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SIMULATION OF CEREBRAL INFUSION TESTS USING A

POROELASTIC MODEL

IAN SOBEY, ALMUT EISENTRÄGER, BENEDIKT WIRTH, AND MAREK CZOSNYKA

Abstract. In an infusion test the apparent rate of cerebrospinal fluid (CSF) production is
temporarily increased through injection of fluid directly into the CSF system with the result that
CSF pressure rises, in theory to a new plateau average, and the change in pressure level gives a
measure of resistance to CSF outflow and the rate of approach to the plateau gives information
about cerebral compliance. In the first part of this paper we give details of a two-fluid (blood and
CSF) spherically symmetric poroelastic model that can simulate an infusion test which includes
oscillations in blood pressure. This model has been applied to clinical data where the infusion
rate and arterial blood pressure are input and an oscillatory CSF pressure is computed along with
spatial parenchyma displacement, strain and local changes in CSF content. In the later part of this
paper, the poroelastic model is simplified by spatial integration resulting in a one-compartment
model that includes blood pressure oscillations but which, when they are ignored, reduces to a
well known one-compartment model. When the arterial pressure pulsations are included, their
interaction with a non-linear compliance results in solutions that have to be interpreted very
carefully to predict parameter values.
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1. Introduction

The infusion test can be used to aid interpretation of CSF function: for a short
period of time the rate of CSF production is increased and the change in CSF
pressure is measured. Usually the time average value rises to a new plateau value,
the rate of rise giving information about the cerebral compliance and the plateau
value showing the resistance to CSF absorption, two important clincial indicators
of CSF function. The simplest interpretation of this test assumes that the CSF
is contained in a single compliant compartment so that the pressure variation is
described by a first order ODE in time with CSF production as input parameter.
Such models do not take arterial pressure fluctutation into account and the CSF
pressure calculated, while slowly varying in time, does not fluctuate on the scale of
arterial pressure pulsations, see for example [8] for a review of such models.

In a series of papers ([9], [10], [13]) a poroelastic model was developed for predict-
ing changes in cerbrospinal fluid pressure in a number of situations, originally for
obstructive hydrocephalus and then extended to some time dependent situations.
The original model was based on a long time scale so fluctuations in arterial pres-
sure were neglected, indeed that model considered the brain only as a two-phase
material with a porous elastic phase through which CSF could move and where
changes in CSF pressure (intracranial pressure, ICP) were coupled to changes in
stress and strain in the elastic phase. In a more recent paper, [15], a mathematical
model was developed that included multiple fluid phases, in individual compart-
ments, separated from each other and where CSF was one of the fluids. Here we
develop that model for two fluid compartments, retaining a continuum hypothesis
and treating the brain as having three compartments or phases: a porous elastic
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compartment, a CSF compartment and a single blood compartment. There is no
exchange of fluid between the CSF and blood compartments. Both the elastic and
CSF compartments have spatial, as well as temporal, dependence. The model re-
tains spherical symmetry and so is the simplest spatially varying complete model
for ICP fluctuations, complete in the sense that the model can be used to simulate
changes in ICP in for example, an infusion test. However the spatial dependence
means that the model is time consuming to solve numerically. In this paper we set
out the spatially varying model and then derive from that model, a spatially aver-
aged model that while still requiring numerical solution, can be integrated rapidly.

2. Spatially varying model

2.1. Biot’s theory of poroelastic deformation. In order to derive a three-
phase poroelastic model for the brain we begin by briefly reviewing the theory of [2],
particularly using the notation described in [11] (see pp17-21 therein). For a fluid-
filled, porous, solid matrix, Biot supposed a continuum description with a strain
ε, overall stress σ, fluid pressure p, and an additional variable ζ, the increment in
fluid content per volume element. Assuming a physical state to be locally described
by pressure and stress and linearising the relations between ε, σ, p, ζ gives that

ε = a11σ + a12p,(2.1)

ζ = a21σ + a22p.(2.2)

Furthermore, Biot assumed the existence of an energy density

(2.3) U = σε+ ζp,

so that the condition ∂2U
∂ζ∂ε = ∂2U

∂ε∂ζ , implies a12 = a21. Letting a11 = 1/K, where K

is the bulk modulus of the elastic phase, a12 = a21 = α/K, with α the Biot–Willis
parameter, and a22 = α/(βK), with β Skempton’s coefficient, gives on rearranging
(2.1) and (2.2),

(2.4) σ = Kε− αp,

(2.5) ζ = αε+
α(1 − αβ)

βK
p.

The system is completed by assuming that the strain is a result of a displacement
u and that fluid flow through the porous matrix obeys a Darcy flow model so that
the balance of momentum and the conservation of fluid give, if u is the matrix
displacement (and neglecting acceleration of fluid through the matrix),

(2.6) ρ
∂2u

∂t2
= ∇ · σ,

(2.7)
∂ζ

∂t
= ∇ ·

k

µ
∇p,

where ρ is the density of the solid-fluid continuum, k is a permeability, and µ the
fluid viscosity. In the model of the brain used in [9], [10], [13], the solid matrix
represented the brain parenchyma and the fluid the CSF. In these models, the
time scale was long enough that the left hand side of both these equations was
neglected, and the time dependence only entered the model in a quasi-stationary
manner through a boundary condition that expressed conservation of CSF.



54 SOBEY, EISENTRÄGER, WIRTH, AND CZOSNYKA

2.2. Two-fluid compartment model for the brain. The simple poroelastic
model in (2.6), (2.7) cannot account for changes in blood pressure. Thus [15]
postulated, in an appendix to that paper, an extension of the basic Biot theory
outlined above to allowmultiple, but separate fluid compartments. Here we consider
the particular case of a two-fluid model, having a CSF compartment and a blood
compartment, both within an elastic structure, and look particularly at the various
parameters that arise in this model.

In this case, two more variables have to be introduced, a blood pressure pb and
an increment in blood volume, ζb. As before, by linearising the relation between
the physical state variables, we obtain

ε = a11σ + a12p+ a13pb,(2.8)

ζ = a21σ + a22p+ a23pb,(2.9)

ζb = a31σ + a32p+ a33pb,(2.10)

and we assume the existence of an energy density (see [15] for a more rigorous
derivation)

(2.11) U = εσ + ζp+ ζbpb.

As for a single fluid compartment poroelastic model, the equivalence of mixed
derivatives means that the coefficient matrix is symmetric, and a12 = a21, a13 = a31
and a23 = a32. Following the notation above, we rewrite the coefficients of the first
equation,

(2.12) a11 =
1

K
, a12 =

α

K
, a13 =

αb

K
,

where a subscript b refers to the blood phase. On rearrangement and introducing
γ := a22 − a12, γb := a33 − a13, γ̃ := a13 − a23,

σ = Kε− αp− αbpb,(2.13)

ζ = αε+ γp− γ̃pb,(2.14)

ζb = αbε− γ̃p+ γbpb.(2.15)

In these equations the coefficients relating stress and strain are the elastic coef-
ficients of the solid matrix, for which there are measurements ([7]). However, the
choice of the other coefficients is less certain: leaving the pressures constant, α
and αb describe the rates ∂ζ

∂ε and ∂ζb
∂ε at which the CSF and blood volume change

when dilating a small element of the porous matrix. If we assume the matrix ma-
terial, the parenchymal cells, to be incompressible the total volume change has to
be accounted for by the sum of the two fluid volumes, that is

(2.16) α+ αb = 1.

Next, consider the communication of pressure changes between blood and CSF.
The blood vessels are viewed as distensible and collapsible tubes, having a different
pressure inside than outside, here pb being the inside and p the outside pressure.
This pressure difference is counteracted by the vessel wall, which slightly distends
or collapses until it balances the pressure difference. This distension or collapse is of
course accompanied by a corresponding change of blood volume inside the vessel,
and this blood volume change directly translates into a change of ζb. There are
models (called tube laws) and measurements of the relation between blood volume
ζb and transmural pressure difference pb−p. Typically, these tube laws are given in
terms of the transmural pressure, (pb − p) and the ratio of vessel cross-section (or
equivalently, the vessel volume) so that this translates into a relation between ζb
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and (pb−p). In particular, the blood volume just depends on the pressure difference
and not on the single pressures themselves so that we obtain from (2.15) that

(2.17) γ̃ = γb,

and at a constant dilation, ζb = γb · (pb − p) represents the linearisation of the
above-mentioned tube law.

Furthermore, the blood vessels are rather loosely attached to the parenchyma,
compared with the tight structure of the neural network. Hence, we expect a
dilation of the parenchyma to have rather little effect on the volume of the vessels
running through it so that αb may be assumed very small. As a simplifying model
assumption and in absence of real physiological data, we may even assume

(2.18) αb ≈ 0 and thus α ≈ 1.

Finally, we shall also propose a model for γ: If, for constant dilation ε, the
ICP rises, then the CSF content ζ inside the parenchyma will slightly increase
by γb(p − pb) due to a small amount of arterial blood being squeezed out of the
vessels. A much stronger change of CSF volume is caused by the increased CSF
pressure p compressing venous blood vessels inside the brain and thereby reducing
overall blood volume, with this volume change being compensated by an increase
in CSF volume. Tube laws for blood vessels can again be utilised to describe this
mechanism [14] where the volume change of venous blood (and corresponding CSF
volume change) is modelled as a function of the transmural pressure difference
between CSF and blood, giving a compliance γc. Linearisation then allows us to
write

(2.19) ζ = αε+ γcp− γb(pb − p),

so that the overall cerabral compliance is

(2.20) γ = γc + γb.

To summarise, we obtain the state equations

σ = Kε− αp− αbpb,(2.21)

ζ = αε+ γp− γbpb,(2.22)

ζb = αbε+ γb(pb − p),(2.23)

with α ≈ 1, αb ≈ 0, γb = ∂ζb
∂(pb−p) the (non-dimensional) blood vesssel compliance,

and γ the (non-dimensional) parenchymal compliance.

2.3. Poroelastic equations of the brain. The more rigorous derivation in [15]
shows that using the actual strain and stress tensors, ε and σ, instead of the above-
used scalar representations of volumetric strain and stress, (2.21) becomes

(2.24) σ = Kε− αpδ − αbpbδ,

where K is the stiffness tensor from linear elasticity and δ the Kronecker tensor,
that is, δij = 1 for i = j and δij = 0 else. Furthermore, in developing a model that
incorporates fluctuations on the scale of a heart beat, simple order of magnitude
analysis shows that the left-hand side of (2.6) still remains negligible (that is, elastic
waves can be ignored) but the time derivative on the left of (2.7) has to be accounted
for. Therefore, inserting the poroelastic state equations, we arrive at

(2.25) ∇ · [Kε− αpδ − αbpbδ] = ∇ · [Kε]−∇αp−∇αbpb = 0,

(2.26)
∂ζ

∂t
=

∂αε

∂t
+

∂γp

∂t
−

∂γbpb
∂t

= ∇ ·
k

µ
∇p.
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As described in the previous section, all parameters are just linearisations of
the stresses σ and fluid contents ζ and ζb with respect to the strains ε and the
pressures p and pb. Since these linearisations are performed around a specific state
of σ, ζ, ζb, ε, p, pb, they will in general change as p, pb, and ε change. However, γb
may roughly be approximated as constant ([15]), and α ≈ 1 as well as αb ≈ 0
will also stay a valid approximation, whereas γc is expected to vary with ICP. We
make a further modelling assumption, that the parameter γc changes slowly and is
a function of the average pressure, and not the instantaneous pressure. Denoting p̄
as ICP averaged over some period of several heartbeats,

(2.27) p̄(x, t) =
1

T

∫ t

t−T

p(x, t)dt,

where T = 2− 3 seconds and assuming that p̄ is varing very slowly with time, the
derivatives on the left of (2.26) can be simplified and we solve

(2.28) ∇ · [Kε]− α∇p− αb∇pb = 0,

(2.29) α
∂ε

∂t
+ γ(p̄)

∂p

∂t
− γb

∂pb
∂t

= ∇ ·
k

µ
∇p.

In [14] a non-dimensional venous compliance, γc, was determined by

(2.30) Vparenchymaγc(p) =
1

E(p− pr)n

where E, n and pr are constants that were related to the mechanical structure
of compressed veins and Vparenchyma is the parenchyma volume. Integrating this
relation over the parenchyma, ignoring spatial variation of pressure yields the overall
cerebral compliance,

(2.31) C(p) =
∂VCSF

∂p
= Vparenchymaγ(p) = Vparenchymaγb +

1

E(p− pr)n
.

In this we can identify an arterial compliance by Cb = Vparenchymaγb but since the
dimensionless arterial compliance γb is much smaller than the venous counterpart,
γc(p), and letting n = 1, (2.31) reduces to the compliance law in [6].

We will approximate the parenchyma as a spherical shell with outer radius c and
inner radius a, in which the system (2.28) and (2.29) has to be solved. Furthermore,
we assume a constant CSF production Qp inside the brain ventricles (at r = a) and
a (time-dependent) liquid infusion at rate Qi at r = c. Finally, there will be CSF
absorption at r = c at a rate p−pss

µR , where pss is the sagittal sinus pressure and R

a resistance, and the ventricles are connected to the outer boundary of the brain
by a single thin canal of length L = c − a, the aqueduct, through which we have
Poiseuille flow. We denote the radial displacement of the parenchyma by u and
assume the solid matrix stress to be given by Hooke’s law with Lamé constants
λ and G, that is, Kε = λ(trε)δ + 2Gε. Using spherical symmetry, the governing
equations are

(2.32) (λ+ 2G)

(

∂2u

∂r2
+

2

r

∂u

∂r
−

2u

r2

)

− α
∂p

∂r
− αb

∂pb
∂r

= 0,

(2.33) α
∂

∂t

(

∂u

∂r
+

2u

r

)

+ γ(p̄)
∂p

∂t
=

1

r2
∂

∂r

(

k

µ
r2

∂p

∂r

)

+ γb
∂pb
∂t

.
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Furthermore, the PDEs will be complemented by one boundary condition for the
pressure and for the displacement at each boundary. In particular, we will use CSF
conservation in the subarachnoid space,

(2.34)
p− pss
µR

=
πd4

128µL
(p|r=a − p)− 4πc2

k

µ

∂p

∂r
+Qi at r = c,

zero displacement at the skull,

(2.35) u = 0 at r = c,

flux conservation in the ventricles,

(2.36) 4πa2
∂u

∂t
= −

πd4

128µL
(p− p|r=c) + 4πa2

k

µ

∂p

∂r
+Qp at r = a,

and continuity of stresses at the ventricle walls,

(2.37) (α − 1)p = (λ+ 2G)
∂u

∂r
+ 2λ

u

r
− αbpb at r = a.

The system of equations, (2.32)-(2.37), once values are assigned to constants,
can be solved using as input only the arterial pressure, pb(t) and the infusion rate,
Qi(t). We have calculated solutions using both finite difference and finite element
discretisations. The solutions below are from using a central difference in space and
simple implicit Euler integration in time. The solutions show that the pressure is
almost constant spatially.

2.4. Neglecting blood pressure fluctuations. Setting γb = 0 removes any
dependence on blood pressure fluctuations. Solution for ICP for the parameter
values µR = 15 mmHg sec/ml and E = 0.24 ml−1 is shown in figure 1 where the
computed ICP is shown with an average observed ICP (the average being a running
average over a 2 second window, see (2.27)). This provides a very reasonable
prediction of mean ICP. In figure 2 the spatial and temporal variation is illustrated
for this calculation. Results are shown for displacement, strain, pressure and water
increment. The ventricle displacement is very small throughout the simulation and
with such small strain, the use of linear elasticity should be satisfactory for such
simulation. During the test the ventricle slightly dilates and there is a very small
displacement through the parenchyma. There is a corresponding increase in CSF
content very near the ventricles as the underlying matrix is stretched sideways but
further out, compression leads to a slight decrease in CSF content.

2.5. Influence of blood pressure fluctuations. When the blood pressure pa-
rameter, γb, is not zero then blood pressure oscillations are included in calculations.
A typical computation using an implicit time stepping method is shown in figure
3 where the parenchyma displacement, strain, ICP and change in CSF content are
very similar to those shown in figure 1 in the absence of arterial pressure fluctu-
ations. Values for strain and change in water content are very close because of
the definition (2.14). While the values calculated near the ventricles are a little
higher during the test, the displacement, strain and change in water content are
not significantly different whether blood pressure fluctuations are accounted for or
not. The calculated ICP is, however, considerably different from that when γb is
zero. This is shown in figure 4 where the calculated and observed ICP are shown
together with a running mean for ICP and the amplitude of oscillation. The mean
ICP is calculated using (2.27) and the amplitude of oscillation by

(2.38) Amplitude(t) =

[

1

T

∫ t

t−T

(p− p̄)2dt

]0.5

.
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Figure 1. Comparison of predicted ICP against observed ICP in
an infusion test without accounting for blood pressure oscillations.
The solid line is computed ICP, measured ICP is shown in grey.
The infusion injected Qi = 1.5 ml/min between t = 5.5 and t =
19.9 mins.
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Figure 2. Spatial and temporal variation during infusion test
without accounting for blood pressure oscillations; (a) Radial dis-
placement, (b) strain, (c) ICP, (d) change in CSF content.

There are periodic spikes caused by periodic interruption of the observed clinical
data by another device. Both the mean ICP and amplitude of oscillation are pre-
dicted well by the model but it is also clear from the un-averaged ICP that there are
slow periodic events in the clinical data that are not predicted by the model. If we
look at the ICP response in detail, see figure 5, then some limitations of the model
are apparent. The mean value is clearly very well predicted as is the amplitude
of ICP oscillations but there are unexplained phase differences, particularly in the
time of peak ICP.
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Figure 3. Spatial and temporal variation during infusion test in-
cluding blood pressure oscillations; (a) Radial displacement, (b)
strain, (c) ICP, (d) change in CSF content. Data every minute
was used to generate graphs.

3. Space averaged model

The governing equations for the spatially varying model are time consuming
to solve numerically and such calculated solutions show that the CSF pressure is
almost constant through the parenchyma, with very thin layers near the ventricles
and near the skull. Given this lack of spatial dependence in the solutions, it is
worth examining the space integral form of those equations under an assumption
of spatially constant pressure (that is that ICP is a funtion only of time).

Taking a space integral of various terms and using ε =
1

r2
∂r2u

∂r
, one obtains

(3.1)

∫ c

a

4πr2εdr = −4πa2u(a),

using u(c) = 0, and

(3.2)

∫ c

a

4πr2γ(p̄)
∂p

∂t
dr ≈ Vparenchymaγ(p̂)

dp̂

dt
,

where p̂ = p̂(t) is now the spatially constant pressure. Applying this to (2.33) we
obtain

(3.3) −4πa2α
du(a, t)

dt
+ Vparenchyma

[

+γ(p̂)
dp̂

dt
− γb

dpb
dt

]

= 4π
k

µ
r2

∂p

∂r

∣

∣

∣

∣

c

a

.

However, adding the boundary conditions (2.34) and (2.36)

(3.4) 4π
k

µ
r2

∂p

∂r

∣

∣

∣

∣

c

a

= Qp +Qi − 4πa2
du(a, t)

dt
−

p(c, t)− pss
µR

,
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Figure 4. Computed ICP variation during infusion test including
blood pressure oscillations. In each figure the computed data is in
black and clinical data in grey. (a) ICP versus time during the
test. (b) Time averaged ICP, (c) Time averaged amplitude of os-
cillation.
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Figure 5. ICP variation during a small part of infusion test: (—–)
Calculated values, (- - -) clinical data.

defining a base ICP, p1, by

(3.5) Qp =
p1 − pss

µR
,

and assuming that blood pressure is also spatially constant,

(3.6) C(p̂)
dp̂

dt
+

p̂− p1
µR

= Qi + 4πa2(α− 1)
du

dt
(a, t) + Cb

dpb
dt

.
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This is a very interesting result: excepting the second and third terms on the right,
it is the one compartment model that has been widely used [6],

(3.7) C(p̂)
dp̂

dt
+

p̂− p1
µR

= Qi.

Of course if α < 1 then the ventricle displacement is undetermined and this
equation cannot be solved but in the case we are considering, when α = 1, the
equation is independent of the underlying poro-elastic framework, becoming a non-
linear ODE

(3.8) C(p̂)
dp̂

dt
+

p̂− p1
µR

= Qi + Cb
dpb
dt

.

This is a significant simplification since integration of an ODE is less computa-
tionally difficult than solving time dependent PDEs yet the effect of blood pressure
oscillations on ICP fluctuations remains inherent in this model. There are some ex-
isting models that incorporate blood pressure oscillations, for example, [1] develop
an electrical analogue model that allows CSF pulsations, see also [5].

In order to examine the effect of pulsatility, define two time scales,

(3.9) τ = µR, τb = µRCb,

and a pressure, p2,

(3.10) p2 = p1 + µRQi.

The pressure p2 is the plateau in average pressure that should be achieved in the
infusion test.

Using this notation, the reduced equation is

(3.11) τ
dp̂

dt
+ p̂ = p2 + τb

dpb
dt

.

For the infusion test we have shown results above, τ ∼ 750 sec, τb ∼ 60 sec,
p1 ∼ 10 mmHg, p2 ∼ 33 mmHg and |dpb

dt | ∼ 240 mmHg/s.
The reduced equation (3.11) is, if τ is approximately constant, just a linear ODE

and so in that case, can be solved using a Laplace transform. In particular if we
suppose p̂(0) = p1, and

(3.12) pb(t) = Pb +

∞
∑

k=1

ak cos(ωkt),

where Pb is the mean blood pressure, ak are Fourier components and ωk are asso-
ciated frequencies, then the solution for p̂ is

(3.13) p̂(t) = p1e
−t/τ +p2(1−e−t/τ )+

∞
∑

k

τbτakω
2
k

1 + ω2
kτ

2
[cosωkt−e−t/τ −

1

ωkτ
sinωkt],

and the pressure will fluctuate about p2 at large times.
The nonlinear equation is more difficult to analyse but a simpler version, obtained

when we set pr = 0 in (2.31), or equivalently, redefine the dependent variable to
be the offset p̂ − pr, has τ(p) ∼ 1/p. Letting τ0 = τ(p1), and considering just one
Fourier component of natural frequency Ω, (with Ω ∼ 1.8Hz in the test above and
ω1 = 2πΩ) then (3.11) becomes

(3.14)
τ0p1
p̂

dp̂

dt
+ p̂ = p2 − 2πτbΩa1 sin 2πΩt, p̂(0) = p1,

where the constant 2πτbΩa1 incorporates the blood compliance time scale and the
amplitude of blood pressure oscillation.
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This nonlinear equation does have an analytic solution,

(3.15) p̂(t) =
p1e

[
p2t

p1τ0
+

τba1
τ0p1

cos 2πΩt]

1

τ0

∫ t

0

e
[
p2s

p1τ0
+

τba1
τ0p1

cos 2πΩs]
ds+ e

τba1
p1τ0

This analytic form is difficult to use because of the increasing exponentials in
both numerator and denominator, it is possible to divide out the exponentials from
both numerator and denominator but the resulting integral in the denominator
remains problematic to evaluate accurately. Time marching integration of the non-
linear differential equation requires considerable care, we have used a fourth order
Runge Kutta as well as built in MATLAB routine ode23s successfully, lower or-
der methods (Euler or second order Runge-Kutta) have failed and using them for
simulations is likely to lead to misleading interpretation of parameter values.

To illustrate application of the space averaged model to an infusion test, we show
in figure 6 the result of a computation of ICP using a fourth order Runge-Kutta
integrator without averaging of ICP for the compliance and the same parameter
values as used to compute the result shown in figure 1. As with the spatially
varying model, slow changes in mean ICP are not calculated but the mean ICP and
amplitude of ICP oscillations is predicted reasonably well.

4. Summary

We have developed models for the CSF infusion test which incorporate arterial
pressure pulsations and applied the models to data from an infusion test. Results
using a spherically symmetric model give some insight into how the parenchyma
is affected during an infusion test but these have to be considered in the light of
the very simple geometry used. The computations show that the average ICP and
amplitude of ICP oscillations can be modelled well, although the detailed shape of
the observed ICP curve with time is not fully matched, indicating that there are
important effects which are not yet in the model. There are slow changes in the
ICP during the test which are also not predicted: the source of such slow waves
may be a result of autonomous changes within the brain during the test and so not
predictable in anycase by what is only a mechanical model.

When the spatial dependence is removed from the multi-compartment poroelas-
tic model, a simple ODE emerges but with properties that need more study and
understanding if the model is to be used to infer parameter values. We have consid-
ered the very simplest model that included blood pressure oscillations, an extension
will be to consider two blood compartments, arterial and venous, assuming that
arterial pressure fluctuations are those given from measurements and that venous
pressure is approximately constant.
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