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Abstract. This paper presents high-resolution computations of a two-phase gas-solid
mixture using a well-defined mathematical model. The HLL Riemann solver is applied
to solve the Riemann problem for the model equations. This solution is then employed
in the construction of upwind Godunov methods to solve the general initial-boundary
value problem for the two-phase gas-solid mixture. Several representative test cases
have been carried out and numerical solutions are provided in comparison with exist-
ing numerical results. To demonstrate the robustness, effectiveness and capability of
these methods, the model results are compared with reference solutions. In addition
to that, these results are compared with the results of other simulations carried out for
the same set of test cases using other numerical methods available in the literature.
The diverse comparisons demonstrate that both the model equations and the numeri-
cal methods are clear in mathematical and physical concepts for two-phase fluid flow
problems.
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1 Introduction

For many years the subject of theoretically modelling multi-phase fluid flows has held a
prominent place in the attention of applied and computational mathematicians. In more
recent years this attention has been directed to the well-defined mathematical models
along with numerical methods. The basic issues in the subject traditionally deal with
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hyperbolic or non-hyperbolic character of the governing equations, and conservative or
non-conservative character of the governing equations. Typically, two-phase flow seen
in a broad range applications and encompasses many different physical processes. It is
therefore not possible for a single theoretical framework to describe all the diverse vari-
ety of two-phase fluid flow problems. The variety of two phase systems is illustrated by
the different mathematical models suggested in the literature. In general, they are usu-
ally described by the two-fluid six equations model [4, 5, 11, 30, 31], or the mixture three
equations model [14, 19], or the five equations model [13, 15], or the seven equations
model [1, 27]. The success of each model depends on the physical phenomena of interest
and on the nature of the problem. Almost all these models have non-conservative form
causing serious analytical and numerical difficulties. Furthermore, hyperbolicity of such
models is obtained under certain restrictions. Recently, an alternative approach based on
the theory of thermodynamically compatible systems of hyperbolic conservation laws [7]
to model two-phase flows has been proposed (see, for example, [23, 42]). For such an ap-
proach, the formulation of thermodynamically compatible systems have been applied to
model two-phase gas-liquid [24,42] and gas-solid mixtures [25,46] in terms of parameters
of state for the mixture. Distinctive features of this approach are that the resulting mod-
els admit two pressures, two velocities and two temperatures. Furthermore, the resulting
models are fully hyperbolic and fully conservative systems of the governing equations
and independent of the kind of numerical method used to implement it. As regard to the
numerical tools for the simulation of two-phase flow equations, there are several numer-
ical methods have been proposed in the literature from different perspectives to simulate
two-phase flow problems. The details of these numerical methods are very well docu-
mented in the literature and not repeated here to which we will refer the reader to the
recent papers [2, 6, 10, 12, 17, 18, 29, 34, 37, 40, 44, 47] and references therein for details.

This paper is to continue the present authors investigation in applying advanced nu-
merical methods to solve thermodynamically compatible systems of hyperbolic conser-
vation laws in the context of two-phase fluid flow problems. In a recent study [46], a
mathematical model was developed for compressible gas-solid two-phase flow based
on the thermodynamically compatible systems theory [7]. Theoretical investigation has
shown that the model is fully hyperbolic and fully conservative with a complete math-
ematical structure of the governing equations. As a consequence, the model equations
allows a straightforward application of finite volume methods and corresponding nu-
merical tools. Thus, rather than developing new numerical methods specific to the two-
phase flow model of this paper, we propose to adapt a general purpose method for hy-
perbolic systems of conservation laws that can be applied to the model equations. In
earlier studies [23, 24, 42, 43], modern numerical methods such as Godunov methods of
centred type were extended to thermodynamically compatible systems of conservation
laws in the context of two-phase flow models.

The principal contribution of this paper is to extend and apply the well tested up-
wind Godunov methods directly to the model of two-phase gas-solid mixture developed
in [46]. These methods are usually based on the exact or approximate solution of the local
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Riemann problem for the constructions of the numerical fluxes. Within the framework
of the Riemann problem, closed form solutions are limited and have been developed to
certain two-phase flow models of the non-hyperbolic non-conservative type. See for ex-
ample [3, 28, 32]. Thus, approximate Riemann solvers become practically popular for the
solution of the local Riemann problem for such models. Moreover, an enormous amount
of work has appeared on the subject of Riemann solvers for the constructions of the nu-
merical fluxes and has been presented and successfully applied to several two-phase flow
problems, to name but a few (see [21,26,34,36], and references therein, for further details).
For the present model the exact solution of the Riemann problem is not available at this
time for the types of equations of state involved for the phases as well as the mixture.
Due to the complexity of the equations of state, approximate Riemann solvers are con-
sidered instead. One of the more commonly used Riemann solvers is the HLL Riemann
solver (after Harten, Lax and van Leer) [9]. This solver is chosen for its simplicity, effi-
ciency and as a starting point for investigations which should lead to suitable theoretical
and numerical analysis for the current two-phase flow model. It is noteworthy that the
HLL Riemann solver has also been used for other two-phase flow models of the non-
hyperbolic non-conservative type, see [8, 22, 27, 39, 41], for example. The HLL Riemann
solver approximates the Riemann problem solution by two waves, one with the smallest
and the other with the largest wave speed, respectively. This solution is then incorpo-
rated with upwind Godunov methods to solve the model equations as will be explained
in Section 3. Further, we present the Godunov first-order upwind scheme based upon
the HLL Riemann solver to solve the proposed model. To illustrate the performance of
the HLL Riemann solver, we also implement it in the framework of the MUSCL-Hancock
scheme [38].

This paper is organized as follows. Section 2 provides a brief resume of the model
developed in [46]. The upwind Godunov methods for the principal part of the model
are detailed in Section 3. Surprisingly, the extension of these methods to the model equa-
tions is simple and straightforward. In Section 4 we present some representative results
from the numerical test cases that we conducted in the course of our study. The upwind
Godunov methods are compared with unstaggered central schemes suggested in [35] in
Section 4 as well. Finally, conclusions are drawn in Section 5.

2 Thermodynamically compatible two-phase flow model

We consider a thermodynamically compatible two-phase flow model originally presented
in [25, 46] for porous material. The model describes the behaviour of a two-phase gas-
solid mixture. It is assumed that the two phases are compressible and have their own
mechanical properties. The model consists of balance laws for mass, momentum and en-
ergy in terms of parameters of state for the mixture along with additional closure govern-
ing equations. This paper focuses precisely on the development of numerical methods
to solve the model equations, using upwind Godunov methods. The one-dimensional
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conservation laws governing the model then are presented as follows [46]:

• Mixture mass conservation equation

∂(ρ)

∂t
+

∂(ρu)

∂x
=0. (2.1)

• Mixture momentum conservation equation

∂(ρu)

∂t
+

∂(ρu2+P)

∂x
=0. (2.2)

• Mixture energy conservation equation

∂(ρE)

∂t
+

∂(ρuE+Pu)

∂x
=0. (2.3)

The variables ρ, u, E and P represent, respectively, the density, velocity, energy and pres-
sure for the mixture, t and x denote the time and the flow direction. The density and
momentum are given by

ρ=αρ1+(1−α)ρ2 and ρu=αρ1u1+(1−α)ρ2u2, (2.4)

where the one, 1, and two, 2, are subscripts denotes the gas and solid phases, respectively,
and α=α1 is the volume concentration for the gas phase. It should be noted that the above
mixture equations allow interphase exchange processes through additional conservation
laws for the gas phase. Moreover, following the previous work [46], several closure laws
must be given which involve the gas volume concentration balance law, mass gas con-
centration balance law and gas entropy concentration balance law.

• The gas volume concentration balance law

∂(ρα)

∂t
+

∂(ρuα)

∂x
=φ. (2.5)

• The mass gas concentration balance law

∂(ρc)

∂t
+

∂(ρuc)

∂x
=ψ. (2.6)

• The gas entropy concentration balance law

∂(ρχ)

∂t
+

∂(ρuχ)

∂x
=ω, (2.7)
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where c = c1 and χ = χ1 are the mass concentration and entropy concentration for the
gas phase. The terms on the right-hand side of (2.5)-(2.7) model the interphase exchange
processes. The source term of (2.5) describes the relaxation of phase pressures to common
uniform state with relaxation time τ(P). This term has the form

φ=
−ρ

τ(P)

∂e

∂α
. (2.8)

The mass exchange ψ in (2.6) involves the rate of phase transition τ(c) and is given by

ψ=
−ρ

τ(c)

∂e

∂c
. (2.9)

Finally, the energy exchange between the phases is taken to be

ω=
−ρ

s τ(χ)

∂e

∂χ
, (2.10)

where τ(χ) is the rate of phase temperature coefficient.
To close system (2.1)-(2.3) and (2.5)-(2.7) we define the pressure and temperature for

the mixture as

P=ρ2 ∂e

∂ρ
=α1ρ2

1

∂e1

∂ρ1
+α2ρ2

2

∂e2

∂ρ2
=αP1+(1−α)P2, (2.11a)

T=
∂e

∂s
=χ1

∂e1

∂s1
+χ2

∂e2

∂s2
=χT1+(1−χ)T2, (2.11b)

with the volume concentrations and phase specific entropies are related by

α1+α2=1 and s= cs1+(1−c)s2. (2.12)

Furthermore, the model equations (2.1)-(2.3) and (2.5)-(2.7) are supplemented by an equa-
tion of states for the mixture using the known equations of state of the constituents by
the formulas

e= ce1+(1−c)e2 with E= e+
u2

2
, (2.13)

where e is the specific internal energy.
Eqs. (2.1)-(2.3) and (2.5)-(2.7) govern the two-phase gas-solid mixture problem. It is

clear that these equations have at least six unknowns, namely ρ, u, E, α, c, χ for the
mixture and phases, respectively. On the other hand, it is noted that these equations in-
volve only conservative terms. Therefore, Eqs. (2.1)-(2.3) and (2.5)-(2.7) form a system of
mixture conservation laws having a hyperbolic nature as discussed in the earlier investi-
gation produced by the present author [46]. The eigenvalues of the system are

λ1=u−am, λ2,3,4,5=u and λ6=u+am, (2.14)
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where am is the speed of sound in the mixture [46]. It should also be noted that the
system is not strictly hyperbolic because of the repeated second eigenvalue. Further, the
characteristics for the mixture given by λ1 and λ6, respectively, are genuinely non-linear,
while the characteristics given by λ2,3,4,5 are linearly degenerate as shown in [46].

With the novel features of the governing equations system identified, this mathemat-
ical model is applicable to the wave dominant two-phase flow problems based on the
Riemann problem. Further, it allows the application of modern numerical methods [33]
which make use of the hyperbolic conservative nature of the flow equations.

3 Computational methods

In the present section, we will introduce upwind Godunov methods for solving the
model equations. The conservation laws (2.1)-(2.3) and (2.5)-(2.7) governing the model
can be written in the form

∂U

∂t
+

∂F(U)

∂x
=S(U), ∀x∈R, t∈R

+, (3.1)

where

U=

















ρ
ρα
ρu
ρc
ρχ
ρE

















, F(U)=

















ρu
ρuα

ρu2+P
ρuc
ρuχ

ρuE+Pu

















and S(U)=

















0
φ
0
ψ
ω
0

















. (3.2)

The numerical approach employed in this paper for the solution of the above system is
based on the methodology of upwind Godunov methods for general systems of hyper-
bolic conservation laws. Upwind Godunov methods require the solution of the Riemann
problem which may be an exact solution or an approximate solution. For the present
model the exact solution of the Riemann problem is complicated and not known in a
closed form. Indeed, the explicit formulas in the Riemann invariants are not possible for
complex equations of state for the solid and gas phases. Thus, approximate Riemann
solvers are considered. Among the available approximate Riemann solvers is the HLL
Riemann solver [9,33] which is a direct approximation of the upwind flux computations.
For the current two-phase gas-solid mixture, the approximate solution to the Riemann
problem for the model equations is based on the HLL Riemann solver. This solution is
then employed in the construction of the Godunov first-order upwind scheme and in
the MUSCL-Hancock scheme to solve the general initial-boundary value problem for the
two-phase gas-solid mixture. In this paper we are mainly interested in the principal part
of Eq. (3.1) in processes without dissipation, that is we set S(U)= 0. More information
concerning the source terms effects can be found in the recent paper [46], which is beyond
the scope of this paper.
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A conservative description of (3.1) in processes without dissipation over a time step
∆t over a cell Ii yields

U
n+1
i =U

n
i −

∆t

∆x

[

Fi+ 1
2
−Fi− 1

2

]

. (3.3)

In (3.3) ∆x is cell spacing and ∆t is the time step determined by

∆t=CFL·
∆x

Smax
, (3.4)

for which 0<CFL≤ 1 is the Courant number coefficient CFL and Smax is the maximum
wave speed at the current time level n chosen as

Smax=max
i

{

|λi|
}

, (3.5)

where λi are the eigenvalues corresponding to sound waves. Fi+1/2 is the upwind nu-
merical flux computed at the interface xi+1/2 by solving the initial-boundary value prob-
lem for the two-phase gas-solid mixture defined by (3.1), for S(U) = 0, over the time
interval ∆t= tn+1−tn together with the initial conditions

U(x,tn)=

{

UL, for x<xi+ 1
2
,

UR, for x>xi+ 1
2
,

(3.6)

where UL and UR are given left and right constant states of the two-phase gas-solid mix-
ture. This is known as the Riemann problem. Fig. 1 shows the structure of the Riemann
problem for the model equations. The three waves divide the x−t plane into four regions
corresponding to the four states UL, U∗

L, U∗
R and UR as shown in Fig. 1. The two non-

linear waves λ1 =λL and λ6 =λR represent either shocks or rarefactions separated by a
middle wave λm of multiplicity four moving at the phase velocity.

The numerical procedure introduced in the following sections is for calculating the
numerical flux Fi+1/2. It is, however, enough to employ one approximate Riemann solver
to have a numerical flux.

x

t

UL =Un
i

λL =SL

U∗
L U∗

R

λm=S∗ λR =SR

UR =Un
i+1

i+ 1
2

Figure 1: Graphical representation of the Riemann problem in the x−t plane with initial states UL and UR.
These data decompose into two non-linear waves with speeds SL and SR and a linear wave with velocity S∗.
The three waves divide the x−t plane into four regions each defining a constant state: UL, U∗

L, U∗
R and UR.

The outermost states, UL and UR, are given as input to the problem, while the remaining ones have to be
determined.
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3.1 HLL Riemann solver

In this paper we employ the HLL Riemann solver [9] which is a direct approximation
of the numerical flux to compute the upwind Godunov flux. The HLL Riemann solver
consists of two waves with three constant states. It is also very efficient and robust, and
provides a physical and entropy satisfying solution. Due to the mathematical nature of
the model equations, the HLL Riemann solver is applied directly to the system describing
two-phase gas-solid mixture without any modification with the following HLL flux [9,33]

F
HLL

i+ 1
2
=



















FL, 0≤SL,

F∗
L =FL+SL

(

U
HLL

−UL

)

, SL ≤0≤S∗,

F∗
R =FR+SR

(

U
HLL

−UR

)

, S∗≤0≤SR,
FR, 0≥SR.

(3.7)

The notations, SL and SR are referred to as the speeds of the smallest and largest waves

assumed to be known. While the vector U
HLL

is the constant state vector given by

U
HLL

=
SRUR−FR−SLUL+FL

SR−SL
, (3.8)

which is the average of the exact Riemann problem between the slowest and fastest
waves [33].

Since the HLL Riemann solver assumes two waves system, it follows that F∗
L and F∗

R

are the same as the HLL flux, F
HLL

i+1/2, is then given by

F
HLL

i+ 1
2
=

SRFL−SLFR+SR(UR−UL)SL

SR−SL
. (3.9)

The HLL Riemann solver requires the estimates of wave speeds SL and SR in the Riemann
problem. A direct and simple wave speed estimates follow from the eigenvalues of the
model equations, given analytically by (2.14)

SL=uL−amL and SR=uR+amR, (3.10)

is quite sufficient for the purposes here. An extensive and detailed review of all possible
estimates for these velocities can be found in [33]. In the next sections we will make use
of the HLL flux when constructing upwind Godunov methods.

3.2 The Godunov first-order upwind scheme

The Godunov scheme is to find the solution of the Riemann problem for the two-phase
gas-solid mixture. This scheme is a first-order accurate scheme which can be written in
the conservative form (3.3) with interface flux given by

Fi+ 1
2
=F

(

Ui+ 1
2
(0)

)

, (3.11)
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where Ui+1/2(0), estimated at x/t= 0, is the local Riemann problem solution at the cell
interface position i+1/2 of the mixture conservation laws (3.3) with the following initial
conditions

U(x,0)=

{

UL, for x< x0,
UR, for x> x0,

(3.12)

where x0 represent the initial discontinuity. The solution of the Riemann problem for the
current model equations can be exact, analytical, or approximate. However, as the au-
thors pointed out that the development of an analytical solution to the Riemann problem
for the current model is not available at this time. This is due to the complex nature of
the model equations and it is not easy to iterate each wave for the mixture and the phases
separately. Thus, the solution of the Riemann problem is determined using the HLL Rie-
mann solver (3.9), which we have described in the previous section and now considered
to be the approximate solutions for the upwind numerical fluxes given by (3.3).

3.3 The MUSCL-Hancock scheme

Apart from flux calculation, the Godunov first-order upwind scheme can be extended
to second-order accuracy following the MUSCL-Hancock approach [38]. The MUSCL-
Hancock approach is based on the following three steps [33].

• Data reconstruction. In this step the cell averaged values Un
i are locally restored by

piecewise linear function in every cell Ii

Ui(x)=U
n
i (x)+

(x−xi)

∆x
∆i. (3.13)

This step consists of changing Ui values as

U
L
i =U

n
i −

∆i

2
and U

R
i =U

n
i +

∆i

2
, (3.14)

which is known as the boundary extrapolated values. In the above expressions
∆i is a limited slope vector of six components for the current two-phase gas-solid
mixture which can be written as

∆i =
1

2

(

(1+ω)∆i− 1
2
+(1−ω)∆i+ 1

2

)

,

where

∆i− 1
2
=U

n
i −U

n
i−1, ∆i+ 1

2
=U

n
i+1−U

n
i and ω∈ [−1,1].

Furthermore, this limiter is used to avoid spurious oscillations near large gradients
of the numerical solution and obtained using the TVD constraints as follows

∆i =











max
[

0,min(Λ ∆i− 1
2
,∆i+ 1

2
),min(∆i− 1

2
,Λ∆i+ 1

2
)
]

, ∆i+ 1
2
>0,

min
[

0,max(Λ ∆i− 1
2
,∆i+ 1

2
),max(∆i− 1

2
,Λ∆i+ 1

2
)
]

, ∆i+ 1
2
<0,

(3.15)
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where the parameter Λ represent a particular limiter of interest. See [33] for several
choices for the slope limiter and [43] for two-phase flow applications.

• Evolution. The boundary extrapolated values UL
i and UR

i in (3.14) are evolved by
half a time step for every cell Ii. They are calculated as

(UL
i )

New=U
L
i +

1

2

∆t

∆x

[

F(UL
i )−F(UR

i )
]

, (3.16a)

(UR
i )

New=U
R
i +

1

2

∆t

∆x

[

F(UL
i )−F(UR

i )
]

, (3.16b)

where the intercell fluxes are calculated at the boundary extrapolated values of
each cell. Note that this step is just an intermediate step with two different fluxes,
F(UL

i+1) and F(UR
i ), at each intercell position i+1/2. Still, the intercell flux Fi+1/2

appearing in (3.3) needs to be computed.

• The Riemann problem. The interface flux, Fi+1/2, is calculated by solving the con-
ventional Riemann problems with the evolved data (UL

i+1)
New and (UR

i )
New as fol-

lows

Fi+ 1
2
=Fi+ 1

2

(

(

U
R
i

)New
,
(

U
L
i+1

)New
)

. (3.17)

In the above expression, the HLL Riemann solver is employed as described in Sec-
tion 3.1. The solution then is advanced by ∆t from tn using the explicit formula (3.3).

4 Numerical results

The primary focus of this paper is to explore upwind Godunov methods, gain from their
experience and efforts on the thermodynamically compatible two-phase flow model pre-
sented in the current paper, rather than developing new numerical methods to solve
such a model. Thus, to illustrate the performance of the proposed upwind Godunov
methods and show the advantages of the present mathematical model for the two-phase
gas-solid mixture, a series of numerical test cases are considered. These test cases were
taken from [33, 34, 45, 46]. The first test case includes a sonic rarefaction wave within
two-phase gas-solid mixture. In the second test case we consider a two rarefaction waves
and a non-trivial contact discontinuity. In the third test case, we consider a collision of
two-phase gas-solid mixture which consists of a symmetric Riemann problem. Finally,
the fourth test case deals with the propagation of a volume concentration wave within a
two-phase gas-solid mixture. For all test cases we make use of the HLL Riemann solver
of Section 3.1 within two numerical methods, namely the Godunov first-order upwind
scheme and the MUSCL-Hancock scheme. As will be seen from the solutions presented
in later sections, the initial conditions of these test cases, given in Tables 1 and 2, consists
of two constant left and right states separated by a contact discontinuity at a position
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Table 1: Initial states for numerical test 4.1.

Left Right

αL =0.7 αR =0.2

ρ1L=1.0 ρ1R=0.125

u1L =250.0 u1R =0.0

ρ2L=1.0 ρ2R=0.125

u2L =250.0 u2R =0.0

Table 2: Left and right initial states for the two-phase gas-solid mixture Riemann problem for numerical tests 4.2-
4.4.

Test case αL ρL uL χL sL αR ρR uR χR sR

2 0.95 70.0 −100.0 0.0 0.0 0.05 70.0 100.0 0.0 0.0

3 0.1 0.1 800.0 0.0 0.0 0.1 0.1 −800.0 0.0 0.0

4 0.0 100.0 0.0 0.0 0.0 1.0 50.0 0.0 0.0 0.0

x= x0 at time t= 0. In addition, all the results are displayed with the relevant gas mass
concentration being calculated by

c=
αρ1

ρ
.

The equations of state (EOS) for the two-phase gas-solid mixture is given by (2.13) and
determined by the equations of state for the solid and gas phases. For the purposes of
this paper, the solid phase is governed by the Mie-Grüneisen equation of state [46]

e2=
A2

1

2A2
2

[( ρ

ρ0
2

)A2

−1
]2
+c2

v A3

( ρ

ρ0
2

)A4
[

exp
( s

c2
v

)

−1
]

−
A5

ρ
, (4.1)

with the relevant constants: ρ0
2 =2.77, c2

v =0.00045, A1 =6, A2=1.08, A3=293, A4=2.11
and A5=0.1. For the gas phase, we use the perfect gas EOS as [46]

e1=
A0

ρ0
1(γ−1)

( ρ

ρ0
1

)γ−1
exp

( s

c1
v

)

, (4.2)

where the parameters are taken as γ=1.4, ρ0
1=1, c1

v=720 and A0=1×105, if not mentioned
otherwise, being employed throughout.

The above equations of state are involved in all computations. It should be noted that
the Mie-Grüneisen EOS is more complex type EOS than the perfect gas EOS. Further, due
to the complexity of the solid phase EOS, no exact solution is available to the model equa-
tions as mentioned earlier. However, it is possible to compute oscillation-free solutions
using the Mie-Grüneisen EOS with the proposed upwind Godunov methods. That is,
the solutions are evaluated by means of reducing the spurious (non-physical) oscillations
observed at discontinuities by upwind Godunov methods based on an approximate Rie-
mann solver. For reference solution purposes then, the numerical results on a very fine
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mesh offers a guideline to the wave structure in every test case. This reference solution
is taken from the TVD MUSCL-Hancock computations using the HLL Riemann solver
with 4000 mesh cells, as meshes of a larger number of cells were checked to produce
no further improvement. We have chosen to use the MUSCL-Hancock scheme together
with the SUPERBEE limiter as a reference solution since it has a unique success in many
practical computations, see for example [16]. In addition, the present results have con-
siderable better accuracy than previous results, see [46]. All the numerical solutions are
performed on a domain of 100m long with transmissive boundary conditions being used.
The Courant number coefficient is CFL=0.9. For each test, we use SUPERBEE limiter for
the MUSCL-Hancock scheme to control spurious oscillations associated in the vicinity
of strong gradients. Further, to demonstrate the advantage of the present TVD MUSCL-
Hancock, the results are compared with the reference solution of [46], whose numerical
accuracy was confirmed using the SLIC scheme together with the SUPERBEE limiter. In
all computations, we examine the numerical solutions on a coarse mesh of 100 cells at a
given time of interest using the TVD MUSCL-Hancock and Godunov first-order methods.
The results are also compared with the Lax-Friedrichs scheme which is an independent
and iteration-free scheme.

In order to further validate the model equations and the numerical methods em-
ployed in the current paper, we compare the present simulation results with an alter-
native numerical method available in the literature. As mentioned earlier, there exist a
variety of numerical methods for solving hyperbolic conservation laws that arise in many
physical problems. One such method is the unstaggered central scheme of [35] which is
a relatively modern finite volume numerical method for solving hyperbolic conservation
laws. We shall refer to the unstaggered central scheme as UCS. The UCS technique is an
extension of the standard Nessyahu and Tadmor central scheme [20] that does not require
two staggered grids. Furthermore, it evolves the numerical solution on a unique grid and
avoids the resolution of the associated Riemann problems at the cell interfaces. That is,
the UCS is classified as a non-oscillatory second-order accurate Riemann-free solvers nu-
merical method that can be written in the form (3.3). Recently, the UCS approach has
been prototyped in its preliminary version to solve the shallow water equations [35], for
which we refer the reader for further details. To solve the principal part of the model
equations then, the UCS procedure uses two steps to implement. The first step employs
ghost staggered cells to estimate the solution at the new time step within these cells as
follows [35]

U
G

i+ 1
2
=

1

2
(Un

i+1+U
n
i )+

1

8

(

(Un
i )

′−(Un
i+1)

′
)

−
∆t

∆x

(

F(U
n+ 1

2
i+1 )−F(U

n+ 1
2

i )
)

, (4.3)

where Gi+1/2=[xi,xi+1] is the ghost staggered cells and (Un
i )

′ denotes the slope approxi-
mation to first-order accuracy. This solution then is taken back to the original grid using
the following formula
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which is regarded as the final solution. In what follows, the symbols in each plot corre-
spond to the numerical solutions using the four different numerical methods while the
reference solutions are given by the solid lines in each plot. Finally, the reader is referred
to the web version of this paper for interpretation of the waves to colour in all the figures
legend throughout.

4.1 Sonic rarefaction wave within gas-solid mixture

To demonstrate the advantages of the present mathematical model and numerical meth-
ods, the sonic rarefaction test case [33] for single-phase flow is tested. This test case was
also extended to two-phase flow in [34]. In [34], two phases and two different types of
EOS in the simplest form are tested for a two-fluid model type of two-phase flow. In this
paper we extended the sonic rarefaction test case to the mathematical model adopted in
this paper with a different type of EOS for both the solid phase and the gas phase. In
addition, the interest of this test case lies in assessing the entropy satisfaction property of
the numerical methods. For this test case, it is known [33,34] that the wave structure con-
sists of a left sonic rarefaction wave, a right travelling contact discontinuity and a right
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Figure 2: Sonic rarefaction wave test case at time t=0.01. Computations are carried out under different mesh
resolutions for the MUSCL-Hancock scheme together with the SUPERBEE limiter using the HLL Riemann
solver. Top panel: mixture density (kg m−3) and solid volume concentration. Bottom panel: mixture pressure

(Pa) and velocity (m s−1). The solid lines give the reference solutions by the TVD SLIC scheme of [46] for
two-phase gas-solid mixture, 4000 mesh cells are used in the computations at time t=0.01.
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Figure 3: Solution of the sonic rarefaction wave (test case 4.1) computed with three numerical methods at
time t= 0.01 on 100 mesh cells with the SUPERBEE limiter. From left to right and top to bottom: mixture
density (kg m−3), solid volume concentration, mixture pressure (Pa) and velocity (m s−1). The solid lines give
the reference solution as computed from [46] of two-phase gas-solid mixture. The results are similar to previous
ones proposed in the literature for two-phase flows.

shock wave. The initial conditions are given in Table 1. These initial conditions are such
that as the time progresses, the two-phase gas-solid mixture generate a left sonic rarefac-
tion wave and a right shock wave, for the mixture, separated by a right travelling contact
discontinuity as shown in Fig. 2. Fig. 2 gives numerical results (symbols) of the mixture
density, solid volume concentration, mixture pressure and velocity at time t=0.01 using
three different meshes, 100, 200 and 400 cells. From Fig. 2, the mesh convergence to the
reference solution (given by solid lines) of [46] can be seen in all the plots. The good
agreement of the solution behaviour with the reference solution is also seen. As regard to
the reference solution, the reference solutions are provided using the TVD SLIC scheme
of [46] which is prepared separately on a very fine mesh of 4000 cells.

Fig. 3 compares the performance of the Godunov first-order upwind scheme and the
TVD MUSCL-Hancock scheme using the HLL Riemann solver at time t=0.01 using 100
mesh cells. From the figure, it is easy to observe the agreement between the numerical
(symbols) and reference solutions (solid lines) for the three methods. The reference so-
lutions in Fig. 3 are provided by the MUSCL-Hancock scheme together with the HLL
Riemann solver using the SUPERBEE limiter on a mesh of 4000 cells. Furthermore, the
presented results are very similar to those obtained in [34]. It is clear that the results
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Figure 4: Comparison of computed results, shown with symbols, for test case 4.1 with the reference solution
which is provided by the TVD MUSCL-Hancock scheme based on the HLL Riemann solver. The UCS approach
of [35] is used to solve the model equations in processes without dissipation at time t=0.01 on 100 mesh cells
with 0.485 CFL coefficient. As in Figs. 2 and 3, from left to right and top to bottom, mixture density (kg

m−3), solid volume concentration, mixture pressure (Pa) and velocity (m s−1). The obtained results validate
the model equations and illustrate robustness and performance of the numerical methods.

provided by the TVD MUSCL-Hancock scheme are oscillation-free and attain sharper
representation of the contact discontinuity when compared to the Godunov first-order
upwind and Lax-Friedrichs methods. In addition, it is easily observed from Fig. 3 that
the correct resolution of the sonic point satisfying the entropy property of the proposed
numerical methods.

To further validate the proposed numerical solutions computed using upwind Go-
dunov methods, we solve the model equations using the unstaggered central scheme,
UCS, of [35] which is a Riemann-free solver. Fig. 4 shows a comparison of the numeri-
cal resolution given by the UCS and the numerical results of the TVD MUSCL-Hancock
scheme using the HLL Riemann solver at time t= 0.01 using 100 mesh cells. The latter
is in excellent agreement with the UCS resolutions, and both methods are in a very good
agreement with the reference solution. Note that the spurious oscillations generated by
the UCS across the contact discontinuity are due the non-linearity of the model equations.

In conclusion, the numerical results reported in this section compare well with the
reference solution and validate both model equations and the numerical methods.
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4.2 Rarefaction waves propagation within gas-solid mixture

This test case has been previously studied in [46] with Godunov methods of centred-
type. The solution for this test case is composed of a left rarefaction wave and a right
rarefaction wave separated by a non-trivial contact discontinuity as presented in Fig. 5. In
this figure the results (symbols) on a mesh of 100 cells using the TVD MUSCL-Hancock,
the first-order Godunov and Lax-Friedrichs methods are displayed and compared with
the reference solutions (solid lines).

As regard to the reference solution, the TVD MUSCL-Hancock scheme with the HLL
Riemann solver provides an accurate and consistent results on a very fine mesh of 4000
cells. The three methods are in excellent agreement with the reference solutions. In Fig. 5,
we note a jump in the mixture density and the solid temperature across the non-trivial
contact discontinuity. This is caused by the existence of two separate volume concentra-
tion waves in the gas phase, see Table 2. It is also clear that across the middle wave both
the first-order Godunov and Lax-Friedrichs methods attain inferior representation of the
contact discontinuity. Whereas the TVD MUSCL-Hancock scheme achieves a sharper
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Figure 5: Present numerical solutions (symbols) from three numerical methods (TVD MUSCL-Hancock and
Godunov first-order upwind, with the HLL Riemann solver, and Lax-Friedrichs) calculated on 100 mesh cells at
time t=0.015, test case 4.2. Solid lines are used to identify results computed with the MUSCL-Hancock scheme
together with the SUPERBEE limiter on 4000 mesh cells. The top left and right panels show the gas volume
concentration and mixture density (kg m−3), respectively. While in the bottom left and right panels show the

solid temperature (K) and velocity (m s−1), respectively. The major difference between the three methods is
the resolution of the contact wave.
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Figure 6: Numerical (symbols) and reference solutions (solid lines) of the rarefaction waves propagation within
gas-solid mixture, test case 4.2. Comparison for the UCS and MUSCL-Hancock techniques at time t= 0.015
for a 100 cell mesh. The UCS approach has been carried out with CFL = 0.485. From left to right, the top
panel shows the gas volume concentration and mixture density (kg m−3), respectively, whereas in the bottom

left and right panels show the solid temperature (K) and velocity (m s−1), respectively.

representation of the contact discontinuity. On the other hand, clear advantages in the
use of TVD MUSCL-Hancock scheme are evident in the resolution of the head and the tail
of the rarefaction waves. Further, it is observed that the TVD MUSCL-Hancock scheme
results are completely oscillation-free with the proposed mathematical model.

Profiles of the same flow variables are plotted at time t= 0.015 in Fig. 6 for the sake
of comparisons. Fig. 6 illustrates a comparison of the reference solution (solid lines) and
the computed, numerical, resolutions (symbols) using TVD MUSCL-Hancock scheme of
section 3.3 and the UCS of [35] with a mesh of 100 cells. Clearly, the numerical solutions
compare very well with the reference solution. Also, the numerical results provided by
the UCS around the non-trivial contact discontinuities exhibits some of the spurious oscil-
lations. As an approximation, however, the non-trivial contact discontinuities resolutions
follow closely the reference solutions.

To get more insight in the model equations, a solution to the full system is pre-
sented in Fig. 7. The computations are carried out with equal gas volume concentra-
tion, αL = 0.5 = αR. The solution, therefore, is composed of two symmetric rarefaction
waves separated by a trivial contact discontinuity. Fig. 7 shows the solutions for the
mixture pressure, mixture density, solid temperature and the velocity at time t= 0.015.
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Figure 7: Numerical solutions (symbols) for the model system at time t= 0.015 on 100 mesh cells with a gas
volume concentration equal to 0.5 on the left and right given initial conditions of the Riemann problem. The
solid black lines indicate the reference solution. Results shown for the mixture pressure (Pa, top left) and the

mixture density (kg m−3, top right), solid temperature (K, bottom left) and velocity (m s−1, bottom right).
The configuration is similar to that of Fig. 5, but the middle wave is a trivial contact discontinuity.

The symbol curves represent the source terms appearing in (2.8)-(2.10) whereas the solid
line represent the reference solution of the model equations with no source terms. With
the source terms involved in the gas volume concentration, mass gas concentration and
gas entropy concentration, phase interaction is predicted to take place immediately and
flow variables decreases as it passes through the wave structure. In other words, when
the parameters τ(p), τ(c) and τ(χ) eventually becomes high enough, that is 100, the left
and right propagating waves and the trivial contact discontinuities have a continuous
structure all over the domain as displayed by the symbols, see Fig. 7. Furthermore, one
can observe that there are discrepancies or particular behavior when solving the com-
plete model equations in comparison to the reference solution. In particular, the solid
temperature and the mixture density indicate visible discrepancy from the reference so-
lution results. It is interesting to point out that when the CFL number is reduced to 0.1
the source terms inclusion shows such discrepancies, for which the authors observed the
same behavior in [46]. In the current gas-solid two-phase mixture computations the dif-
ferences within the source terms in the current model equations continues to deteriorate
the accuracy of the current simulations. The source terms for the current model equations
are an interesting problem which needs to be researched further in the future.
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4.3 Gas-solid mixture collision

This test case is an extension of a collision test case in [46] for two-phase gas-solid mix-
ture. The initial conditions are give in Table 2. These initial conditions produce two
strong fast shock waves propagating symmetrically in opposite direction separated by a
trivial contact discontinuity as shown in Fig. 8 at time t= 0.004. In Fig. 8 results (sym-
bols) for some flow profiles from three numerical methods, the MUSCL-Hancock, the
first-order Godunov upwind and the Lax-Friedrichs, at time t=0.004 are displayed. All
the solutions are compared with a reference solution (solid lines) computed using the
TVD MUSCL-Hancock scheme with the HLL Riemann solver on a very fine mesh of
4000 cells. The plots in Fig. 8 show that the three methods provide a similar resolution
of the wave structure as the reference solution. Fig. 8 also indicates that the three meth-
ods behave similar near the shock waves, but differ in their ability to resolve the contact
discontinuity. For MUSCL-Hancock scheme, the solutions at the coarsest resolution are
essentially oscillation-free for all the state profiles. Further, it can be observed that the
MUSCL-Hancock scheme captures sharper waves than the first-order Godunov upwind
scheme.
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Figure 8: Results obtained for mixture density (kg m−3) and velocity (m s−1), mixture pressure (Pa) and mixture
temperature (K) for gas-solid mixture collision (test case 4.3) using the TVD MUSCL-Hancock and Godunov
first-order upwind, with the HLL Riemann solver, and Lax-Friedrichs methods. Computations (symbols) are
carried out at time t= 0.004 on 100 mesh cells. The reference solutions (solid lines) have been obtained by
means of the TVD MUSCL-Hancock scheme with the HLL Riemann solver using 4000 mesh cells.
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Figure 9: Comparison for the gas-solid mixture collision (test case 4.3) for the MUSCL-Hancock scheme with
UCS approach for 100 mesh cells. The CFL of 0.485 has been used for the UCS approach. Numerical and
reference solutions are given for the profiles of mixture density (kg m−3), velocity (m s−1), mixture pressure
(Pa) and mixture temperature (K) at time t=0.004. An excellent agreement is observed throughout the profiles.

For this test case also, we display in Fig. 9 numerical results (symbols) using the UCS
approach [35]. In Fig. 9 we illustrate a comparison between the TVD MUSCL-Hancock
scheme and the UCS approach on a 100 mesh cells. From the comparisons, we find that
both methods reproduce the same wave structure without any spurious oscillations at
discontinuities throughout the computations. Once more, excellent agreement between
the numerical resolutions and the reference solutions in the two-phase gas-solid mixture
collision is clearly observed.

4.4 Propagation of a volume wave within a gas-solid mixture

This test case was presented in [46] for two-phase gas-solid mixture. The solution for the
mixture consists of a left rarefaction wave and right shock wave separated by a contact
discontinuity as displayed in Fig. 10. Fig. 10 shows the numerical results for some state
profiles, namely the mixture density, velocity, mixture pressure and gas volume concen-
tration at time t=0.01. These results (symbols) corresponds to three different numerical
methods, namely the MUSCL-Hancock scheme, the Godunov first-order upwind scheme
and the Lax-Friedrichs scheme at time t=0.01 on 100 mesh cells are shown and compared
with the reference solution (solid lines). The reference solutions in Fig. 10 are provided by
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Figure 10: Comparison of numerical results (symbols) for test case 4.4 at time t= 0.01 from three numerical
methods (MUSCL-Hancock and Godunov first-order upwind, with the HLL Riemann solver, and Lax-Friedrichs).
Solid lines represent the reference solutions from the MUSCL-Hancock scheme with SUPERBEE limiter using
the HLL Riemann solver on 4000 mesh cells. The top left and right panels show the mixture density (kg m−3),

velocity (m s−1), respectively. While in the bottom left and right panels show the mixture pressure (Pa) and
gas volume concentration, respectively.

the MUSCL-Hancock scheme together with the HLL Riemann solver using the SUPER-
BEE limiter on a mesh of 4000 cells. As seen from these plots, the TVD MUSCL-Hancock
scheme solutions are very satisfactory and achieve sharper representation of the contact
discontinuity when compared to the first-order Godunov and the Lax-Friedrichs meth-
ods. Also, the behaviour of the numerical solutions near shocks, contacts and rarefactions
is the same for the three methods, but they differ in their ability to resolve the contact
discontinuity. As it appears also, the comparison shows that the TVD MUSCL-Hancock
scheme performs perfectly in view of the large variation in the values of the left and
right states in gas volume concentration. In addition, Fig. 10 indicates that the MUSCL-
Hancock scheme provides the best agreement with the reference solution whereas the
first-order methods preserve diffusive character.

In Fig. 11 the same flow variables as in Fig. 10 are obtained by two different numerical
methods (the MUSCL-Hancock scheme and the UCS approach) are compared with the
reference solution. It can be seen that, the results (symbols) are in excellent agreement
with the reference solutions (solid lines). However, it is found that the results provided
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Figure 11: Numerical results in the volume wave propagation within two-phase gas-solid mixture at time t=0.01
(symbols). The computations have been obtained and compared by two different methods; that is, the MUSCL-
Hancock scheme and the UCS approach on 100 mesh cells. The UCS results are obtained with CFL of 0.485.
The solid lines show the reference solutions when the HLL Riemann solver is used in the TVD MUSCL-Hancock
scheme. Results are corresponds to the mixture density (kg m−3, top left), velocity (m s−1, top right), the
mixture pressure (Pa, bottom left) and gas volume concentration (bottom right).

by the TVD MUSCL-Hancock scheme are very satisfactory, oscillation-free and agree well
with those predicted by the UCS approach. This validates the claim of oscillation-free of
the MUSCL-Hancock scheme using the HLL Riemann solver. Based on the results and
observations presented in Fig. 10 and Fig. 11, it can be noted that the mixture density pro-
file change discontinuously across the middle wave. The reason for this is due primarily
to the different values in the gas volume concentration on the left and right given initial
conditions, see Table 2. Finally, to further illustrate the potential and capabilities of the
numerical methods in the present paper, Fig. 12 shows numerical resolution for volume
wave propagation within gas-solid mixture test case. We chose to display results for the
mixture density and velocity using the two-dimensional version of the UCS numerical
approach. We observe that both the rarefaction and shock waves are well simulated by
the present numerical technique and free from any numerical problems. We also note that
the rarefaction and shock waves are well captured using the UCS approach. In addition
to that, the resolution profiles follow exactly the shape of the one-dimensional problem
case. Overall, the results demonstrate support for this technique as a path towards reso-
lution two-phase gas-solid mixture.
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Figure 12: Volume wave propagation test case 4.4 for the two-dimensional two-phase gas-solid mixture. 3-D
view of the mixture density (kg m−3) and velocity (m s−1) at time t=0.01 obtained with the UCS approach.
The mesh contains 100×100 cells together with CFL=0.485.

5 Concluding remarks

This paper extends the range of previous work in the application of well-developed nu-
merical methods to a well-defined mathematical model of compressible two-phase flow.
As pointed out in [46], the mathematical and numerical study provides considerable sup-
port to the idea that fully hyperbolic and fully conservative character along with highly
accurate and oscillation-free solutions on gas-solid mixtures are driven by thermodynam-
ically compatible systems theory. This paper takes advantage of these facts and presents
an innovative computations tool for the solution of thermodynamically compatible two-
phase flow equations. As demonstrated in this paper, the proposed numerical approach
using the HLL Riemann solver based upwind Godunov methods turns out to be sur-
prisingly attractive. In this approach, a straightforward and natural extension of the
well-known HLL Riemann solver is applied to solve the local Riemann problem for two-
phase gas-solid mixture. The HLL Riemann solver is simple, efficient and enables the use
of upwind methods of single-phase flow to solve the model equations. Furthermore, we
have extended the Godunov first-order upwind scheme to two-phase gas-solid mixture.
The TVD MUSCL-Hancock scheme has also been extended to the model equations.

To verify the accuracy of the proposed numerical methods, a series of test problems
have been carried out. The obtained results show that the TVD MUSCL-Hancock scheme
convergence has been achieved by the present approximate Riemann solver. They also
show excellent agreement between the reference and numerical solutions, and they do
match well with those provided solutions by other numerical methods. The results also
demonstrate the ability of upwind methods to produce highly accurate resolution in
smooth and discontinuous regions.

The recent development in two-phase flow phenomena requires new approaches for
their mathematical and numerical modelling. In this paper we have shown that the use
of the complete governing equations, rather than simplified as in most currently used
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models, is emphasized for advanced modelling quality, which in essence does not cost
much in computing efficiently and complexity. In order to elucidate various fundamen-
tal issues, the present paper is focused then on the most elementary approximate Rie-
mann solver, involving the Mie-Grüneisen EOS. The next step, therefore, is dedicated to
the development of exact and approximate Riemann solvers, such as the HLLC Riemann
solver, for the two-phase gas-solid mixture in the framework of thermodynamically com-
patible systems theory with general equations of state. Future work in this step will rely
and build upon the foundation in the present paper to involve one and multiple space
dimensions two-phase gas-solid mixture using the Riemann solvers and Riemann-free
solvers methods. Additional study in this direction also should concentrate on the in-
terphase processes between the gas and solid phases. In another standard step forward
is the inclusion of the relative velocity equation between the two phases. These issues
seems potentially fruitful and currently pursuing by the present authors, and results will
be presented elsewhere in the near future.
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