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Abstract: The quantum mechanical interaction energy between the Acetohydroxyacid 

synthase (AHAS) and its sulfonylurea inhibitors were calculated with an efficient 

density functional theory (DFT) and a pseudoreceptor model composed of the amino 

acids surrounding the ligands. The results show that the calculated quantum 

mechanical interaction energies correlate well with experimental free energies with the 

correlation coefficients of 0.92 for six sulfonylurea inhibitors and the standard deviation 

of 0.83kcal/mol. In comparison with the force field method, the binding free energies 

were estimated by AutoDock 4.2 program with the correlation coefficient of 0.76 and 

the standard deviation of 1.40kcal/mol. It indicates that the binding between the AHAS 

and herbicides can be well characterized by quantum pseudoreceptor model. Based on 

the quantum mechanical interaction energies, some AHAS inhibitors with high binding 

affinity were designed by introducing a hydroxyl group at the para position of aromatic 

ring and on the sulfonylurea bridge respectively. 

AMS subject classifications:  92E10, 92C05 

                                                             

* Corresponding author. Email address: wangml@szu.edu.cn (M.-L. Wang) 



M. Chen et. al / Commun. Comput. Chem., 1 (2013), pp. 72-87                                 73 

Key words: Acetohydroxyacid synthase, Sulfonylurea herbicides, DFT, AutoDock, Binding 

energy 

 

1 Introduction 

Acetohydroxyacid synthase (AHAS) is a key enzyme in the biosynthetic pathway of the 
branched-chain amino acids, such as valine, leucine and isoleucine in plants and 
microorganisms [1, 2]. It catalyzes the condensation of two molecules of pyruvate into 
2-acetolactate or one molecule of pyruvate and one molecule of 2-ketobutyrate into 
2-aceto-2-hydroxybutyrate as the precursors in valine, leucine and isoleucine biosynthesis 
[3-5]. Inhibition of AHAS may lead to the starvation of microorganisms and plants due to 
lack of branched-chain amino acids [6] . As a result, AHAS becomes an important target for 
inhibitors to be used as herbicides, and several class of effective herbicides were discovered 
[7,8]. AHAS herbicides fall into five families: sulfonylureas (SU), imidazolinones (IMI), 
triazolopyrimidines (TP), pyrimidinylbenzoates (PB), and sulfonylamino 
carbonyltriazolinones (SCT) [9,10]. The typical sulfonylurea herbicides are effective ultralow 
dosage agrochemicals that are non-toxic to animals. The general structure is a central bridge 
with an o-substituted aromatic ring attached to the sulfur atom and a heterocyclic ring 
disubstituted in both meta positions and attached to the distal nitrogen atom of the 
sulfonylurea bridge as shown in Figure 1 [11]. The heterocyclic ring can be either a 
pyrimidine as in chlorimuron ethyl (CE) or a triazine as in metsulfuron methyl (MM) shown 
in Table 1. With the wide use of the sulfonylureas, resistant weeds began to emerge, to 
overcome the herbicidal resistance, it is imperative to develop new and high effective AHAS 
inhibitors [13,14]. Recently, Duggleby and coworkers reported the crystal structure of 
Arabidopsis thaliana AHAS (AtAHAS) in complex with chlorimuron ethyl [15], thus it is 
possible to design some novel AHAS inhibitors with the aid of molecular modeling 
techniques. 

In the computational aided drug design, the biggest challenge is accurate estimation of 
the binding affinity between protein and inhibitors [16]. Among a variety of methods for 
calculating the binding energy between inhibitor candidates and their biological targets, 
Molecular mechanics (MM) is generally applicable to study biological systems with 
thousands of atoms, but it is hard to describe the charge transfer and explicit polarization 
between the protein and the ligands [17-18]. Quantum mechanical (QM) method can fully 
take into account the electronic charge transfer and polarization, but most of QM approaches 
are limited to small systems with less than one hundred atoms [19,20]. Quantum mechanics 
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approach can be used to estimate the interaction between receptor and ligands by 
simplifying system and lowering accuracy. Semi-empirical QM-based scoring function was 
first used by Merz to estimate the binding energies of protein-ligand complexes [21]. 
Molecular fraction with a conjugate caps method (MFCC) and the fragment molecular 
orbital method (FMO) were proposed by Zhang and Fukuzawa, where a large system is 
divided into smaller parts to perform quantum mechanical calculations one by one [22-25]. 
Wang studied the interaction energies between CDK2, H1N1, FKBP12 and its inhibitors in 
the combination quantum receptor model with density functional theory [26,27]. In addition, 
the hybrid QM/MM approaches provide a useful alternative where the most important parts 
are treated quantum mechanical, and the other parts are molecular mechanically [28-31]. In 
the QM/MM methods, parameters for novel ligands are still required. 

 

Figure 1: The general structure of sulfonylurea inhibitor of AtAHAS. 

In this paper, the binding energies between AtAHAS and its six sulfonylurea inhibitors 
are estimated by combining DFT approach with a protein model. The calculated results 
show a good correlation between the quantum interaction energies and experimental 
binding free energies with the correlation coefficients of 0.92. In comparing results from 
Autodock4.2 with the correlation coefficient R=0.76, it was indicated that the quantum 
interaction energy gives a better performance in rank-ordering the binding affinity between 
AtAHAS and its inhibitors. Finally, a few new inhibitors were designed based on the 
quantum interaction energy. 

Table 1: Structures and experimental iK of the six sulfonylurea inhibitors, 

)298(lnexp KTKRTG i ==∆ , the experimental data taken from [12]. 
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Ligand Structure iK (µM) expG∆ (kcal/mol) 

CE  

 

0.0108 -10.860 

 SM  

 

0.0255 -10.350 

 MM  

 

0.0362 -10.150 

A  

 

7.0100 -7.031 

B 

 

0.2450 -9.019 

C 

 

32.7000 -6.119 

2 Methods of calculation  

2.1. Preparation of quantum pseudoreceptor model  

To perform protein-ligand interaction energy fully quantum mechanically, the whole protein 
is simplified to a pseudoreceptor model composed of the amino residues only close to the 
ligands [26,27]. In general, the residues close enough to the ligand has a great effect on the 
binding energy and the residues far from the binding site may have little contributions to the 
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interaction energy. The interaction energy between the protein and ligands thus could be 
approximated by the interaction energy between the smaller binding pocket residues and 
ligands. The pseudoreceptor model has been successfully applied to the H1N1, FKBP12 and 
CDK2 systems. In the quantum calculation of the interaction between AtAHAS and its 
inhibitors, the homodimer of wild-type AtAHAS was firstly constructed by the symmetry 
operations in Pymol software based on the crystal structure of AtAHAS-CE  (1YBH) [15]. 
The quantum pseudoreceptor model was then built by selecting the CE inhibitor and 37 
amino residues within 6.5Å of the inhibitor chlorimuron ethyl as shown in Figure 2. The 
water molecules were removed during the construction of protein model and the dangling 
bonds were capped with hydrogen atoms. All ionized residues were assigned protonation 
states according to the pdb2pqr package at neutral pH [32]. 

 

Figure 2: The structure of the quantum pseudoreceptor model. The 37 amino acids within 
6.5Å of ligand and FAD are displayed in sticks; ligand CE is shown in ball-and-stick 
representation, AtAHAS is displayed in cartoon. 

2.2. Minimization and calculation of binding energies 

Density functional theory (DFT) has emerged as a QM method that is both sufficiently 
rigorous and efficient to be used for accurately describing biologically relevant molecular 
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systems at a reasonable computational cost [33]. SIESTA (Spanish Initiative for Electronic 
Simulations with Thousands of Atoms) is an original method and a software that uses 
density functional theory, it can be used to perform geometry minimization and calculate 
interaction energy [34]. To reduce the computational cost, the smaller minimal single zeta 
(SZ) basis set was used for the AtAHAS protein model, the larger double zeta (DZ) basis set 
was used for the carbon atoms and the double zeta polarization (DZP) basis was for other 
atoms in the ligands. During the optimizations of the quantum pseudoreceptor model, the 
heavy atoms were fixed at the X-ray positions, the hydrogen atoms were relaxed by 100 
steps of conjugate gradient minimization implemented in the Siesta package. Then, the 
structure of each ligand was fully optimized in the pocket of the fixed pseudoreceptor model. 
For each geometry optimization of the protein-ligand complexes, the conjugate gradient 
method was implemented until the maximum atomic force is less than 0.04eV/Å. The initial 
coordinates of compound CE is obtained from PDB entry 1YBH, the starting structure of 
other ligands was determined by superposing with ligand CE. The binding energy was 
estimated by: 

QM complex model ligandE E E E∆ ≈ − − ,                        (1) 

where complexE , modelE and ligandE are the energy of the receptor-ligand complex, 

pseudoreceptor model and the isolated ligand respectively. 

2.3. Autodock 4.2 Method  

To compare with molecular mechanics force fields (MM) methods, the AutoDock4.2 
programs were performed [32-37]. AutoGrid4.2 was used to calculate the grid maps 
representing the protein in the actual docking process. The grid dimensions were selected to 
be 453, with a spacing of 0.375 Å between the grid points. As the location of CE in the 
complex was known, the grid box was centered on the binding site of the ligand. Docking 
was performed with AutoDock4.2 program, using the Lamarckian genetic algorithm (LGA) 
[17]. Docking parameters includes an initial population of random individuals with a 
population size of 150 individuals, a maximum number of 25 million energy evaluations, a 
maximum of 27,000 generations, an elitism value of 1, a mutation rate of 0.02, and a 
crossover rate of 0.80. For each ligand, 20 independent docking runs were carried out. The 
docking results were clustered by positional root-mean-square deviation (RMSD) of 2.0 Å, 
only conformations with this RMSD deviation or less will be placed in the same cluster and 
ranked by increasing energy. The best docked conformations were those with the lowest 
binding energy. During the docking process, all the cofactors such as FAD and Mg2+ in the 
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complex structure of AtAHAS are considered. 

3 Results and discussion 

Based on the energy-minimized structure, the quantum mechanical interaction energies 
between AtAHAS and ligands are estimated following Eq. (1). The used chemical structures 
and apparent inhibition constants ( )iK Mµ of six sulfonylurea inhibitors [12] are listed in 

Table 1, and the chlorimuron ethyl (CE), sulfometuron methyl (SM) and metsulfuron methyl 
(MM) are commercial sulfonylurea herbicides. In the calculations, Arabidopsis thaliana 
AHAS was modeled by quantum pseudoreceptor model composed of 37 amino acids within 
6.5Å surrounding the ligand CE as shown in Figure 2. The calculated quantum mechanical 
interaction energies are summarized in Table 2.  As illustrated in Figure 3, the interaction 
energies were well correlated with the experimental binding energies at correlation 
coefficients of R=0.92 and standard deviation of 0.83 kcal/mol. However the QM interaction 
energies are much larger than the experimental ones due to negligence of solvent effects. 

Table 2: Calculated quantum interaction energies between six sulfonylurea inhibitors and 
AtAHAS based on the pseudoreceptor model and 77334.1921eVmodelE = − . 

Ligand (eV)complexE  (eV)ligandE  ( / )QME kcal mol∆  

CE -84273.3729 -6932.9048 -144.6620 

SM -83982.7802 -6642.6602 -132.7520 

MM -83449.2214 -6109.2700 -136.6380 

A -82906.0981 -5567.6023 -99.2003 

B -83171.4176 -5832.8199 -101.5490 

C -82983.8161 -5645.6682 -91.1812 
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Figure 3: Relationship between calculated quantum mechanical interaction energies and the 
experimental binding energy expG∆ calculated as ln iRT K . Calculations were performed 

using quantum pseudoreceptor model. 

The binding process between receptor and its ligands occurs in solution; therefore the 
solvation effects play an important role in binding affinity. To consider the solvation effects 
on the binding between AtAHAS and its ligands, the solvation free energies of ligands were 
estimated by combining the density functional theory and Possion-Boltzmann equation [19]. 
The differences of solvation free energies between CE and other ligands were calculated and 
are summarized in Table 3 following the equation, 

sol

CE

sol

ligand

sol

ligand GGG −=∆ .                              (2) 

As shown in Table 3, the difference of solvation free energies sol

ligandG∆ is less than 

3.6kcal/mol. As the cancellation of solvation free energies would occur among the 

complex sol

complexG∆ , sol

receptorG∆ and sol

ligandG∆ , the solvent effect on the relative binding energy is 

expected to have fewer orders of magnitude than that of binding interaction energies. For 
similar ligands, the solvent and entropy effects could be assumed similar, although the 
solvent and entropy effects are ignored, the calculated binding interaction energies 
nevertheless show an excellent correlation with the experimental binding energies.  
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Table 3: Solvation free energy of six sulfonylurea ligands and the relative solvation free 

energies were calculated using 
sol

CE

Sol

Ligand

Sol

Ligand GGG −=∆
. 

Ligand ( / )
Sol

LigandG kcal mol  ( / )
Sol

LigandG kcal mol∆  

CE -43.884 0 

SM -43.865 0.019 

MM -44.671 -0.787 

A -40.308 3.576 

B -41.153 2.731 

C -41.802 2.082 

To compare with the calculation of the molecular mechanics force field, AutoDock4.2 
program was carried out for the same set of ligands. The Autodock binding energies are 
summarized in Table 4. The relationship between the binding energies estimated from 
Autodock4.2 with experimental results is plotted in Figure 4, where the correlation 
coefficient R=0.76 and standard deviation of 1.40 kcal/mol were obtained. In comparison 
with the results from quantum receptor model, it indicates that the QM interaction energies 
show a much better performance than those of AutoDock4.2.   

Table 4: Binding energies between AtAHAS and its six sulfonylurea ligands calculated from 
Autodock4.2 program, )298(lnexp KTKRTG i ==∆  taken from [12]. 

Ligand 
exp ( / )G kcal mol∆   ( / )MMG kcal mol∆  

CE  -10.86 -10.93 

SM  -10.35 -9.55 

MM  -10.15 -9.65 

A  -7.03 -9.30 

B -9.01 -8.95 

C -6.11 -8.57 
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Figure 4: Plot of experimental binding energy expG∆ calculated as ln iRT K  versus the 

binding energy MMG∆  calculated by AutoDock4.2.  

The binding between sulfonylurea herbicide chlorimuron ethyl and the target AtAHAS 
has been well determined by X-ray diffraction experiment [15], the structural modifications 
on the ligand CE were guided by the QM interaction energies. Six new sulfonylurea 
inhibitors were obtained, whereby the structure and QM interaction energies were 
summarized in Table 5, in which the iK  values are predicted based on the linear 

relationship between the calculated QM interaction energies and the experimental binding 
energy in Figure 3. It was indicated that some of them exhibit much improved binding 
affinities to the target AtAHAS in comparison with CE. In particular, by adding a hydroxyl 
group at the para position of aromatic ring and substituting methoxy group for chlorine in 
the CE structure, the compound 6 is obtained, which is predicted to possess high binding 
affinity. The important hydrogen bond interactions between the sulfonylurea inhibitor 6 and 
key residues of AtAHAS are shown in Figure 5. There exist four strong hydrogen bonds 
between the ligand 6 and the binding pocket. It indicates that a strong hydrogen bond forms 
between the hydroxyl group at the para position of aromatic ring and the carboxyl group of 
the residue Asp376 with the hydrogen bond length of 1.63 Å, could effectively improve the 
binding affinity. In addition, there are two hydrogen bond forms between Arg377 and 
methoxy group as well as C=O group of the sulfonylurea bridge of the compound 6 with the 
hydrogen bond distance of 2.21 Å and 1.83 Å. It also appears that there is a typical hydrogen 
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bond interaction between SO2 group of the sulfonylurea bridge and Lys256 with the 
hydrogen bond length of 1.90 Å. Some new inhibitor with much improved binding affinities 
can be obtained by introducing a hydroxyl group at the para position of aromatic ring and 
on the sulfonylurea bridge respectively, these results could be helpful to find new 
sulfonylurea inhibitors for experimentalists in the future.  

 

Figure 5: The important hydrogen bond interactions with H-bond length (unit Å) between 
the sulfonylurea inhibitor 6 and the key residues of AtAHAS. The inhibitor is represented by 
ball-and-stick, the key residue is shown in sticks, AtAHAS is displayed in cartoon. 

Table 5: The structure, QM interaction energies and calculated inhibition constants of the six 
designed inhibitors. All energies are in kcal/mol and the iK  values are predicted based on 

the linear relationship between the calculated QM interaction energies and the experimental 
binding energy in Figure 3. 
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Designed 

Inhibitors 
Structure 

( / )

QME

kcal mol

∆
 Calculated ( )iK Mµ  

1 -137.5186 0.020804 

2 

 

-156.1177 0.001779 

3 -172.5730 0.000202 

4 -149.7213 0.004144 

5 -150.8784 0.003556 

6 -184.2894 0.000043 

4. Conclusions 
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The quantum mechanical interaction energy between the AtAHAS and its sulfonylurea 
inhibitors were calculated with an efficient density functional theory (DFT) and a 
pseudoreceptor model composed of the amino acids surrounding the ligands. The results 
show that the calculated quantum mechanical interaction energies correlate well with 
experimental free energies at the correlation coefficients of 0.92 and the standard deviation 
of 0.83kcal/mol for six sulfonylurea inhibitors. To compare with the force field method, the 
MM binding energies were obtained by AutoDock 4.2 program with the correlation 
coefficient of 0.76 and the standard deviation of 1.40kcal/mol. It indicates that the binding 
between the protein and herbicides can be well characterized by quantum pseudoreceptor 
model. Based on the quantum pseudoreceptor model, new AtAHAS inhibitors with high 
binding affinity were designed, which can be helpful for experimentalists to find new 
sulfonylurea inhibitors. 
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