final 1000
rounds. Following Section 5.1.1, the successive approximation of the Nash equilibrium
rewards over training is illustrated by Fig. 5.5. This example showcases the importance
of the training schedule. We notice that there is an initial plateau in the approximation of
the true Nash equilibrium empirical rewards around the level of 10−3 relative 2-norm er-
ror. The learning rate first changes after 500 rounds of DFP and the plateau breaks shortly
thereafter. The learning rate is again decreased at round 1000 of DFP, yet another substan-
tial decrease in relative error following this change is not seen. The relative 2-norm error
reaches a final plateau near 10−5 indicating a successful training.

The success of training is also reflected in the results from comparing the realized trajec-
tories under both true and LSTM controls in Fig. 5.6. In this case, player i has two controls

representing the stock allocation at time t, πi
t, as well as the consumption rate at time t, ci

t.
We plot in Fig. 5.6 their corresponding unnormalized versions which are the wealth al-
located to the stock and the annualized run rate of wealth consumed respectively. We
see that the trajectories produced by the trained LSTM controls coincide well with those
produced under the true Nash equilibrium controls. This is especially apparent in the con-
sumption control, which like the wealth process, contains trajectories that almost entirely
overlap with the true Nash equilibrium dynamics. This example highlights the ability of
the proposed algorithm to succeed in the important case where each player has multiple
controls.
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Figure 5.5: The relative 2-norm error (5.1) over the course of training between ( Ĵ1, · · · , ĴN) under the LSTM
controls and the true Nash equilibrium controls for the CARA case. The length of training is measured in terms
of rounds of DFP. We take Nbatch = 215 in the computation of ( Ĵ1, · · · , ĴN) according to Eq. (4.2). For a specific
round of DFP, we calculate 10 trials of the relative 2-norm error, as defined in (5.1), and plot its mean in blue
and represent the range of one standard deviation by the gray shaded region.

Figure 5.6: Left: A sample path of the wealth processes of players 1, 3, 5, 7, and 9 under the true Nash equilibrium
controls (dashed) and the trained LSTM control (solid) of the corresponding players. Center: Nash equilibrium
wealth allocation to stock (dashed) vs LSTM allocation (solid). Right: Nash equilibrium total consumption rate
(dashed) vs LSTM consumption rate (solid).

5.4 Results for the inter-bank lending model

Lastly, we present the numerical results for the inter-bank lending model for systemic
risk given by Eqs. (3.15)-(3.16). The parameter choices are summarized in Table 5.4. The
learning rate iterated throughout the training is chosen to be 10−2 in the first 500 rounds
of DFP, 10−3 in the next 500 rounds, 10−4 in the subsequent 500 rounds, and 10−5 in the
last 2500 rounds. The relative 2-norm error between empirical rewards over training, in
this case, is shown in Fig. 5.7.

The 2-norm relative error steadily decreases illustrating a continual improvement thro-
ughout training. It is important to note that in this case, what we call the “true” Nash
equilibrium controls are actually themselves approximated as the true controls are given
in terms of a PDE system (see Proposition 3.4).4 This additional source of error from the

4The PDE system is solved numerically with a discretization of 800 equally spaced slices for t ∈ [0, T] and 50 slices for
both s ∈ [−τ, 0] and r ∈ [−τ, 0]. The PDE is a nonlinear transport equation and the forward Euler scheme is used to solve
the PDE.
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PDE approximation is likely the cause of the increased smoothness of the curve in Fig. 5.7
and the slightly higher levels of relative error compared to previous cases. We would
like to highlight that the gray shaded area, representing plus or minus one standard de-
viation from the mean, is not visible in this case. This is due to the computed values of
the relative 2-norm error being significantly higher than the standard deviation of this
quantity at a given stage. Such an observation suggests a notably stable performance
for this particular example. Despite this additional source of error, the relative 2-norm
error between these two reaches levels close to 10−3, and the plateau of this error indi-
cates successful training. However, the comparison of trajectories, Fig. 5.8, is the foremost
illustration showcasing the success of the numerical algorithm for this particular example.

Figure 5.7: The relative 2-norm error (5.1) over the course of training between ( Ĵ1, · · · , ĴN) under the LSTM
controls and the true Nash equilibrium controls for the CARA case. The length of training is measured in terms
of rounds of DFP. We take Nbatch = 212 in the computation of ( Ĵ1, · · · , ĴN) according to Eq. (4.2). For a specific
round of DFP, we calculate 10 trials of the relative 2-norm error, as defined in (5.1), and plot its mean in blue
and represent the range of one standard deviation by the gray shaded region.

Figure 5.8: Left: A sample path of the log-monetary reserves of banks 1, 3, 5, 7, and 9 under the true Nash
equilibrium controls (dashed) and the trained LSTM control (solid). Right: The corresponding paths (with
respect to the left picture) of Nash equilibrium controls (dashed) and LSTM controls (solid) for each bank. The
controls represent the pace of borrowing/lending for each bank measured as the annualized run rate of borrowing
as a percentage of current monetary reserves.
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This is an interesting and unique case in that this problem’s dynamics involved delay with
respect to the controls themselves rather than the state process. Despite this complexity,
we see that the LSTM controls are successful in approximating the true Nash equilibrium
control trajectories by conforming to their shape and absolute levels exceptionally well,
causing their induced state processes to be nearly identical to that of the true Nash equi-
librium.

6 Conclusion

Finding the closed-loop Nash equilibrium for stochastic delay differential games poses
challenges due to the inherent high dimensionality of the problem. To address this nu-
merically, we propose a deep learning algorithm that involves parameterizing the controls
with LSTM recurrent networks and simulating the trajectories of the discretized dynami-
cal system under these LSTM controls to approximate the expected cost for each player. By
approximating the expected costs given a choice of the LSTM-based controls, the LSTMs
are trained in an iterative process inspired by the concept of fictitious play.

Separately, we have introduced and analyzed a new class of stochastic delay differen-
tial games that arise in finance and have obtained their analytical solutions. The deriva-
tion, interpretation, and proofs for these problems are presented in Appendices A and B.

From the numerical experiments we conducted, we have observed compelling evi-
dence that our proposed algorithm successfully approximates the true Nash equilibrium
controls. The trajectories of the trained controls closely match those of the true controls
after training. Furthermore, we have observed the successful approximation of the costs
(or rewards) for each player under the LSTM controls towards the true Nash equilibrium
costs (or rewards) during the course of training. This is demonstrated by a decrease in the
relative 2-norm error between these vectors throughout the training process, with relative
errors reaching values lower than 10−5 in some cases.

Appendix A. Interpretation and derivations of the games in

Sections 3.1-3.2

A.1. Portfolio optimization with delayed taxes effects

We start with restating the original Merton problem [21]. Consider an investor who cho-
oses between a stock and a bond. At time t, the fraction of wealth πt is invested in the
stock, and 1 − πt is invested in the bond. In general, we have πt ∈ R, where πt > 1
corresponds to a leveraged stock position, while πt < 0, corresponds to the investor being
short the stock. The bond is assumed to accrue at a continuously compounded rate of
interest r and the stock evolves according to the Black-Scholes model dSt/St=µ dt+σ dWt.
Denoting by Xt the investor’s wealth at time t, one then has

dXt = [(µ − r)πtXt + rXt]dt + σπtXt dWt, t ∈ (0, T]. (A.1)



J. Mach. Learn., 3(1):23-63 50

The investor aims to choose a strategy π to optimize her expected utility of terminal wealth

J[π] = E[U(XT)], (A.2)

subject to the dynamics (A.1). Intuitively, the expected utility quantifies the investor’s
desire for the random outcome XT .

We now consider an additional outflow of wealth due to taxes in Eq. (A.1). We assume
that at the end of the period [t, t+dt], the investor pays the amount µ2Yt dt in taxes, where

Yt =
∫ t

−∞
λe−λ(t−s)Xs ds

is the investor’s exponentially averaged past wealth. This leads to the modified dynamics
of the wealth process X given by

dXt =
(

(µ1 − r)πtXt + rXt − µ2Yt

)

dt + σπtXt dWt, t ∈ (0, T]. (A.3)

This model with µ2 < 0 was introduced and solved in [23] arising from a type of mo-
mentum effect. For our consideration, we take µ2 > 0 and the term µ2Yt dt represents the
fact that the investor is paying the fixed percentage (or tax rate) µ2 > 0 of their historical
wealth. This outflow could represent management fees, trading fees, and/or taxes. For
simplicity, we shall refer to it as taxes in the sequel.

Such modeling enables us to capture some realistic features: 1) taxes increase with and
proportional to wealth, 2) there is a delay between when a tax is realized and when it is
paid, 3) this delayed period for taxes varies for a given tax and is itself random. To see
this, let us assume that the taxes paid over [t, t + dt] occur due to numerous tax bills that
were realized τ units in the past. If we further assume that the time to pay these taxes τ
follows an exponential distribution with a rate λ, then one could approximate the taxes
paid in [t, t + dt] by its mean under the scenario of a high frequency of tax occurrences
with small tax amounts at each occurrence. This gives rise to the flux of wealth of

−µ2

∫ t

−∞
λe−λ(t−s)Xs ds dt = −µ2Yt dt

as it appears in Eq. (A.3). In essence, the tax at time t of µ2Yt dt naturally represents the
delayed accrual of taxes due at time t based on past wealth as a result of a delay in billings.

Since Eq. (A.3) includes an outflow due to taxes, one observes that cash will no longer
grow at the risk-free rate r. Therefore, it is natural to ask if there is a tax-adjusted risk-free
rate that better represents the growth of cash in this model. This is addressed in Ap-
pendix A.2. Moreover, while Xt represents the wealth of an investor at time t, the investor
is carrying around a hidden tax liability given through their past history of wealth. We will
also argue in Appendix A.2 that the variable ZT = XT + aYT represents the tax-adjusted
wealth of the investor at time t when a is given by

a =
−(r + λ) +

√

(r + λ)2 − 4λµ2

2λ
.
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With this in mind, the problem we consider is that of an investor who seeks to maximize
the quantity

J[π] = E[U(ZT)], (A.4)

which is the expected utility of tax-adjusted terminal wealth.
Lastly, we mention that the stochastic control problem with such delay structure (A.3)

and µ2 < 0 was considered in [23], including notably the form of the utility (A.4) depend-
ing on ZT = XT + aYT, where

a =
−(r + λ) +

√

(r + λ)2 − 4λµ2

2λ
.

Therein, µ2 < 0 is interpreted as a momentum-like effect arising from the market structure.
Our work considers µ2 > 0, leading to a quite different interpretation as discussed above.

A.2. Tax-adjusted wealth and the tax-adjusted risk-free rate

We have discussed the motivation and interpretation of Eqs. (A.3)-(A.4), which comes
from an investor who is paying taxes at time t at a rate µ2 > 0 on her exponential average
of past wealth. In this section, we give further interpretations to the quantities Zt and
r + λa, as the tax-adjusted wealth and the tax-adjusted risk-free rate respectively. We
define the tax-adjusted risk-free rate to be the long-term exponential growth rate of wealth
for an all-bond account. Then tax-adjusted wealth is the process that grows precisely at
the tax-adjust risk-free rate when considering the all-bond investor. In other words, Xt is
no longer the best measurement of an investor’s “true” wealth as it does not incorporate
the hidden tax liabilities which arise due to the past history of Xt, yet contributes to taxes
beyond time t, and the usual risk-free rate r no longer represents the rate of accrual of
a pure bond account due to tax drag.

To see this, we consider the dynamics of an all-bond investor πt ≡ 0

dXt = rX − µ2Yt dt. (A.5)

Recall that

Yt =
∫ t

−∞
λe−λ(t−s)Xs ds, dYt = λ(Xt − Yt)dt,

one has for arbitrary a ∈ R

d(Xt + aYt) = (r + λa)Xt dt + (−µ2 − λa)Yt dt.

Therefore if a satisfies −µ2 − λa = a(r + λa), then we will have

d(Xt + aYt) = (r + λa)(Xt + aYt)dt,

which occurs when a takes values of

a± =
−(r + λ)±

√

(r + λ)2 − 4λµ2

2λ
.
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Note that a± are distinct real numbers since (r + λ)2 − 4λµ2 > 0 is assumed.
Denoting Z±

t = Xt + a±Yt, we have two linearly independent representations for X,
which allows us to eliminate Y resulting in an expression of X as a linear combination of

Z+ and Z−. Using that Z±
t = Z±

0 e(r+λa±)t, we obtain the expression

Xt = c+e(r+λa+)t + c−e(r+λa−)t,

where

c+ =
a−

a− − a+
(X0 + a+Y0), c− =

−a+
a− − a+

(X0 + a−Y0).

Since λ > 0 and a+ > a−, we have that r + λa+ > r + λa−. Because of this, the wealth of
the all-bond investor Xt has the property

lim
t→∞

e−ktXt =











∞, k < r + λa+,

c+, k = r + λa+,

0, k > r + λa+,

where c+ > 0 holds assuming the initial quantity X0 + a+Y0 > 0 as well as r + λ>0. This
is guaranteed under either of the realistic assumptions that r ≥ 0 or |r| ≪ λ. Therefore,
the rate r + λa+ is precisely the long-run exponential growth rate of an all-bond account,
meaning cash grows at the rate r + λa+ in the long run. And for this choice of a, one has

Xt + aYt = (X0 + aY0)e
(r+λa)t,

consequently, Xt + aYt can be interpreted as tax-adjusted wealth. Note that, in fact, c(Xt +
aYt) for any c ∈ R could represent the tax-adjusted wealth by our requirement. However,
Xt + aYt is the correct choice out of these by imposing a natural second requirement: the
tax-adjusted wealth should be consistent with the wealth if the investor has no tax liability.
Thus c = 1. The notion of Xt + aYt as the tax-adjusted wealth also makes sense intuitively
as in our case of taxes (µ2 > 0) results in a < 0 under the realistic assumption that r+λ>0.
Hence Xt + aYt represents an adjustment to total assets Xt taking into account the tax
liability given through Yt.

A.3. Competition between portfolio managers

We temporarily ignore the delay arising from taxes and review the game extension of
Merton’s original problem which has been considered in [2, 18, 19]. We will briefly sum-
marize them for convenience as they inspire the form of the new problems we consider
in Sections 3.1-3.2. The motivation [2] comes from competing portfolio managers who
are selected by their clients (or awarded bonuses) not only based on the fund’s absolute
performance, but also based on the fund’s performance compared to similar funds. To
address this possibility, the portfolio manager may have a utility function that takes into
account both their absolute performance, as well as their performance relative to their
peer group. [2, 18, 19] model this by considering the interaction between managers occur-
ring through the reward function.
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Let Xi
t be manager i’s wealth process. Her utility can depend on both her terminal

wealth Xi
T as well as her terminal wealth relative to that of her peers Xi

T − XT, where

XT =
1

N

N

∑
i=1

Xi
T

is the arithmetic mean. A weighted average

(1 − θi)X
i
T + θi

(

Xi
T − XT

)

= Xi
T − θiXT

can serve as the input for the utility function, where θi ∈ (0, 1) measures the extent that
manager i weighs relative versus absolute performance. Specifically, [19] consider CARA
case, and the reward for player i is given by

Ji = E
[

Ui

(

Xi
T − θiXT

)]

, Ui(z) = − exp

(

−
1

δi
z

)

, (A.6)

where δi > 0 is the risk tolerance of manager i. They consider CRRA utilities

Ui(z) =







1

1 − 1/δi
z

1− 1
δi , δi > 0, δi 6= 1,

log(z), δi = 1,
(A.7)

where δi > 0 is the risk tolerance of manager i.
The CRRA case is also considered in [19]. In this case, for tractability, the competing

managers compare relative performance to absolute performance modeled by the ratio

Xi
T/(XT)

θi , where

X =

(

N

∏
i=1

Xi

) 1
N

is the geometric average. Then we can say manager i seeks to maximize her expected
utility given by

Ji = E
[

Ui

(

Xi
T(XT)

−θi
)]

. (A.8)

A.4. Competition between portfolio managers with delayed tax effects

We have now discussed the extension of the Merton problem to one with delay as well as
one as a game. Now, we seek to combine both aspects together. The wealth dynamics of

manager i, denoted by Xi
t, can easily be generalized via Eq. (A.3), and given by

dXi
t =

(

(µ1 − r)πi
tX

i
t + rXi

t − µ2Yi
t

)

dt + σπi
tX

i
t dWt, t ∈ (0, T], (A.9)

where

Yi
t =

∫ t

−∞
λe−λ(t−s)Xi

s ds.
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As for the reward function, we again consider both the CARA case (A.6) and the CRRA
case (A.7), but replace the terminal wealth with the discounted, tax-adjusted terminal
wealth. To recall the discussion in Appendices A.1 and A.2, we have identified the tax-
adjusted risk-free rate to be r + λa and the tax-adjusted wealth for player i at time t to be

Zi
t = Xi

t + aYi
t ,

where

a =
−(r + λ) +

√

(r + λ)2 − 4λµ2

2λ
.

The discounted, tax-adjusted wealth at time t is then given by

Zi
disc,t = e−(r+λa)tZi

t,

which discounts the tax-adjusted wealth back to time 0 under the tax-adjusted risk-free
rate. Therefore, in the CARA utility case, it is natural to consider the reward for player i by

Ji[π] = E
[

Ui

(

Zi
disc,T − θiZdisc,T

)]

,

where

Zdisc,T =
1

N

N

∑
i=1

Zi
disc,T.

In contrast, for the CRRA utility case with Ui given by Eq. (A.7), one has

Ji[π] = E

[

Ui

(

Zi
disc,TZ

−θi
disc,T

)]

,

where in this case

Zdisc,T =

(

N

∏
i=1

Zi
disc,T

) 1
N

.

In both cases, we see that the portfolio manager is simply comparing her terminal tax-
adjusted wealth to that of her peers in the manner discussed in Appendix A.3 in deter-
mining her utility.

A.5. Consumption and portfolio allocation game with delayed tax effects

We further extend the modeling (A.9) by considering consumption. In addition to the

investment strategy πi
t, the consumption rate ci

t will also be chosen by investor i. The con-

sumption rate ci
t measures investor i’s annual run rate of consumption at time t as a frac-

tion of her wealth. Precisely, over [t, t + dt] investor i consumes the dollar amount given

by ci
tX

i
t dt. By including this outflow due to consumption, we have the wealth dynamics

for player i given by

dXi
t =

(

(µ1 − r)πi
tX

i
t + rXi

t − µ2Yi
t − ci

tX
i
t

)

dt + σπi
tX

i
t dWt, t ∈ (0, T],
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where as before,

Yi
t =

∫ t

−∞
λe−λ(t−s)Xi

s ds.

The quantity Zi
T = Xi

T + aYi
T with

a =
−(r + λ) +

√

(r + λ)2 − 4λµ2

2λ

again represents the tax-adjusted wealth of player i.
The expected utility will be a sum of the utility from discounted consumption and the

utility from discounted terminal wealth. The exact form is motivated from [18], which has

the utility of consumption given by Ui((ci
tX

i
t)(cXt)−θi) with

cXt =

(

N

∏
i=1

(

ci
tX

i
t

)

) 1
N

.

With the additional delayed tax effects in our modeling, we consider an analogous utility
of discounted consumption and an analogous utility of discounted, tax-adjusted terminal
wealth, where the discounting is taken with respect to the tax-adjusted risk-free rate. The
resulting reward function for each player i ∈ {1, . . . , N} is given by

Ji[π, c] = E

[

∫ T

0
Ui
(

Ci
disc,tCdisc,t

−θi
)

dt + ǫiUi

(

Zi
disc,TZdisc,T

−θi
)

]

,

where

Ci
disc,t = e−(r+λa)tci

tX
i
t, Cdisc,t =

(

N

∏
i=1

Ci
disc,t

) 1
N

,

Zi
disc,t = e−(r+λa)tZi

t, Zdisc,t =

(

N

∏
i=1

Zi
disc,t

) 1
N

,

and

Ui(z) =







1

1 − 1/δi
z

1− 1
δi , δi 6= 1,

log(z), δi = 1.

Here Zi
disc,t is the tax-adjusted wealth for player i discounted according to the tax-adjusted

risk-free rate. Ci
disc,t is the discounted total consumption over [t, t + dt] for player i.

In essence, investor i determines her total utility by summing up her utilities of con-
sumption over intervals of length dt. For example, over the time interval [t, t + dt], the
utility of player i is taken by comparing her own discounted consumption compared to
that of her peers and weighted by the amount dt. In the final stage, the utility is taken by
comparing her discounted terminal wealth to that of her peers and is weighted ǫi. Thus ǫi

represents player i’s preference for wealth as compared to consumption.



J. Mach. Learn., 3(1):23-63 56

Appendix B. Proofs of propositions

B.1. Proof of Proposition 3.1

For convenience, we restate the dynamics (3.1), which is

dXi
t =

(

(µ1 − r)πi
tX

i
t + rXi

t − µ2Yi
t

)

dt + σπi
tX

i
t dWt, t ∈ (0, T],

Xi
t = ζ i(t), t ∈ (−∞, 0],

where the delay variable, Yi
t , is defined as

Yi
t =

∫ t

−∞
λe−λ(t−s)Xi

s ds.

Motivated by the analysis in [23], we note that differentiating Yi
t gives the following dif-

ferential relation:
dYi

t = λ
(

Xi
t − Yi

t

)

dt.

Multiplying dYi
t by a and adding with dXi

t, we get

d(Xi
t + aYi

t ) =
(

(µ1 − r)πi
tX

i
t + (r + λa)Xi

t + (−µ2 − λa)Yi
t

)

dt + σπi
tX

i
t dWt.

Now, using the parameter value

a =
−(r + λ) +

√

(r + λ)2 − 4λµ2

2λ
,

we have that a(r + λa) = −µ2 − λa as one can see a is a root of this quadratic equation.
Thus denoting

Zi
t = Xi

t + aYi
t ,

we get

dZi
t =

(

(µ1 − r)πi
tX

i
t + (r + λa)Zi

t

)

dt + σπi
tX

i
t dWt.

Multiplying by the integrating factor e−(r+λa)t and denoting

Zi
disc,t = e−(r+λa)tZi

t,

we get

dZi
disc,t = (µ1 − r)πi

te
−(r+λa)tXi

t dt + σπi
te
−(r+λa)tXi

t dWt. (B.1)

Now, for each i, define the transformed control π̃i by

π̃i
t = πi

tX
i
te
−(r+λa)t. (B.2)

Substituting the transformed controls, we have the following controlled SDE for each
i∈{1, . . . , N}:

dZi
disc,t = (µ1 − r)π̃i

t dt + σπ̃i
t dWt, t ∈ (0, T]. (B.3)
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Restating the reward function defined in Proposition 3.1, one has that the reward for each
player i ∈ {1, . . . , N} is given by

Ji[π̃] = E
[

Ui

(

Zi
disc,T − θiZdisc,T

)]

, (B.4)

where

Zdisc,T =
1

N

N

∑
i=1

Zi
disc,T, Ui(z) = − exp

(

−
1

δi
z

)

. (B.5)

Therefore, the characterization of controls for the Nash equilibrium can be considered
through Eqs. (B.3)-(B.5). This is precisely the same problem described in [19, Section 2,
Corollary 4], which gives a closed-loop Nash equilibrium given by the controls

π̃i,∗
t =

µ1 − r

σ2

(

δi +
θiδ̄

1 − θ̄

)

for i ∈ {1, . . . , N}, where

δ̄ =
1

N

N

∑
i=1

δi, θ̄ =
1

N

N

∑
i=1

θi.

Substituting π̃i,∗
t into Eq. (B.2), we get that there is a closed-loop Nash equilibrium control

given by the choices of each player i by

πi,∗
t Xi,∗

t =
µ1 − r

σ2

(

δi +
θiδ̄

1 − θ̄

)

1

e−(r+λa)t
.

That is, at time t, the equilibrium strategy is to invest a deterministic dollar amount into
the risky asset, independent of the current wealth level. This proves Proposition 3.1.

B.2. Proof of Proposition 3.2

Proof. Since the dynamical system is exactly the same as in Appendix B.1, we know that

Zi
t=Xi

t + aYi
t

satisfies
dZi

t =
(

(µ1 − r)πi
tX

i
t + (r + λa)Zi

t

)

dt + σπi
tX

i
t dWt. (B.6)

We are assuming that the initial path Xi
t = ζ i(t) for t ≤ 0 is chosen so that

Zi
0 = Xi

0 + aYi
0 > 0.

Next, since πi is admissible, it has the property |πi
tX

i
t| ≤ K|Zi

t| for some K > 0. In

particular, this means that πi
tX

i
t = 0 whenever Zi

t = 0. We will soon show that Zi
t > 0.

Now, for each i, we define the transformed control π̃i by

π̃i
t =











πi
t

Xi
t

Zi
t

, Zi
t 6= 0,

0, Zi
t = 0.

(B.7)
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Since |πi
tX

i
t| ≤ K|Zi

t|, we have |π̃i
t| ≤ K and claim that the dynamics (B.6) can be written

in terms of π̃i
t by

dZi
t =

(

(µ1 − r)π̃i
tZ

i
t + (r + λa)Zi

t

)

dt + σπ̃i
tZ

i
t dWt. (B.8)

Since |π̃i
t| ≤ K, we have that

E

[

∫ t

0

(

π̃i
s

)2
ds

]

< ∞

for each t ∈ (0, T] and therefore, Zi
t has the unique solution

Zi
t = Zi

0 exp

[

(r + λa)t +
∫ t

0

[

(µ1 − r)π̃i
s −

1

2
σ2
(

π̃i
s

)2
]

ds +
∫ t

0
π̃i

s dWs

]

for all t ∈ [0, T]. This indicates Zi
t > 0 as we have assumed the initial path Xi

(−∞,0] is such

that
Zi

0 = Xi
0 + aYi

0 > 0.

Also, one can show Xi
t > 0 for all t ≤ T. First Xi

t = ζ i(t) > 0 for t ≤ 0. Now, by

contradiction take t′ > 0 to be the first hitting time Xi
t′ = 0. Since Xi

t > 0 for t < t′, we see
that

Yi
t′ =

∫ t′

−∞
λe−λ(t−s)Xi

s ds > 0.

Therefore
0 < Zi

t′ = Xi
t′ + aYi

t′ = aYi
t′ ,

which is a contradiction as a < 0 and Yi
t′ > 0. Since Zi

t > 0, the transformed control from
Eq. (B.7) can be written simply as

π̃i
t = πi

t
Xi

t

Zi
t

, (B.9)

and since Xi
t > 0 as well, this transformation is invertible which we will use later.

Now, multiplying Eq. (B.8) by the integrating factor e−(r+λa)t , we can write the equa-
tion for

Zi
disc,t = e−(r+λa)tZi

t

as
dZi

disc,t = (µ1 − r)π̃i
tZ

i
disc,t dt + σπ̃i

tZ
i
disc,t dWt, t ∈ (0, T]. (B.10)

We restate the reward function in Proposition 3.1 for convenience. We have that the reward
for player i is given by

Ji = E

[

Ui

(

Zi
disc,TZ

−θi
disc,T

)]

, (B.11)

where 0 < θi < 1 for each i, and where

Zdisc,T =

(

N

∏
i=1

Zi
disc,T

) 1
N

, Ui(z) =







1

1 − 1/δi
z

1− 1
δi , δi 6= 1

log(z), δi = 1
(B.12)
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with δi > 0. The Nash equilibrium problem defined by Eqs. (B.10)-(B.12) for generic,

progressively measurable controls (π̃i)N
i=1 such that

E

[

∫ t

0

(

π̃i
s

)2
ds

]

< ∞

falls into the formulation of [19, Section 3, Corollary 15]. Using the results therein, one has
a closed-loop Nash equilibrium given by the controls

π̃i,∗
t =

µ1 − r

σ2

(

δi −
θi(δi − 1)δ̄

1 + θ(δ − 1)

)

for i ∈ {1, . . . , N}. Solving for πi,∗
t , from Eq. (B.9) we get

πi,∗
t =

µ1 − r

σ2

(

δi −
θi(δi − 1)δ̄

1 + θ(δ − 1)

)

Xi
t + aYi

t

Xi
t

,

which holds as we have shown that Xi
t > 0. Lastly, we see that the Nash equilibrium

controls do satisfy the admissibility condition as

∣

∣πi,∗
t Xi

t

∣

∣ =

∣

∣

∣

∣

∣

µ1 − r

σ2

(

δi −
θi(δi − 1)δ̄

1 + θ(δ − 1)

)∣

∣

∣

∣

∣

∣

∣Zi
t

∣

∣.

This completes the proof of Proposition 3.2.

B.3. Proof of Proposition 3.3

We now form the solution for the problem defined by Eq. (3.8)-(3.11), proceeding similarly
to the proof in Appendix B.2. Restating the dynamics given in Proposition 3.3, we have
for each i ∈ {1, . . . , N},

dXi
t =

(

(µ1 − r)πi
tX

i
t + rXi

t − µ2Yi
t − ci

tX
i
t

)

dt + σπi
tX

i
t dWt, t ∈ (0, T],

Xi
t = ζ i(t), t ∈ (−∞, 0],

where the delay variable, Yi
t , is given by

Yi
t =

∫ t

−∞
λe−λ(t−s)Xi

s ds.

As usual, define
Zi

t = Xi
t + aYi

t , Zi
disc,t = e−(r+λa)tZi

t,

where

a =
−(r + λ) +

√

(r + λ)2 − 4λµ2

2λ
.
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Following the similar computation in the proof in Appendix B.1, one can show

dZi
t =

(

(r + λa)Zi
t + (µ1 − r)πi

tX
i
t − ci

tX
i
t

)

dt + σπi
tX

i
t dWt. (B.13)

Now, for each i, define the transformed controls (π̃i, c̃i) by

(π̃i
t, c̃i

t) =











(

πi
t

Xi
t

Zi
t

, ci
t

Xi
t

Zi
t

)

, Zi
t 6= 0,

(0, 0), Zi
t = 0.

Then Eq. (B.13) can be written as

dZi
t =

(

(r + λa)Zi
t + (µ1 − r)π̃i

tZ
i
t − c̃i

tZ
i
t

)

dt + σπ̃i
tZ

i
t dWt. (B.14)

Since |π̃i
t|, |c̃

i
t| ≤ K, we have that

E

[

∫ t

0

(

π̃i
s

)2
+
(

c̃i
s

)2
ds

]

< ∞

for each t ∈ (0, T], and Zi
t has the unique solution

Zi
t = Zi

0 exp

[

(r + λa)t +
∫ t

0

[

(µ1 − r)π̃i
s −

1

2
σ2
(

π̃i
s

)2
− c̃i

s

]

ds +
∫ t

0
π̃i

s dWs

]

.

Therefore, Zi
t > 0 and Xi

t > 0, following the same argument as in Appendix B.2, and the
transformed controls become simply

(

π̃i
t, c̃i

t

)

=

(

πi
t
Xi

t

Zi
t

, ci
t
Xi

t

Zi
t

)

, (B.15)

which can be inverted for a given choice of controls (π̃i
t, c̃i

t).

Next, multiplying Eq. (B.14) by the integrating factor e−(r+λa)t, we get

dZi
disc,t =

(

(µ1 − r)π̃i
tZ

i
disc,t − c̃i

tZ
i
disc,t

)

dt + σπ̃i
tZ

i
disc,t dWt, t ∈ (0, T]. (B.16)

For convenience, we restate the reward defined in Proposition 3.3, which is

Ji = E

[

∫ T

0
Ui
(

Ci
disc,tCdisc,t

−θi
)

dt + ǫiUi

(

Zi
disc,TZdisc,T

−θi
)

]

,

where

Ci
disc,t = e−(r+λa)tci

tX
i
t, Cdisc,t =

(

N

∏
i=1

Ci
disc,t

) 1
N

,

Zi
disc,t = e−(r+λa)tZi

t, Zdisc,t =

(

N

∏
i=1

Zi
disc,t

) 1
N

,
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and where 0 < θi < 1, ǫi > 0, and

Ui(z) =







1

1 − 1/δi
z

1− 1
δi , δi 6= 1,

log(z), δi = 1

(B.17)

with δi > 0. In terms of the transformed controls defined by Eq. (B.15), we can write the
reward function for player i as

Ji = E

[

∫ T

0
Ui
(

c̃i
tZ

i
disc,t(c̃tZdisc,t)

−θi
)

dt + ǫiUi

(

Zi
disc,TZdisc,T

−θi
)

]

, (B.18)

where

c̃tZdisc,t =

(

N

∏
i=1

c̃i
tZ

i
disc,t

) 1
N

.

The Nash equilibrium problem defined by Eqs. (B.16)-(B.18) is given in [18, Corol-

lary 2.3] for the generic, progressively measurable controls (π̃i, c̃i)N
i=1 that satisfy the ad-

missibility conditions

E

[

∫ t

0

(

π̃i
s

)2
+
(

c̃i
s

)2
ds

]

< ∞,

and c̃i
t ≥ 0 for each t ∈ [0, T]. Specifically, [18, Corollary 2.3] gives that there exists a closed-

loop Nash equilibrium given by the controls

π̃i,∗
t =

µ1 − r

σ2

(

δi −
θi(δi − 1)δ̄

1 + θ(δ − 1)

)

,

c̃i,∗
t =







(

β−1
i +

(

γ−1
i − β−1

i

)

e−βi(T−t)
)−1

, δi 6= 1,
(

T − t + γ−1
i

)−1
, δi = 1

for i ∈ {1, . . . , N}, where the notations δ̄, θ(δ − 1) correspond to the arithmetic average,
and the parameters βi and γi are given by

βi =
1

2
(1 − δi)

(

µ1 − r

σ

)2
(

1 −
θiδ̄

1 + θ(δ − 1)

)(

δi −
θiδ̄

1 + θ(δ − 1)
(δi − 1)

)

,

γi = ǫ
−δi
i





(

N

∏
k=1

ǫ
δk
k

) 1
N





θi(δi−1)

1+θ(δ−1)

.

Substituting back for (πi,∗, ci,∗) through the transformations defined by Eq. (B.15), we see

that (πi,∗, ci,∗) is indeed in A
i and the result from Proposition 3.3 holds.
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