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A MATHEMATICAL INVESTIGATION OF THE ROLE OF

INTRACRANIAL PRESSURE PULSATIONS AND SMALL

GRADIENTS IN THE PATHOGENESIS OF HYDROCEPHALUS

KATHLEEN P. WILKIE, CORINA S. DRAPACA, AND SIVABAL SIVALOGANATHAN

Abstract. Cerebrospinal fluid (CSF) pulsations have been proposed as a possible causative
mechanism for the ventricular enlargement that characterizes the neurological condition known as

hydrocephalus. This paper summarizes recent work by the authors to anaylze the effect of CSF
pulsations on brain tissue to determine if they are mechanically capable of enlarging the cerebral

ventricles. First a poroelastic model is presented to analyze the interactions that occur between

the fluid and porous solid constituents of brain tissue due to CSF pulsations. A viscoelastic model
is then presented to analyze the effects of the fluid pulsations on the solid brain tissue. The

combined results indicate that CSF pulsations in a healthy brain are incapable of causing tissue

damage and thus the ventricular enlargement observed in hydrocephalus. Therefore they cannot
be the primary cause of this condition. Finally, a hyper-viscoelastic model is presented and used

to demonstrate that small long-term transmantle pressure gradients may be a possible cause of

communicating hydrocephalus in infants.
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1. Introduction

Hydrocephalus is a condition characterized by the accumulation of cerebrospinal
fluid (CSF) in the ventricles of the brain. Elevated intracranial pressure (ICP) and
elevated intracranial pressure wave amplitudes are often observed in some man-
ifestations of hydrocephalus. Non-communicating hydrocephalus occurs when a
blockage in CSF flow causes an accumulation of fluid in the ventricles and an in-
crease in ICP. In communicating hydrocephalus, where there is no blockage in CSF
flow, large pressure gradients are not observed across the brain parenchyma. Thus,
the standard explanation of how ventricles enlarge and why fluid accumulates no
longer applies.

The relationship between intracranial pressure, intracranial compliance, and hy-
drocephalus is complex. Experimental evidence indicates that in hydrocephalus
patients with a reduced compliance, the amplitude of ICP pulsations increases but
then decreases back to normal upon shunt insertion [33, 38]. Other experiments
demonstrate the synchrony between arterial and CSF pressure pulsations [20] and
the effect these pulsations seemingly have on ventricular enlargement [3, 49].

Measurements of CSF pressure clearly indicate the pulsatile nature of CSF
flow [26]. Some theories for the development of hydrocephalus postulate a link
between these pulsations and ventricular enlargement [3, 28, 31, 49]. One such
theory, proposed by Egnor et al. [11], suggests that the cranial compartment is in a
natural state of resonance and that deviation from this state leads to a breakdown
of the windkessel effect and a loss of normal cerebral blood and CSF dynamics.
Intracranial pressure, however, is pulsatile in healthy brains and the frequency of
these pulsations changes with the heart rate, leading one to ask “if CSF pulsations
cause hydrocephalus, why don’t we all have this condition?”
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One possible mechanical explanation is that large amplitude CSF pulsations
cause tissue damage in the periventricular regions of the brain. This hypothesis
for the onset of hydrocephalus proceeds as follows. Each influx of arterial blood
generates a CSF pressure pulse felt by the ventricle walls. Periodic pressurization
of the walls causes the brain tissue to periodically compress and expand and CSF
to oscillate in and out of the brain tissue. When these oscillations are large they
generate large shear strains which damage the periventricular tissue. Finally, the
damaged tissue allows fluid to penetrate further into the brain, propagating tissue
damage and leading to ventricular expansion. We call this mechanistic theory the
pulsation-damage hypothesis for hydrocephalus.

Mathematical models have been used to study hydrocephalus since the pioneer-
ing work of Hakim et al. [21, 22] in the 1970’s, in order to further the understand-
ing of how ventricular enlargement occurs and how treatments can be improved.
In the literature, there are two main approaches to mathematically model hydro-
cephalus. The first approach uses time-dependent compartment models such as
pressure volume models and analogous electrical circuit models [11, 12, 27, 37].
The second approach uses time- and space-dependent models such as poroelas-
tic [29, 39, 40, 42, 43, 50] or viscoelastic [9, 10, 35, 36, 41, 46, 47] models. Both
poroelastic and viscoelastic models are useful when modelling brain tissue and in
this paper we will discuss the application of both classes of models to analyze the
effect of CSF pulsations on brain tissue with regards to the development of hydro-
cephalus.

Biological tissues are composed of both fluid and solid phases and, in addition,
the brain has 4 interconnected fluid compartments or ventricles through which
the CSF circulates around the subarachnoid region of the brain and spinal cord
areas. Thus, ventricular CSF pulsations affect the brain via the periodic loading
and unloading of the ventricle walls and via the fluid exchange that occurs between
the ventricular and interstitial spaces of the tissue. In Section 2 we present a
poroelastic model and analyze the interactions that occur between the solid and
fluid phases of brain tissue resulting from this fluid exchange. In Section 3 we
present a viscoelastic model and analyze the effect of ventricular CSF pulsations
on the solid brain. And in Section 4 we present a hyper-viscoelastic model and
show that small long-term transmantle pressure gradients are capable of causing
ventricular expansion in infants.

2. Brain Tissue as a Fluid-Solid Composite

We begin by presenting a poroelastic model to analyze the effects of periodic fluid
exchange between the ventricles and the interstitial space of brain tissue resulting
from CSF pulsations. The goal is to determine if the tissue strains and shear stresses
produced in this way are sufficient to cause tissue damage and hence hydrocephalus.

2.1. Poroelastic Model Formulation. A simplified view of brain parenchyma
is to think of the brain as a porous linearly elastic solid saturated in a viscous
incompressible fluid. Such biphasic materials behave according to Biot’s theory of
consolidation [4]. Following the work of Tenti et al. [42] we assume a simple model
geometry for which analytic solutions can be found. Thus, we model the brain as
a thick walled cylinder: the interior representing the ventricles, the exterior repre-
senting the subarachnoid space (SAS) and skull, and the thick wall representing the
brain parenchyma, see Figure 1. This tethered cylindrical geometry allows the as-
sumption of planar strain and results in a simplification of the governing equations
to one spatial dimension as a result of the radial symmetry.



38 K.P. WILKIE, C.S. DRAPACA, AND S. SIVALOGANATHAN

O

rSAS

rV

r

Skull

Brain Parenchyma

Ventricles

Figure 1. Simplified cylindrical model geometry of the brain.

Applying conservation of momentum and Darcy’s Law the poroelastic solid dis-
placement, u, satisfies the following equation of motion

(1) ρ
∂2

∂t2
u =

µ

k
W + (λ+ 2G)∇ (∇ · u) +G∇2u,

where ρ is the density of the mixture, µ is the fluid viscosity, k is the solid porosity,
and λ and G are the Lamé parameters of linear elasticity. In cylindrical coordinates,
using symmetry, u = (u(r, t), 0, 0) and W = (W (r, t), 0, 0), where r is the radial
position and t is time. The radial filtration velocity, W (r, t), can be found by
integrating the continuity equation, ∇ · (W + ∂u

∂t ) = 0, which gives

W (r, t) =
1

r
c0(t)− ∂

∂t
u(r, t),

where c0(t) is an arbitrary function of time. The pore pressure is assumed to
have a static (constant) and a dynamic (time- and space-dependent) component,
p(r, t) = ps+pd(r, t). Darcy’s Law relates the pore pressure to the solid displacement
via the filtration velocity,

(2) ∇p(r, t) = −µ
k
W (r, t) = −µ

k

(
1

r
c0(t)− ∂

∂t
u(r, t)

)
.

Writing equations (1) and (2) in cylindrical coordinates, we have two coupled
partial differential equations (PDEs) for the solid displacement and the dynamic
pore pressure:

∂2u

∂t2
+ fr

∂u

∂t
= fr

1

r
c0(t) + cd

2

(
∂2u

∂r2
+

1

r

∂u

∂r
− 1

r2
u

)
(3)

∂pd
∂r

=
µ

k

(
∂u

∂t
− 1

r
c0(t)

)
,(4)

where fr = µ
ρk is the relaxation frequency and cd =

√
λ+2G
ρ is the propagation

speed of the dilatational waves.
Boundary conditions are required to determine the arbitrary constants that arise

in the solutions to PDEs (3) and (4). For dynamic pore pressure, we require the
amplitude of the pressure pulsations at the ventricle boundary (r = rV ) to match
the amplitude of the ventricular CSF pulsations (pV ) and the amplitude of the
pressure pulsations at the SAS boundary (r = rSAS) to match the amplitude of the
SAS CSF pulsations (pSAS). That is, we require

(5)

{
pd(rV , t) = Re

(
pV eiωt

)
pd(rSAS , t) = Re

(
pSASeiωt

)
.
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Since the parenchyma effectively sits in a fluid filled container, there should be no
contact stress in the poroelastic solid at the ventricular and SAS boundaries. Thus
we require

(6)

{
(λ+ 2G) ∂∂ru(rV , t) + λ

rV
u(rV , t) = 0

(λ+ 2G) ∂∂ru(rSAS , t) + λ
rSAS

u(rSAS , t) = 0.

To solve equations (3) and (4) we assume time harmonic motion, such that
u(r, t) = Re

(
U(r)eiωt

)
, pd(r, t) = Re

(
P (r)eiωt

)
, and c0(t) = Re

(
C0eiωt

)
, where ω

is the angular frequency of the pulsations. Substituting these into the PDEs and
solving (see [45] for details) gives U(r) and P (r) as

U
(
ξ(r)

)
= − 1

cdαξ
C0 +

cd
fr

(
C1J1(ξ) + C2Y1(ξ)

)
,(7)

P
(
ξ(r)

)
= −

ω2µ ln( 1
αξ)

kf2
rα

2
C0 −

iωµc2d
kf2
rα

(
C1J0(ξ) + C2Y0(ξ)

)
+ µfrC3,(8)

where α =
√

ω2

f2
r
− i ωfr , ξ(r) = αfr

cd
r, and Jn and Yn are the Bessel functions of order

n. The constants C0, C1, C2, and C3 are determined by the boundary conditions

and can be found by solving the matrix equation A~x = ~b, with vectors

~x = [ C0 C1 C2 C3 ]T , and ~b = [ pV pSAS 0 0 ]T ,

and the matrix

A =



−ω2µ ln(
ξV
α )

kf2
rα

2

−iωµc2d
αkf2

r

JV0
−iωµc2d
αkf2

r

Y V0 µfr

−ω2µ ln(
ξSAS
α )

kf2
rα

2

−iωµc2d
αkf2

r

JSAS0
−iωµc2d
αkf2

r

Y SAS0 µfr

fr
αc2dξV

MξV
2G JV0 − JV1

MξV
2G Y V0 − Y V1 0

fr
αc2dξSAS

MξSAS
2G JSAS0 − JSAS1

MξSAS
2G Y SAS0 − Y SAS1 0


,

where M = (λ + 2G), ξV = αfr
cd
rV , ξSAS = αfr

cd
rSAS , and the notation FBn =

Fn(αfrcd rB) with n = 0 or 1, B = V or SAS, and F = J or Y , has been used for
convenience. Finally, the filtration velocity is given by

(9) W (r, t) =
1

r
Re
(
C0eiωt

)
− Re

(
iωU(r)eiωt

)
.

2.2. Poroelastic Model Simulations and Results. Eide [14] reported that
in 6 out of 7 hydrocephalus patients studied, ICP measurements from the lateral
ventricle and the brain parenchyma were synchronous but the amplitude of the ven-
tricular pressure was significantly elevated compared to the parenchyma pressure.
The smallest difference in the average peak-to-peak amplitude was 0.4 mm Hg with
the other differences being 0.5, 1.0, and 2.6 mm Hg. For our numerical simulations,
we choose the smallest measured difference (0.4 mm Hg) since larger differences
would only scale the results proportionally. Furthermore, in patients without active
hydrocephalus, no significant difference in ICP amplitude was found between the
lateral ventricles and the brain parenchyma [5]. To prescribe the boundary condi-
tion at the subarachnoid space, we choose the same pressure wave amplitude as was
measured in the parenchyma. This is justified by experimental measurements [13]
showing no significant difference in wave amplitude between the pressures of the
parenchyma and epidural space.
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To simulate the conditions present in a normal pressure hydrocephalic brain, we
define the average ventricular pressure to be 13 mm Hg, the ventricular pulse peak-
to-peak amplitude to be 9.4 mm Hg, and the SAS pulse peak-to-peak amplitude to
be 9.0 mm Hg. Other model parameter values have been taken from the literature,
see Table 1. Note that the Lamé constants have been replaced by the more physical
Young’s modulus (E) and Poisson ratio (ν) via the standard relationships.

Table 1. Poroelastic model parameter values.

µ = 10−3 Kg m−1s−1 ρ = 103 Kg m−3 k = 10−14 m2 [23]
E = 21 kPa [42] ν = 0.4 [42] ω = 6 rad s−1

pV = 1
29.4 mm Hg pSAS = 1

29.0 mm Hg ps = 13 mm Hg
rV = 3 cm rSAS = 10 cm rm = 6.5 cm

In order to numerically simulate the analytic solutions found above, asymptotic
expansions for the Bessel functions with large arguments [1] were used (see [45,
Appendix A] for details). The model simulated pressure at the ventricle boundary,
the SAS boundary, and in the middle of the parenchyma (r = rm) is shown in
Figure 2. The maximum pressure at the ventricular boundary is 17.7 mm Hg, at
the SAS boundary it is 17.5 mm Hg, and in the middle of the parenchyma it is
17.48 mm Hg. Figure 2 matches the experimental observations [13, 14] in that a
small dynamic pressure gradient exists across the ventricle wall into the parenchyma
and that no significant pressure difference exists between the parenchyma and the
SAS.
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Figure 2. Simulated pressure waves at the boundaries (a), and
a zoom showing the curve separations during systole (b).

In systole, the pressure is largest in the ventricle which causes an outward dis-
placement of the parenchyma. The situation is reversed in diastole, and there is
an inward displacement of the parenchyma. This oscillatory displacement is largest
near the ventricle, with a maximum amplitude of 58.8 µm compared to the max-
imum displacement amplitude in the middle of the parenchyma 27.2 µm, or the
SAS boundary 17.7 µm.
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The pressure pulsations combined with the resulting compression and expansion
cycle of the parenchyma cause the filtration of fluid in and out of the parenchyma
at both boundaries as well as pulsations in fluid filtration all throughout the
parenchyma. The filtration velocity is phase shifted from the displacement and
pressure waves due to the conflict between the pressure gradient and the compress-
ing parenchyma. The highest filtration velocities occur near the ventricle wall with
a maximum magnitude of 1.08 µm/s.

2.3. Pore Flow Analysis. To determine if this shear-inducing pore flow is suffi-
cient to damage tissue, we use a simple pipe flow model. By assuming the fluid is
Newtonian, incompressible, and steady, and by neglecting body forces, the Navier-
Stokes equations simplify to the following equation for flow through a straight pore,

(10) ∇q = µ∇2v,

where ∇q is the constant pressure gradient across the length of the pore, µ is the
fluid viscosity, and v is the fluid flow along the pore. In a cylindrical pore v = v(r),
and the flow is given by

(11) v(r) =
∇q
4µ

(r2 −R2),

whereR is the radius of the pore and the following boundary conditions are imposed,
v(R) = 0 and dv

dr |r=0 = 0.
Since the fluid flow through the porous material is governed by both the pressure

gradient and the compression or expansion of the material, the pressure gradient
used in this pore flow model, ∇q, is different from the pressure gradient in the
poroelastic model. Thus, to determine the pressure gradient ∇q, we require the
maximum velocity through the pore to be 1 µm/s. This provides an over approxi-
mation of the pressure gradient, ∇q = −1.6 Pa, assuming a 100 µm diameter pore.
The flow through the pore is thus given by

(12) v(r) = 400(R2 − r2),

where the viscosity of water, µ = 10−3 Pa·s, is assumed. Finally, the shear stress
induced on the walls of the pore by a steady flow with a maximum velocity of
1 µm/s is given by

(13) σ = µ
dv

dr

∣∣∣∣
r=R

= −40 µPa.

Cells adhere to the extracellular matrix through the binding of integrin recep-
tors to components such as fibronectin or collagen. Measurements of cell adhesion
strength using shear flows in microfluidic channels average about 84 ± 27 Pa for
cells adhered to low concentration collagen- or fibronectin-coated substrates [6].
The smallest observed adhesion strength was about 30 Pa and the largest observed
strength was about 210 Pa. This is the force required to completely remove a cell
from the substrate. Dong and Lei [8] estimated the force required to rupture one
adhesive bond, or to extract a receptor from the cell membrane, as 1 µdyn (or
10−11 N). To estimate the shear, we assume this force is distributed over the top
half of a cell attached to the pore wall. This provides a lower bound to the shear
generated by this force acting directly on the smaller area of an integrin binding
site. Assuming a spherical cell of radius 5 µm (the soma of a neuron ranges from 4
to 100 µm in diameter), this force corresponds to a surface shear of about 0.06 Pa.
The estimated shear stress imposed by the fluid flow in the periventricular region
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was about 40 µPa, which is three orders of magnitude smaller than the estimated
stress required to break a single adhesive bond.

The maximum filtration velocity at the ventricle wall increases linearly with
the pressure wave amplitude difference between the ventricles and SAS, ∆p =
pV − pSAS . The corresponding shear stress imposed on the wall of a cylindrical
pore of radius 50 µm by this filtration also increases linearly with ∆p. For a
large pressure wave amplitude difference, ∆p = 2 mm Hg (4 mm Hg peak-to-peak),
the maximum pore velocity in the periventricular area is about 11 µm/s and the
resulting shear force is about 450 µPa. This shear force is two orders of magnitude
smaller than the estimated shear required to rupture a single adhesive bond. We
conclude that trans-parenchymal fluid flow in response to CSF pulsations induces
small shearing forces when compared to the forces required to induce tissue damage.
Thus fluid flow through brain tissue is an unlikely contributor to tissue damage
leaving only the internal solid stresses as a possible mechanism for damage in the
pulsation-damage hypothesis of hydrocephalus.

3. Brain Tissue as a Viscoelastic Solid

Since we have excluded the interstitial fluid-solid interactions as a possible con-
tributor to tissue damage, we may neglect the fluid phase of the tissue and consider
brain tissue as a single-phase incompressible viscoelastic solid. Here we examine
the effect of the periodic loading applied to the brain by ventricular CSF pulsa-
tions and estimate the ability of these pulsations to induce tissue damage and thus
initiate hydrocephalus.

3.1. Fractional Zener Model Formulation. The fractional Zener viscoelastic
model has recently been shown to predict the mechanical behaviour of biological
tissues better than other viscoelastic models [7]. Using fractional derivatives in
viscoelastic models introduces a history dependence into the constitutive equation,
enabling accurate prediction of complex behaviour with relatively small numbers
of model parameters. The fractional derivative of order α is defined by

Dαf(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s) ds,

where Γ is the Eulerian gamma function. The schematic of the Zener viscoelastic
model is given in Figure 3. Here, σ is the stress, ε is the strain, E1 and E2 are the
spring constants (elastic moduli) and µ is the viscosity of the dashpot.

ε

σ σ

µ

E
2

E
1

Figure 3. Schematic of the Zener viscoelastic model.

By defining an initial elastic modulus E0 = E1 + E2, a steady-state elastic
modulus E∞ = E2, and a relaxation time τ = µ

E1
, the constitutive equation for the

fractional Zener model can be written as [7, 46]

(14) σ + ταDασ = E∞ε+ E0τ
αDαε.
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For simplicity, we assume the brain geometry to be a thick-walled cylinder, as
in Figure 1, but with inner radius r = a and outer radius r = b. Assuming the
deviatoric behaviour of brain tissue can be modelled by the fractional Zener model
and the dilatational behaviour can be modelled by the linear elastic model, the dis-
placement of the parenchyma, a homogeneous, incompressible, isotropic solid, can
be found analytically using the elastic-viscoelastic correspondence principle, see [46]
for details. Because the skull plates are unfused in a newborn infant but fused in
an adult, the boundary conditions must differ for the two cases of hydrocephalus.
The boundary value problem for infant hydrocephalus prescribes zero radial stress
at the skull boundary which allows for the large deformations observed in untreated
cases,

Infant


∂
∂rσrr + 1

r (σrr − σθθ) = 0
σrr = −pi(t) at r = a
σrr = 0 at r = b.

(15)

Meanwhile, in the case of adult hydrocephalus, zero displacement (u) is enforced
at the outer boundary due to the rigidity of the mature skull, resulting in the
boundary value problem

Adult


∂
∂rσrr + 1

r (σrr − σθθ) = 0
σrr = −pi(t) at r = a
u = 0 at r = b.

(16)

Inertial forces are neglected by these models since the equilibrium equations are
solved subject to the applied boundary conditions in order to determine the long-
time effects of CSF pulsations on brain parenchyma. We assume a pulsatile pressure
difference (ventricular pressure - SAS pressure) of the form pi(t) = p∗ cos(ωt). More
details on the model derivation and solution method can be found in [46]. The infant
and adult displacement solutions to boundary value problems (15) and (16), uI and
uA respectively, are [46, equations (12) and (19)]:

uI(r, t) =
a2

b2 − a2

[(
3r

6K + E0
+

b2

E0r

)
pi(t)

+
b2(E0 − E∞)

E2
0τ
αr

pi(t) ∗
(
tα−1Eα,α

(
− E∞

E0

( t
τ

)α))
(17)

+
3r(E0 − E∞)

(6K + E0)2τα
pi(t) ∗

(
tα−1Eα,α

(
− 6K + E∞

6K + E0

( t
τ

)α))]
and

uA(r, t) =

(
b

r
− r

b

)[
3a2b

(6K + E0)a2 + 3E0b2
pi(t)(18)

+
3a2b(a2 + 3b2)(E0 − E∞)

((6K + E0)a2 + 3E0b2)
2
τα
pi(t) ∗

(
tα−1Eα,α

(
− ĥ
( t
τ

)α))]
,

where K is the bulk modulus, Eα,α(z) is the generalized Mittag-Leffler function,

ĥ = (6K+E∞)a2+3E∞b2

(6K+E0)a2+3E0b2
, and ∗ denotes the convolution operation over time.

3.2. Viscoelastic Model Simulations and Results. The tissue displacements
predicted in [46] used the fractional Zener model parameter values found by Davis
et al. [7] by fitting the model to the relaxation data of Galford and McElhaney [17]
(see the Davis et al. parameter values in Table 2). An amplitude of 667 Pa (10 mm Hg
peak-to-peak) was chosen to recreate the large pressure pulses observed during the
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induction of hydrocephalus [30] as well as during hydrocephalus with increased in-
tracranial pressure [14]. The frequency is based on a heart rate of 70 beats per
minute. See the common parameter values listed in Table 2 for the rest of the
model parameters. Algorithms for the numerical computation of the generalized
Mittag-Leffler function can be found in [18, 19].

The maximum displacement amplitude of the ventricle wall predicted by the
model with these parameter values was 3 mm in the infant case and 48 nm in
the adult case [46]. The maximum solid stresses were 670 Pa (radial) and 800 Pa
(tangential) for the infant case and 670 Pa (both radial and tangential) for the
adult case. These predictions were compared to the predictions of the standard
viscoelastic model [36] by Wilkie et al. [46].

3.2.1. Age-Dependent Parameters. Since the brain undergoes an incredible
growth spurt as it matures and develops over the first two years of life, it is rea-
sonable to assume that the material properties also change over this time. To
determine how the fractional Zener model parameter values compare for infant
and adult brain tissue, and how these different material properties may affect the
above predictions, we use the age-dependent shear complex modulus porcine data
reported by Thibault and Margulies [44]. Using the nonlinear least squares method
lsqcurvefit in MATLAB, the fractional Zener model parameter values were esti-
mated [47] by fitting the shear complex modulus for the fractional Zener model
(G∗(iω) = G′(ω) + iG′′(ω)), with

G′(ω) =
E∞ + (E0 + E∞)ταωα cos

(
απ
2

)
+ E0τ

2αω2α

1 + 2ταωα cos
(
απ
2

)
+ τ2αω2α

,(19)

and

G′′(ω) =
(E0 − E∞)ταωα sin

(
απ
2

)
1 + 2ταωα cos

(
απ
2

)
+ τ2αω2α

,(20)

to the porcine data [44]. The results of this data fitting give the fractional Zener
model parameter values for infant and adult brain tissue listed in Table 2.

Table 2. Fractional Zener model parameter values.

Davis et al. Parameter Values [7]
E∞ = 1612 Pa E0 = 7715 Pa τ = 6.7009 s α = 0.641

Infant Parameter Values [47]
E∞ = 621 Pa E0 = 6678 Pa τ = 110 µs α = 0.779

Adult Parameter Values [47]
E∞ = 955 Pa E0 = 96 073 Pa τ = 6.92 µs α = 0.786

Common Parameter Values
a = 3 cm b = 10 cm p∗ = 667 Pa K = 2.1 GPa ω = 7 rad/s

Using these infant and adult parameter values for the fractional Zener model,
the displacements of the parenchyma predicted by (17) and (18) are shown in
Figure 4. The infant porcine parameter values predict unphysical displacements in
our infant hydrocephalus model: the maximum displacement of the ventricle wall
is 35 mm which is greater than the 30 mm inner radius of the model geometry. The
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adult case predicts a maximum displacement of 48 nm, the same as was previously
predicted [46] using the parameter values of Davis et al. [7].

r=a r=0.5(a+b) r=b
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Figure 4. Parenchyma displacements for the (a) infant (in mm)
and (b) adult (in nm) cases predicted by the fractional Zener model
using the age-dependent parameter values in Table 2.

The unphysical result obtained in the infant case is due to either an unphysical
mathematical model or poor experimental data. The model gives physical and
reasonable predictions in the adult case but not in the infant case where smaller
elastic moduli are used. It is possible that the zero stress boundary condition
assigned in the infant case (15) is too weak. This condition was previously used [25,
34, 42, 46] to avoid the free boundary value problem. Assuming that the infant brain
is enclosed in a thin elastic membrane representing the unfused skull, and that the
large deformations observed in hydrocephalus occur over time scales much larger
than those considered here, this boundary condition appears to be a reasonable
approximation.

3.3. A Mixed Boundary Condition. An alternative boundary condition for
the infant hydrocephalus case can be constructed from the adult case. The solution
to the adult boundary value problem (16) gives an expression for the stress at the
outer boundary (r = b), we call this stress q(t). Assuming the infant skull provides
a fraction, δ, of the restrictive force the adult skull provides, we can assign a new
mixed boundary condition for the infant hydrocephalus case,

(21) σrr = δq(t) at r = b.

From [46, equation (20)], the radial stress at r = b in the adult hydrocephalus case
is

(22) q(t) =
−(6K + 4E0)a2

(E0 + 6K)a2 + 3E0b2
pi(t)−

6K(E∞ − E0)τ−αa4

((6K + E0)a2 + 3E0b2)
2 pi(t) ∗ F (t)

where F (t) = tα−1Eα,α

(
−ĥ
(
t
τ

)α)
.
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Since the PDE in (15) is linear, boundary condition (21) corresponds to the linear
combination of the two original boundary value problems, (15) and (16). That is,
the brain tissue displacement solution of the mixed boundary value problem, um,
is

(23) um(r, t) = (1− δ)uI(r, t) + δuA(r, t),

where 0 ≤ δ ≤ 1, uI is the infant displacement (17), and uA is the adult displace-
ment (18).

Since the unfused sutures of the infant skull are softer than the cranial bones,
large internal pressures cause bulging of the sutures and fontanelles but negligible
displacement of the cranial plates, indicating that the cranial plates are relatively
fixed and rigid for short time scales. Over long time scales, however, a large internal
pressure coupled with the normal growth processes of the brain will cause the skull
to enlarge abnormally. In this work, where short time scales are analysed, we thus
assume that the infant cranial bones are relatively rigid, and that when they are
coupled with unfused sutures, the infant skull provides a fraction of the resistive
force provided by the adult skull. Assuming this fraction to be about 50% (δ =
0.5), the mixed boundary value problem predicts a maximum displacement at the
ventricle wall of 17.5 mm. A more clinically common ventricular wall displacement,
about 5 mm [24], requires a value of δ ≈ 0.86, implying that the infant skull provides
about 86% of the resistive force provided by the adult skull.

The amplitude of the radial and tangential stresses in the infant and adult
cases with age-appropriate parameter values range from 670 to 800 Pa [46] and
the stresses for the mixed boundary value problem are of similar magnitudes [47].
Franceschini et al. [15] estimated the damage threshold for white matter to be
2.71 kPa. Even though the tissue stresses are largest in the periventricular region,
the stress magnitudes reported here are 25% to 30% of this damage threshold.
Thus, it seems unlikely that the increased amplitude of CSF pulsations and the
resulting tissue displacements are singularly responsible for the tissue damage and
ventricular expansion observed in hydrocephalus.

The infant cerebrum steady-state elastic modulus was determined to be about
600 Pa which is consistent with the value of 584 Pa previously proposed [41]. Inter-
estingly, the storage and loss moduli of brain tissue were found to decrease with age
in patients over the age of 18 years [32]. Thus, it is possible that the steady-state
elastic modulus increases from the infant value of about 600 Pa to a maximum
value of about 1000 Pa at early adulthood and then decreases with age. If this
hypothesis is correct, then the increased occurrence of hydrocephalus in the infant
and elderly populations may be partially explained by a reduced steady-state elas-
tic modulus, which renders the tissue more susceptible to large deformations and
to the development of hydrocephalus. This effect would be enhanced when coupled
with a reduced bulk modulus in the elderly, which was previously conjectured [46].

4. An Alternate Hypothesis for Hydrocephalus

From the results of the previous two models, it seems reasonable to conclude that
the CSF pulsations cannot be the primary cause of ventricular expansion in hydro-
cephalus due to their inability to induce shearing or internal stresses large enough
to damage tissue. An alternate hypothesis for the pathogenesis of hydrocephalus is
the absorption-degradation hypothesis which proposes that alternate pathways for
CSF absorption occur within the brain tissue causing small intramantle and trans-
mantle pressure gradients to occur. These essentially undetectable (1 mm Hg or
less) pressure gradients coupled with degraded tissue properties may be the cause
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of some cases of communicating hydrocephalus. Here, by focusing on the infant
case with age-appropriate material parameters, we show that pressure gradients on
the order of 1 mm Hg are large enough to cause ventricular expansion.

4.1. Fractional Kelvin-Voigt Model Formulation. Encouraged once again
by the success of fractional derivatives in viscoelastic models, we assume that the
behaviour of brain tissue can be modelled as a fractional Kelvin-Voigt viscoelastic
solid where a hyperelastic spring is coupled in parallel to a fractional viscoelastic
dashpot. Using again the simplified cylindrical geometry of the brain, we denote
the undeformed inner and outer radii as R1 and R2, respectively. For time t > 0,
the cylinder is allowed to deform in response to the boundary conditions and the
Eulerian cylindrical co-ordinate system (r, θ, z) deforms with the material. The
inner boundary, r1, represents the ventricle wall while the outer boundary, r2,
represents the cortical surface. Full details on the derivation of this model are
presented in Wilkie et al. [48].

Boundary conditions are prescribed in terms of the radial stress, σr, and include
σr(t, r1) = −p0(t), where p0(t) is the pressure difference between the ventricles
and the SAS, and σr(t, r2) = 0, a stress-free outer surface. Hydrocephalus develops
over a period of weeks, so we assume that p0(t) varies slowly and we neglect inertial
forces. In response to the internal pressure, assuming the ends of the cylinder are
tethered, radially symmetric deformations will occur. Thus r = f(t, R), where R is
the initial undeformed radius and f is the unknown deformation function.

Since brain tissue is nearly incompressible, the third principal invariant of the
left Cauchy-Green deformation tensor must be unitary. Thus, the deformation
function is f(t, R) =

√
R2 +R2

1B(t), where B(t) is an unknown function of time.
The Kelvin-Voigt viscoelastic model consists of a spring connected in parallel to
a dashpot. We assume that the spring is a homogeneous, isotropic, hyperelastic
material with a strain energy density function of the Mooney-Rivlin form, and that
the viscous dashpot is fractional with order α, where 0 ≤ α ≤ 1.

Integrating and applying our boundary conditions to the equilibrium equation,
obtained by considering the conservation of momentum, gives the following nonlin-
ear integro-differential equation

p0(t) =
µ

2

∫ b

1

(
1

x
− x(

x+B(t)
)2)dx

+
η

2Γ(1− α)

∫ t

0

Ḃ(τ)

(t− τ)α

∫ b

1

(
1(

x+B(τ)
)2 +

1(
x+B(t)

)2
)

dxdτ,(24)

where µ is the shear modulus, η is the fractional viscosity, b is the nondimensional

ratio b =
(
R2

R1

)2
, Γ(z) is the Eulerian Gamma function, and Ḃ(t) = dB

dt . Assuming

small strains, (B(t) � 1), simplifies Equation 24 to a linear integro-differential
equation with the Abel kernel,

(25) µB(t) +
η

Γ(1− α)

∫ t

0

(t− τ)−αḂ(τ) dτ =
b

b− 1
p0(t).

With an internal pressure of the form p0(t) = δp, where δp is small enough to
satisfy the assumption of small strains, the steady-state solution to Equation 25 is
Bss = b

b−1
δp
µ . Thus, the steady-state deformations of the ventricle wall (r1) and
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cortical surface (r2) are

(26) rk(t) =

√
R2
k +R2

1

b

b− 1

δp

µ
,

for k = 1, 2. The width of the deformed brain is r2(t)− r1(t).

4.2. Hyper-Viscoelastic Model Simulations and Results. To estimate the
steady-state finite deformation resulting from a pressure gradient on the order of
1 mm Hg, we apply an iterative numerical method based on an incremental law
for soft biological tissues. As demonstrated by Fung [16, pg. 238–239, Fig. 7.7:1]
with rabbit mesentery, small incremental loading-unloading curves can be used to
approximate a finite strain loading-unloading curve. Using this concept, we divide a
finite deformation-causing pressure gradient, p0(t) = ∆p, into n tiny increments, δp,
with nδp = ∆p, to approximate the finite deformation in an incremental manner.

For δp sufficiently small, the small strain steady-state solution to Equation 25
gives the slightly deformed description of the brain, Equation 26. Applying a second
pressure increment, δp, and solving for the small strain solution with this already
slightly deformed brain, gives an approximation to the deformation that results
from a pressure gradient of magnitude 2δp. The result of this second application
of the incremental pressure, δp, is given by Equation 26 where R1 and R2 are
updated to the previous values of r1 and r2 found after the first application of δp.
Iterating this procedure n times approximates the finite deformation resulting from
the pressure gradient ∆p.

To simulate the steady-state behaviour of a newborn infant brain under the
action of an internal pressure gradient, we define the undeformed boundaries to be
R1 = 2 cm and R2 = 6 cm. The value of the steady-state shear modulus for infant
brain tissue is µ ≈ E∞

3 ≈ 200 Pa [47] from the work discussed in Section 3.

m = 200 Pa m = 400 Pa
m = 600 Pa m = 800 Pa
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Figure 5. Incremental simulation of parenchyma width (a) and
Evans ratio (b) as the total applied pressure gradient is increased
in increments of 5 Pa. Note that 1 mm Hg = 133 Pa.

The reduction in brain tissue width is shown in Figure 5 for four values of the
shear modulus and an incremental pressure gradient small enough to guarantee
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small strains (δp = 5 Pa). With a total applied pressure gradient of 1 mm Hg
(∆p = 133 Pa), the brain tissue width is reduced by 15% for µ = 200 Pa (33% for
µ = 100 Pa, 10% for µ = 300 Pa, and 8% for µ = 400 Pa). A reduction by 50%
occurs when the pressure gradient is about 350 Pa (2.6 mm Hg) for µ = 200 Pa.
The Evans ratio, a diagnostic tool for identifying hydrocephalus, is defined as the
ratio of the maximal width of the frontal horns to the maximal width of the brain
parenchyma. A ratio greater than 0.4 indicates a hydrocephalic brain. Figure 5b
demonstrates that with our assumed initial configuration (R1 = 2 cm, R2 = 6 cm,
and µ = 200 Pa), the ratio of the inner radius to the outer radius (an approximation
of the Evans ratio) crosses the 0.4 threshold with an applied pressure gradient
of less than 1 mm Hg. These rough estimates suggest that hydrocephalus may
develop under sustained pressure gradients on the order of 1 mm Hg, especially
if developmental, microstructural or chemical changes within the tissue cause the
mechanical properties (shear modulus) to be reduced, as is the case in the infant
brain.

5. Discussion

From the analyses presented in Section 2 and Section 3 we conclude that the
CSF pulsations induce insufficient shear stresses within the brain to mechanically
damage tissue (both at the cellular and tissue levels), and thus, the pulsation-
damage hypothesis should be revised. In particular, the ability of these oscillatory
shearing forces to cause phenotypic changes in the brain tissue cells should be
explored. Cellular level changes, such as a reduction in cell-matrix adhesion, will
alter the mechanical properties of the tissue. These changes, when combined with
other mechanisms such as abnormal osmotic pressures, have the potential to create
the necessary conditions for ventricular expansion [2, 45]. In Section 4, the analysis
suggests that in an infant brain, where the steady-state elastic modulus is reduced
compared to adult brain tissue [47], long-term pressure gradients on the order of
1 mm Hg (essentially undetectable by clinical pressure sensors) are sufficient to
enlarge the ventricles. This indicates that the absorption-degradation hypothesis
may be plausible and should be explored further, especially as it relates to infant
and elderly cases of communicating hydrocephalus where the mechanical properties
of the brain may vary considerably from those of a young adult.
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