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Abstract. We apply the multiscale basis functions for the singularly perturbed
reaction-diffusion problem on adaptively graded meshes, which can provide a good
balance between the numerical accuracy and computational cost. The multiscale space
is built through standard finite element basis functions enriched with multiscale basis
functions. The multiscale basis functions have abilities to capture originally perturbed
information in the local problem, as a result our method is capable of reducing the
boundary layer errors remarkably on graded meshes, where the layer-adapted meshes
are generated by a given parameter. Through numerical experiments we demonstrate
that the multiscale method can acquire second order convergence in the L2 norm and
first order convergence in the energy norm on graded meshes, which is independent
of ε. In contrast with the conventional methods, our method is much more accurate
and effective.

AMS subject classifications: 35J25, 65N12, 65N30

Key words: Multiscale basis functions, singular perturbation, boundary layer, adaptively graded
meshes.

1 Introduction

Singularly perturbed problems have attracted much attention during the past decades.
The perturbed parameters in the partial differential equations arise naturally or artifi-
cially. Its main difficulty lies in so-called boundary layer behavior, i.e., the solution varies
rapidly in a thin boundary layer with a very small parameter ε. Using the standard finite
element method (FEM) or finite difference method (FDM) to solve the problem directly
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is much costly and is not independently uniform-consistent. This motivates us to study
efficient numerical methods for the singular perturbation problems (see [11, 13, 16]).

In recent years the numerical solutions of singularly perturbed problems have been
intensively studied, and there are two major strategies. One is h refinement (h is mesh
size) on layer-adapted meshes, e.g., [2, 12, 17, 19]. The other is p refinement (p is de-
gree of approximating polynomials) or hp refinement (the combinations of h and p),
e.g., [6,18,20]. Chen and Xu [3] presented a mathematical proof on accuracy and stability
of the mesh adaptation for one dimensional singular problem. Shishkin [15] proposed a
finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic
convection-diffusion model. Roos [14] considered a stabilized finite element method on
layer-adapted meshes and applied the recovery techniques to acquire supercloseness re-
sults.

In addition, the finite element method can be extended to the multiscale scheme. For
that purpose, Hou, Wu and Cai [7,8] proposed the multiscale finite element method (Ms-
FEM) by solving the local homogenization problem for basis functions, and provided
convergence analyses and numerical examples for problems with rapidly oscillating coef-
ficients. Araya and Valentin [1] considered the a posterior error estimates for the reaction-
diffusion problem, and obtained consistent energy norm estimate. Efendiev and Hou [5]
discussed the applications of MsFEM to two-phase immiscible flow simulation in which
limited global information was taken into accounted, and the inverse problem was also
discussed. Jiang and Huang [9] numerically investigated the MsFEM with rapidly oscil-
lation coefficients and gave a good choice of boundary condition in the local problem for
multiscale basis functions. On coarse uniform meshes Jiang and Sun [10] obtained much
accurate results with the contributions of analytic singular basis functions to reduce the
boundary layer errors remarkably. Efendiev, Galvis and Gildin [4] applied the spectral
multiscale finite element method with the combination of local and global model reduc-
tion techniques, and achieved a balanced and optimal result in practical applications.

The new point in this paper is to demonstrate the accuracy and efficiency of multi-
scale basis functions combined with a modified version of graded meshes for singularly
perturbed problems. The multiscale bases can capture the local boundary information
on the layer-adaptively graded meshes, and therefore offer the uniform-consistent and
predictably convergent solutions. When the conventional methods fail in cases, the pro-
posed MsFEM is shown to obtain the accurate layer behaviors and reduce the computa-
tional costs, which may be applied in many realms.

The remaining part of this paper is organized as follows. In Section 2 we introduce
the singularly perturbed reaction-diffusion model with small parameter ε and build the
adaptively graded meshes for our MsFEM. In Section 3 we construct the enriched mul-
tiscale space through multiscale basis functions plus standard finite element basis func-
tions. Numerical experiments are provided in Section 4, which demonstrate the efficiency
and superiority of MsFEM on graded meshes for the singularly perturbed problem. And
finally concluding remarks are given in Section 5.
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2 The singularly perturbed problem and adaptively graded

meshes

2.1 The reaction-diffusion model

In this paper, we use the Einstein summation convention for repeated indices. L2(Ω)
denotes the space of square integrable functions defined on the domain Ω, and Hk(Ω)
denotes Sobolev spaces equipped with norms ‖u‖2

k,Ω=
∫

Ω ∑|α|≤k |Dαu|2, where Dαu is the

α-th order derivatives of u. H1
0(Ω) consists of functions in H1(Ω) that vanish on the

domain boundary ∂Ω.

Consider the two dimensional reaction-diffusion equation

{

Lu :=−ε∆u+σu= f in Ω,

u=0 on ∂Ω,
(2.1)

where ε and σ are positive parameters, and f is a smooth function in L2(Ω). We know
that a quite small ε would bring boundary layer behavior, which will make the efficient
discretization very difficult.

The variational formulation of (2.1) is to find u∈H1
0(Ω) such that

a(u,v)=( f ,v) for any v∈H1
0 (Ω), (2.2)

where

a(u,v)=
∫

Ω

(

ε
∂u

∂x

∂v

∂x
+ε

∂u

∂y

∂v

∂y
+σuv

)

dx (2.3)

and

( f ,v)=
∫

Ω
f vdx. (2.4)

The bilinear form a(·,·) is coercive and continuous, x is the two dimensional space, and u
is the exact solution.

2.2 The graded meshes

The Shishkin meshes proposed by Shishkin [15] are adapted to the layers structure. Sup-
pose that the boundary layer is located at neighborhood of (x,y)=(1,1), for example we
take τ=0.1 as a transition parameter, so the sub-domains are Shishkin piecewise uniform
meshes, see the middle of Fig. 1.

Our graded meshes are a modified version of the Shishkin meshes, and they are
highly anisotropic and non-uniform. It may be obtained by properly selecting the mesh
generating function [12, 19]. They are constructed for both x and y directions in a tensor
product way, and N is the partition number in each direction. The transition width is
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Figure 1: It is shown uniform (U), Shishkin (S) and graded (G) meshes, respectively.

taken as τ=τx =τy=O(
√

ε), and the domain Ω is divided into four sub-domains Ωk:

Ω1=[0,1−τ]2, Ω2=[1−τ,1]×[0,1−τ], (2.5a)

Ω3=[0,1−τ]×[1−τ,1], Ω4=[1−τ,1]2, (2.5b)

where Ωk=[xi,yj]∈Ω : i, j=1,2,··· ,N+1 and xi, yj are discrete nodes by

xi=











2(1−τ)(i−1)/N, i=1,··· , 1

2
N+1,

1−τ(2(N+1−i)/N)λ , i=
1

2
N+2,··· ,N+1,

(2.6a)

yj =











2(1−τ)(j−1)/N, j=1,··· , 1

2
N+1,

1−τ(2(N+1− j)/N)λ , j=
1

2
N+2,··· ,N+1,

(2.6b)

where the mesh parameter λ is an integer greater than one. An illustration of the graded
meshes for the 2D case with τ=0.1, N=32 and λ=4, is shown in the right of Fig. 1.

3 The enriched multiscale method and multiscale basis

functions

3.1 The enriched multiscale space

Let Kh be a partition of Ω into rectangles K with the mesh size h, 0<h≪1. In each element
K∈Kh, we define a set of nodal basis {ψi or φi, i= 1,··· ,4} at four nodes of rectangular
element.

It is well known that the standard finite element space is composed of piecewise bi-
linear polynomials Q1(K),

Vh={vh ∈H1(Ω)|vh|K ∈Q1(K), ∀K∈Kh}, (3.1)
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and Vh
0 =Vh∩H1

0(Ω). The FEM for the reaction-diffusion equation (2.1) is to find ug ∈Vh
0

such that
a(ug,v)=( f ,v) for any v∈Vh

0 . (3.2)

In this paper, we construct the multiscale finite element space as

Uh=Vh
0 ⊕Mh, (3.3)

where Mh is spanned by the multiscale basis functions φi which are solved from a lo-
cal problem. We assume the multiscale basis are continuous across the boundaries of
elements,

Mh =span{φi : i=1,··· ,4, ∀K∈Kh}⊂H1
0(Ω). (3.4)

The discrete problem is to seek uh∈Uh such that

a(uh,v)=( f ,v) for any v∈Uh. (3.5)

The main difference between MsFEM and FEM is the construction of basis functions.
We know that in FEM, the standard linear or high order basis functions ψi are used to
build the discrete space; while MsFEM’s main goal is to obtain the macroscopic solu-
tions efficiently by constructing the multiscale basis functions φi without resolving all
microscopic scales. The basis functions φi are constructed with respect to the differential
operator in the local problem. As a consequence they can adaptively reflect the nature of
local information such as the singularly perturbed property in our problem.

3.2 Local multiscale basis functions

The multiscale basis functions φi are constructed in the local problem

{

Lφi :=−ε∆φi+σφi=0 in K∈Kh,

φi= θi on ∂K.
(3.6)

We require φi(xj) = δij, where δij is the Kronecker symbol, i.e., when i = j, δij = 1, when
i 6= j, δij = 0. Here θi is boundary condition and let xj ∈ K̄ (j= 1,··· ,4) be the vertexes of
K and are labeled counterclockwise from the lower left corner as (x1,y1), (x2,y2), (x3,y3),
(x4,y4) in turn.

To guarantee the well-posedness of local problem (3.6), we define the linear boundary
condition to let θi vary linearly on ∂K. For example,

θ1(x,y)=

{

(x2−x)/(x2−x1) on [x1,x2],

(y4−y)/(y4−y1) on [y1,y4],
(3.7)

and θ1 be zero on other two boundaries [x4,x3], [y2,y3]. We can define the other three
basis boundary conditions θ2, θ3, θ4 similarly.
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With the given boundary condition, we solve the local problem by FEM on subele-
ment size. This would enable the multiscale basis adaptively capture the singular per-
turbation of differential operator in the boundary domain. As a consequence, small scale
property in each element K can be taken into the macroscopic solution through the mul-
tiscale basis functions. It should be pointed out that with different ε, the obtained multi-
scale basis φi are able to reflect different singular perturbation for the whole problem.

The advantage of multiscale finite element method is its accuracy and computational
efficiency. For example, let N be the number of elements and M be the number of subele-
ments in each spatial direction, then there are total (NM)d elements at fine grid level
(here d= 2 is the dimension). Note that choosing M is a scientific consideration, a wise
M may provide perfect balance both for the accuracy and the computational cost. The
advanced relationship has not been further investigated in this paper, we just take M=4
for simplicity. The computer memory required for the FEM is O(Nd Md), while only
O(Nd+Md) for the MsFEM. Moreover, the multiscale method is naturally adaptive to
massive parallel computers, which enables the MsFEM to handle extremely huge system
in practice.

4 Numerical results

4.1 Implementation and explanation

In this section, we investigate the accuracy and superiority of the adaptive multiscale
finite element method through numerical experiments. For simplicity, the computations
are carried out in a unit square domain Ω. We denote N as the partition number in both x
and y directions, thus domain Ω is divided into N×N non-uniform elements with mesh
size h = maxk hk, where hk is the size of subdomain. To compute the multiscale basis
functions in (3.6), boundary elements are divided into M×M subelements with mesh
size hs =hk/M.

We define the linear boundary condition for multiscale basis functions, and we can
verify that ∑

4
i=1φi ≡1, ∀K∈Kh. After using standard FEM to solve the local problem for

basis functions, we compute the gradient of basis at center of subelements, and the local
stiffness matrix and local right hand side are computed using two dimensional Gauss
numerical quadrature. We glue the local stiffness matrix to the global stiffness matrix and
the corresponding global right hand side, then we solve the discrete algebra equations by
algebraic multigrid method to acquire the MsFEM solution uh.

It is known that for the reaction-diffusion problem (2.1) when σh2 ≪ ε, the FEM can
give accurate results. However, when ε is very small, i.e., ε ≪ σh2, the FEM Galerkin
solution ug would lead to oscillations and large layer errors. In the following numerical
experiments we try to improve the accuracy to some extent by the FEM on our graded
meshes. Then we apply the MsFEM to the local problem (3.6) with h2

s = (h/M)2 ≤ ε
(we take M = 4 to construct the localized mesh). We will demonstrate the abilities of
multiscale basis functions on graded meshes to capture the boundary information, which
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reduce the boundary layer errors and obtain high accuracy. Note that the multiscale basis
functions are used only near the boundary layers while the standard finite element basis
functions are used in the smooth domain, thus we can save the computer memery to
O1(Nd)+O2(Md) further.

We test the error in the L2 norm and the energy norm

‖u−uh‖2
0,Ω =

∫

Ω
(u−uh)

2dx, (4.1a)

‖u−uh‖2
e,Ω=

∫

Ω
ε(∇(u−uh))

2+σ(u−uh)
2dx, (4.1b)

by applying FEM and MsFEM, respectively.
To analyze the efficiency we compare the exact solution with different numerical so-

lutions. In the following tables, L2 norm and energy norm error in (4.1a) and (4.1b) of
discrete grid are listed under the column FEM (G), MsFEM and MsFEM (G), respectively.
Here (G) means on the graded meshes, and the convergence order is listed as the mesh
refinement.

4.2 Experiment results

In problem (2.1), we set Ω=[0,1]×[0,1], σ=1 and exact solution

u= xy(1−e
x−1

ε )(1−e
y−1

ε ),

and corresponding right hand

f =
(

2+
x

ε

)

y(1−e
y−1

ε )e
x−1

ε +
(

2+
y

ε

)

x(1−e
x−1

ε )e
y−1

ε +xy(1−e
x−1

ε )(1−e
y−1

ε ).

Clearly the boundary layer is located at neighborhood of x=1 and y=1, and we take the
transition width τ=

√
ε and 10

√
ε for two parameters ε.

From Table 1 we observe when ε=1e−2 is not too small, three numerical methods are
effective for the model, and they can obtain second order convergence rate (i.e., CN−2)
in the L2 norm and first order convergence rate (i.e., CN−1) in the energy norm with the
mesh refinement. However, we note that the accuracy of MsFEM (G) is the best. In Fig. 2,
there are no obvious boundary layer phenomena, and it is evident the MsFEM (G) can
solve it more precisely.

From Table 2, when ε=1e−6 is very small, we find that the numerical result of MsFEM
(G) is one-order of magnitude higher than that of FEM (G), and it is much superior to
MsFEM’s. There are second order L2 norm and first order energy norm convergence rate
with the mesh refinement on graded meshes. The boundary layers near x= 1 and y= 1
are shown in Fig. 3, but the error of MsFEM (G) is much more accurate than those of FEM
(G) and MsFEM, and this is owing to the contributions of multiscale basis functions to
resolve the singular perturbation in boundary layers.
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Figure 2: Errors of FEM (G), MsFEM and MsFEM (G) with ε=1.0e−2 and N=64.
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Figure 3: Errors of FEM (G), MsFEM and MsFEM (G) with ε=1.0e−6 and N=64.
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Figure 4: Norm results in the log-log scale with ε = 1.0e−2 by FEM, FEM (G), MsFEM and MsFEM (G),
respectively.
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Figure 5: Norm results in the log-log scale with ε = 1.0e−6 by FEM, FEM (G), MsFEM and MsFEM (G),
respectively.

In Fig. 4 and Fig. 5, we present three norm errors of L∞, L2 and energy with ε=1e−2
and 1e−6. It is apparent that FEM on uniform meshes gives bad accuracy and divergence
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Table 1: Errors and convergence rates by FEM (G), MsFEM and MsFEM (G) with ε=1.0e−2.

N
L2 norm

FEM (G) order MsFEM order MsFEM (G) order
8 2.739e-2 3.957e-2 5.659e-3
16 7.021e-3 1.96 1.954e-2 1.02 1.633e-3 1.79
32 1.747e-3 2.01 6.172e-3 1.66 4.262e-4 1.94
64 4.400e-4 1.99 1.596e-3 1.95 1.086e-4 1.97

128 1.107e-4 1.99 3.944e-4 2.02 2.738e-5 1.99
256 2.776e-5 2.00 9.802e-5 2.01 6.874e-6 1.99

N
energy norm

FEM (G) order MsFEM order MsFEM (G) order
8 2.874e-1 1.858e-1 8.879e-2
16 1.438e-1 1.00 1.660e-1 0.16 4.596e-2 0.95
32 7.060e-2 1.03 1.221e-1 0.44 2.315e-2 0.99
64 3.523e-2 1.00 7.565e-2 0.69 1.159e-2 1.00

128 1.760e-2 1.00 4.073e-2 0.89 5.799e-3 1.00
256 8.799e-3 1.00 2.079e-2 0.97 2.900e-3 1.00

Table 2: Errors and convergence rates by FEM (G), MsFEM and MsFEM (G) with ε=1.0e−6.

N
L2 norm

FEM (G) order MsFEM order MsFEM (G) order
32 8.930e-2 1.993e-1 1.098e-2
64 1.435e-2 2.64 1.334e-1 0.58 1.759e-3 2.64

128 3.497e-3 2.04 5.826e-2 1.20 4.306e-4 2.03
256 8.708e-4 2.01 1.694e-2 1.78 1.079e-4 2.00
512 2.177e-4 2.00 5.027e-3 1.75 2.722e-5 1.99

N
energy norm

FEM (G) order MsFEM order MsFEM (G) order
32 4.219e-1 3.850e-1 1.380e-1
64 2.036e-1 1.05 3.148e-1 0.29 6.284e-2 1.13

128 9.922e-2 1.04 2.072e-1 0.60 3.023e-2 1.06
256 4.933e-2 1.01 1.113e-1 0.90 1.498e-2 1.01
512 2.460e-2 1.00 5.508e-2 1.01 7.463e-3 1.01

in the case of small 1e−6. On the contrary FEM on graded meshes improves the accuracy
to some extent, and MsFEM on graded meshes can provide the most accurate simulation
and convergence. The superiority of MsFEM (G) for reaction-diffusion boundary layer is
obvious.

5 Conclusions

In this paper, an enriched multiscale finite element method is proposed to solve the two
dimensional singularly perturbed reaction-diffusion problem, and the multiscale basis
functions are combined with a modified version of graded meshes for accuracy and ef-
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ficiency. The multiscale basis functions are capable of capturing the local singular per-
turbation to recover the boundary layer errors on the exponentially graded meshes, and
therefore offer the numerically stable and uniform-consistent results with the parame-
ter ε. This method is more accurate compared with the conventional methods, and it
provides second order convergence in the L2 norm and first order convergence in the
energy norm. The method is not restricted to the reaction-diffusion model, and it can be
extended to convection-diffusion problems.
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