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STRONG BACKWARD ERROR ANALYSIS FOR

EULER-MARUYAMA METHOD

JIAN DENG

Abstract. Backward error analysis is an important tool to study long time behavior of numerical
methods. The main idea of it is to use perturbed equations, namely modified equations, to repre-
sent the numerical solutions. Since stochastic backward error analysis has not been well developed
so far. This paper investigates the stochastic modified equation and backward error analysis for
Euler-Maruyama method with respect to strong convergence are built up. Like deterministic case,
stochastic modified equations, expressed as formal series, do not converge in general. But there
exists the optimal truncation of the series such that the one step error of the modified equations
is sub-exponentially small with respect to time step. Moreover, the result of stochastic backward
error analysis is used to study the error growth of the Euler-Maruyama method on Kubo oscillator.

Key words. backward error analysis, modified equations, strong convergence, stochastic numer-
ical integrator.

1. Introduction

Backward error analysis is a powerful numerical analysis technique, when the
qualitative behavior of numerical methods is of interest, and when statements over
long time intervals are needed [4],[8],[15]. However stochastic backward error anal-
ysis is still developing, and lots of challenging problems need to be solved. One
of the fundamental problems is the construction of stochastic modified equations
(ME) with respect to strong convergence, which is used in backward error analysis
to approximate numerical solutions. But, to the best of author’s knowledge, there
is no literature available for any result on strong backward error analysis. We are
concerned in this paper with the construction of strong ME for the Euler-Maruyama
method (EM).

For an ordinary differential equation,

(1) Ẋt = f(Xt),

suppose the first order numerical method Ψh(X) with a small time step h provides
an approximation to the exact solution. and it is represented in a power series of
time step:

Ψh(X) = X + d1(X)h+ d2(X)h2 + · · · .
Let ME be in form of power series of h,

˙̃
Xt = f̃(X̃t) = f(X̃t) + f̃1(X̃t)h+ f̃2(X̃t)h

2 + · · · ,

such that the the flow of ME Φ̃h matches with the numerical integrator Ψh up to
arbitrary high order of h.

It is unfortunate that the power series f̃(X̃t) does not converge. But, under
some appropriate assumption, there exists the optimal truncation such that the
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difference of the numerical method and the flow of ME is exponentially small with
respect to time step, that is

||Ψh − Φ̃h|| ≤ Ce−h0/h,

for some constant C and h0. The important result allows numerical methods to be
interpreted by ME. Lots of application on structure preserving method are reported,
see [8][9].

To extend the idea to stochastic setting, let us consider stochastic differential
equations (SDE) in the form of Stratonovich integral,

(2) dXt = f0(Xt)dt+
m∑

r=1

fr(Xt) ◦ dW r
t =

m∑

r=0

fr(Xt) ◦ dW r
t ,

where Xt ∈ R
n, fr : R

n → R
n, W r

t , r = 1, . . . ,m are independent standard Wiener
processes, and t is denoted as W 0

t for notational convenience. Then we say the
numerical scheme Ψh(X0) has strong order k if

√
E[||Xnh −Ψnh(X0)||2] ≤ Chk, 0 < nh ≤ T.

Sometimes a weaker error is sufficient to use. If the numerical scheme Ψh(X0)
satisfies that

||E[φ(Xnh)]− E[φ(Ψnh(X0))]|| ≤ Chk, 0 < nh ≤ T,

where φ(x) belongs to some smooth function spaces. Then we say the numerical
method has a weak order k.

Shardlow [16] made an attempt by considering the perturbed functions f̃r in
stochastic ME have the form

f̃r =

N∑

i=0

f̃r,ih
i.

When the weak error is considered, the construction can only be performed for EM
at N = 2 with additive noise. For multiplicative noise or higher order, there are
too many conditions to determinate the coefficients of ME. In [17] [1] [2], ME with
respect to a week convergence are constructed. Moreover, Debussche et al. [5] built
up the weak backward error analysis via modified partial differential equations on
torus for EM. Kopac [11] extended the approach to Langvin process on R

n.

In this paper, an alternative approach to construct a perturbed function f̃r is
proposed for EM,

f̃r =
∑

α

f̃r,αJα,t,

where Jα,t are multiple Stratonovich integrals. Moreover, we prove that there exists
the optimal truncation such that

√
E[||Φ̃h,N −Ψh||2] ≤ Ce−h0/(h

1
3 ).

By using this result, the error growth of EM on the Kubo oscillator is investigated.
We emphasize that the proposed modified equations works for SDE with mul-

tiplicative noise. The proof given in the paper is different with those provided for
ordinary differential equations [9]. We consider the implementation of EM on Kubo
oscillator and discuss the error growth of it by using the stochastic backward error
analysis result.

The paper is organized as follows. In the next section, we studied the product
and second moments of multiple Stratonovich integrals. Then, we introduce the
assumption that we need. Section 3 presents the construction of ME. Estimation of
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the coefficients of ME and the main theorem on optimal truncation are presented
in Section 4 and 5, respectively. In the last section, the result is applied to study
the long time error of EM.

2. Preliminaries

2.1. Properties of Multiple Stratonovich Integrals. Before constructing strong
ME, we study the multiple Stratonovich integrals as preparation. For a multi-index
α = (j1, . . . , jl), ji ∈ {0, 1, . . . ,m} for i = 1, . . . , l, the multiple Stratonovich itegral
is defined as follows,

(3) Jα,t =

∫ t

0

∫ sl

0

. . .

∫ s2

0

◦dwj1s1 · · · ◦ dw
jl−1
sl−1

◦ dwjlsl .

The length of the multi-index α is denoted as l(α). n(α) is the number of zeros
in the multi-index. The function p(α) = l(α) + n(α) is introduced. For example,
l((2, 0, 1, 0)) = 4, n((2, 0, 1, 0)) = 2 and p((2, 0, 1, 0)) = 6.

A multi-index of length zero v is included for completeness with Jv,s := 1 and
n(v) = 0.

For any multi-index α = (j1, j2, . . . , jl) with no duplicated elements (i.e., jm 6= jn
if m 6= n, m,n = 1, . . . , l), we define the set R(α) to be the empty set R(α) = Φ if
l = 0, 1 and R(α) = {(jm, jn)|m < n,m, n = 1, . . . , l} if l ≥ 2. R(α) defines a partial
order on the set formed with the numbers included in the multi-index α, defined by
i ≺ j if and only if (i, j) ∈ R(α). For example, R((2, 0, 1)) = {(2, 0), (2, 1), (0, 1)}.
We suppose that there are no duplicated elements in or between the multi-indices
α = (j1, j2, . . . , jl) and α

′ = (j′1, j
′
2, . . . , j

′
l′).

Lemma 2.1. [6] [3] If there are no duplicated elements in or between any of the

multi-index α1 = (j
(1)
1 , j

(1)
2 , . . . , j

(1)
l1

), . . . , αn = (j
(n)
1 , j

(n)
2 , . . . , j

(n)
ln

), then

(4) Jα1,t . . . Jαn,t =
∑

β∈Λα1,...,αn

Jβ,t

where

Λα1,...,αn
={β ∈ M|l(β) =

n∑

k=1

l(αk) and ∪nk=1 R(αk) ⊆ R(β)

and there are no duplicated elements in β},
(5)

andM = {(ĵ1, ĵ2, . . . , ĵl̂)|ĵi ∈ {j(1)1 , j
(1)
2 , . . . , j

(1)
l1
, . . . j

(n)
1 , j

(n)
2 , . . . , j

(n)
ln

}, i = 1, . . . , l̂,

l̂ = l1 + · · ·+ ln}.
To extend the lemma to multi-index with duplicated elements, we just need

to assign different subscripts to each duplicated element, for example, Λ(2,0),(0,1)

= Λ(2,01),(02,1) = {(2, 02, 1, 01), (02, 2, 1, 01), (01, 1, 2, 02), (02, 2, 01, 1), (2, 01, 02, 1),
(2, 02, 01, 1)}. So we will not distinguish the cases with or without duplicated
elements in the following of the paper.

For multi-indices ξ1 and ξ2, we define ξ1 × ξ2 := Λξ1,ξ2 . So α ∈ ξ1 × ξ2 means
that Jα,t can be generated by the production of Jξ1,t and Jξ2,t. Then, we have the
following properties,

Property 2.2. • 1. If ξ1 × ξ2 ∋ α, then l(ξ1) + l(ξ2) = l(α) and p(ξ1) +
p(ξ2) = p(α).

• 2. #Λξ1,ξ2 =
(l(ξ1)+l(ξ2)

l(ξ1)

)
≤

(p(ξ1)+p(ξ2)
p(ξ1)

)
.
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• 3. #{ξ1, ξ2|ξ1 × ξ2 ∋ α} =
(l(ξ1)+l(ξ2)

l(ξ1)

)
≤

(p(ξ1)+p(ξ2)
p(ξ1)

)
.

Proof: 1) follows from Lemma 2.1.
2) The problem is equivalent to calculate the number of multi-indices whose

length is l(ξ1) + l(ξ2), and keeping the orders of ξ1 and ξ2. That is equivalent to
choose l(ξ1) components from the whole components of ξ1 and ξ2. So #Λξ1,ξ2 =(l(ξ1)+l(ξ2)

l(ξ1)

)
. The inequality follows from that p(ξ) ≥ l(ξ).

3) The proof is similar with that in 2).
Lemma 2.1 induces a way to calculate the moments of multiple Stratonovich

integrals. But first of all, we introduce multiple Ito integrals. For a multi-index
α = (j1, . . . , jl), ji ∈ {0, 1, . . . ,m}, i = 1, . . . , l,

Iα,t[f(·, ·)] :=
∫ t

0

∫ sl

0

. . .

∫ s2

0

f(s1, ·)dwj1s1 . . . dwjl−1
sl−1

dwjlsl , Iα,t := Iα,t[1],

where f is any appropriate process. By the martingale property of Ito integration,
it is shown that

(6) E[Iα,t] =

{
0, if l(α) 6= n(α)
tl(α)

l(α)! , if l(α) = n(α).

The idea to calculate the moments of multiple stratonovich integral is to express
the power of multiple Stratonovich integrals by a summation of other multiple
Stratonovich integrals first; then transforming these Stratonovich integrals into the
form of Ito by the recurrence relationship (see Chapter 5 in [10])

Jα,t = Iα,t, l(α) = 1

Jα,t = I(jl),t [Jα−,t] +
1

2
χ{jl=jl−1 6=0}I(0),t

[
J(α−)−,t

]
, l(α) ≥ 2,

(7)

where χA denotes the indicator function of the set A , and α− defines the multi-
index by deleting the last component of α. In the last step, the expectations of
multiple Ito integrals is obtained by (6).

We take E[J2
(1,0,1),t] as example to demonstrate the process. First, by Lemma

2.1, we have

J2
(1,0,1),t = 8J(1,1,0,0,1,1),t + 4J(1,1,0,1,0,1),t + 4J(1,0,1,1,0,1),t + 4J(1,0,1,0,1,1),t.

Transforming the multiple Stratonovich integral to Ito integrals,

J(1,1,0,0,1,1),t = I(1,1,0,0,1,1),t +
1

2
(I(1,1,0,0,0),t + I(0,0,0,1,1),t) +

1

2
I(0,0,0,0),t,

J(1,1,0,1,0,1),t = I(1,1,0,1,0,1),t +
1

2
I(0,0,1,0,1),t,

J(1,0,1,1,0,1),t = I(1,0,1,1,0,1),t +
1

2
I(1,0,0,0,1),t,

J(1,0,1,0,1,1),t = I(1,0,1,0,1,1),t +
1

2
I(1,0,1,0,0),t.

By (6),

E[J2
(1,0,1),t] = 4E[I(0,0,0,0),t] =

t4

3!
.

The previous example shows that most of the expectations of the multiple Ito in-
tegrals vanishes. When calculating the moments of multiple Stratonovich integrals,
we only consider the multiple Stratonovich integrals that will be transforming to the
Ito integrals, I(0,...,0). Then we have the following lemma on the second moments
of multiple Stratonovich integrals.
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Lemma 2.3.

2n(α)
hp(α)

p(α)!
≤ E[J2

α,h] ≤
(
2l(α)

l(α)

)
2n(α)−l(α)

hp(α)

p(α)!
,

Proof: Let

J2
α,h =

∑

β

Jβ,t.

Jβ,t can be transformed to the Ito integrals I(0,...,0), if and only if β ∈ L, where

L = {β = (j1, . . . , jl) ∈ α× α|β+ = v or β+ = (ji1 , . . . , ji2q ), q ∈ N,

i2k = i2k−1 + 1, j2k = j2k−1 for k = 1, . . . , q},
and β+ denotes the multi-index obtained by dropping all zero components of β.

So

(8) E[J2
α,h] = s(α)2n(α)−l(α)

hp(α)

p(α)!
,

where s(α) = #L.
Then the calculation of the second moment of Stratonovich integrals is simplified

to estimate s(α).
First, s(α) is not greater than #Λα,α. So,

E[J2
α,h] ≤

(
2l(α)

l(α)

)
2n(α)−l(α)

hp(α)

p(α)!
.

One the other hand, let α = (j1, . . . , jl), and provide a superscript for another α,
such that α′ = (j′1, . . . , j

′
l). It is noticed that there is no difference with α and α′,

but the superscript. So the multi-index β1 = (j1, j
′
1, j2, j

′
2, . . . , jl, j

′
l) belongs to L.

The multi-index β2 = (j′1, j1, j2, j
′
2, . . . , jl, j

′
l), obtained by interchanging the first

two components of β1 , is also in L. Considering all the switching between j1 and
j′1, j2 and j′2, . . . , jl and j

′
l , we know that s(α) ≥ 2l(α), and

E[J2
α,h] ≥ 2n(α)

hp(α)

p(α)!

Remark 2.4. When l(α) and n(α) are known, there exists multiple Stratonovich
integrals such that the equalities in Lemma 2.3 hold. So the estimation of the second
moment of multiple Stratonovich integrals is sharp.

Corollary 2.5.

E[J2
α,h] ≤

(2h)p(α)

p(α)!
.

Proof: It follows from the fact
(2l(α)
l(α)

)
≤ 4l(α)

2.2. Assumption. Throughout the paper, we use C to denote a generic positive
constant, not necessarily the same at different occurrences.

Let us assume that fr for r = 1, . . . ,m in (2) belong to C∞. In addition, we
suppose that

• [H1] fr for r = 1, . . . ,m satisfies one of the following conditions.

sup
|k|=j

0≤r≤m

| ∂|k|fr

∂xk11 . . . ∂xknn
| ≤ Kj for r = 0, . . . ,m, and j = 0, 1, . . . ,
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or

sup
|k|=j

0≤r≤m

| ∂|k|fr

∂xk11 . . . ∂xknn
| ≤ Kj(1 + ||X ||)1−j for r = 0, . . . ,m, and j = 0, 1, . . . .

• [H2] There exist a positive constant K, such that

Kj ≤ CKj for j = 0, 1, . . . .

The Hypothesis [H1] is usually needed for the numerical analysis for long time
behavior [13],[5] and the convergence of high order numerical schemes [14], [6], [7].
The last hypothesis [H2] is similar with the result of Cauchy estimate, which is used
in the backward error analysis for deterministic problems.

For multi-indices α = (α1, . . . , αl), β = (β1, . . . , βl) and functions fr in SDE (2),
where αi ∈ N ∪ {0} and βi ∈ N, we define the function classes

Bi,j,k := {
∑

α,β

aα,β(g
(α1)
1 )β1 . . . (g

(αl)
l )βl | gn ∈ {fr}, aα,β ∈ R, l(α) = l(β),

l∑

n=1

βn(1− αn) = k,
l∑

n=1

αnβn ≤ i, and
l∑

n=1

βn ≤ j},

and
Bi,j := Bi,j,1,

where (g
(α1)
1 )β1 means the β1-th power of the α1-th derivatives of g1. For example,

f1, . . . , fm ∈ B0,1,1 and f0 +
1

2
frf

′
r ∈ B1,2,1

If z ∈ Bi,j,k, the representation of z is not unique, like z = f
(1)
0 = 2f

(1)
0 − f

(1)
0 .

But we only consider the representation without duplication, such that
∑
α,β |aα,β|

achieves its minimum, and is denoted as K(z). It can be shown that the functions
in Bi,j,k have the following properties:

Property 2.6. • If z ∈ Bi,j,k, then ||z|| ≤ CK(z)Ki, or ||z|| ≤ CK(z)Ki(1+
||X ||)k

• If z1, z2 ∈ Bi,j,k, then z1 + z2 ∈ Bi,j,k, and K(z1 + z2) ≤ K(z1) + K(z2).

• If z1 ∈ Bi1,j1,k1 , z2 ∈ Bi2,j2,k2 , then z1z2 ∈ Bi1+i2,j1+j2,k1+k2 and K(z1z2) ≤
K(z1)K(z2).

• If z ∈ Bi,j,k, then
∂z
∂xk

∈ Bi+1,j,k−1 and K( ∂z∂xk
) ≤ jK(z) for k = 1, . . . , n.

Proof: The proof of the properties is straightforward, and not shown here.

2.3. Stratonvich Taylor expansion. The Stratonvich Taylor expansion for the
SDE (2) can be expressed in form of

(9) Xt = X0 +
∑

l(α)≥0

m∑

r=0

Lαfr|t=0Jα∗(r),t,

where ∗ is the concatenation operation, like (1, 0) ∗ (2) = (1, 0, 2).
For α = (j1, j2, . . . , jl), Lα is defined as

(10) Lα = L(j1)L(j2) . . .L(jl),
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with

(11) L(j) = fj · ▽, for j = 0, . . . ,m,

where · is the dot product and ▽ is the gradient operator. We define Lv as the
identity operator.

3. Construction of ME

Let the differential equation (1) or SDE (2) define the flow Φt : X0 → Xt, which
is approximated by numerical method Ψh .

Backward error analysis is to search for ME, such that the flow of the modified

equation Φ̃h is closed to Ψh. Then ME, instead of Ψh, are used to the study the
error growth and other numerical analysis topics.

3.1. Deterministic ME. Let ME for the deterministic differential equations (1)
have the form of a power series

˙̃
Xt = f̃(X̃t, h) = f̃0(X̃t) + f̃1(X̃t)h+ f̃2(X̃t)h

2 + · · · .

Then we have,

˙̃
X0 = f̃(X̃0, h) = f̃(X0)0 + f̃1(X0)h+ f̃2(X0)h

2 + · · · ,

¨̃
X0 =

∂f̃(X̃t, h)

∂X̃t

˙̃
X0 = (f̃ ′

0(X0) + f̃ ′
1(X0)h+ · · · )(f̃0(X0) + f̃1(X0)h+ · · · ).

So,

X̃h = X̃0 +
˙̃
Xh +

¨̃
X0

h2

2
+ · · ·

= x0 + (f̃(X0) + f̃1(X0)h+ f̃2(X0)h
2 + · · · )h

+
h2

2
(f̃ ′(X0) + f̃ ′

1(X0)h+ · · · )(f̃(X0) + f̃1(X0)h+ · · · ) + · · · .

(12)

Assume the numerical method Ψh is given as a power series

(13) Ψh(X0) = x0 + hf(X0) + h2d2(X0) + · · · .

To obtain X̃kh = Ψkh(X0) for all k, we must have X̃h = Ψh(X0). Comparing the

coefficients of powers of h in (12) and (13) yields the recurrence relation of f̃i

f̃0 = f,

f̃1 = d2 −
1

2!
f ′f,

f̃2 = d3 −
1

3!
(2f ′′f + f ′f ′f)− 1

2!
(f ′f̃2 + f̃ ′

2f)

· · ·

Therefore, ME are constructed and uniquely determined by the numerical method
Ψh.
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3.2. Stochastic ME. In this section, the construction of stochastic ME with re-
spect to strong convergence is studied. The recurrence relation of the coefficients
in ME is provided. It shows that the existence and uniqueness of strong ME.

First, we define the stochastic processes Yα,t for a given time step h: if l(α) > 0

Yα,t := Jα,t − Jα,nh, when nh < t ≤ (n+ 1)h, n ∈ N
+
⋃

{0},
and

Yv,t := 1.

It is clear that Yα,t = Jα,t for 0 < t ≤ h.

We suppose that f̃r in ME has the form

(14) f̃r =
∑

α

f̃r,αYα,t,

where f̃r : R
n → R

n and f̃r,α : Rn → R
n.

The whole stochastic ME are expressed as

(15) X̃t = X̃0 +
m∑

r=0

∫ t

0

∑

α

f̃r,α(X̃s)Yα,s ◦ dW r
s .

Remark 3.1. It should be noticed that Yα,s, instead of Yα,h, is used to guarantee
ME are non-anticipative.

To implement the Stratonvich Taylor expansion on ME (15), we consider Yα,s
are also variable in ME. To demonstrate the idea, we consider an example with
m = 1 and d = 1. When 0 < t ≤ h, (15) is written as

X̃t = X̃0 +

∫ t

0

∑

α

f̃0,α(X̃s)Yα,s ◦ ds+
∫ t

0

∑

α

f̃1,α(X̃s)Yα,s ◦ dWs,

Y(0),t =

∫ t

0

◦ds,

Y(1),t =

∫ t

0

◦dWs,

...

Yα∗(0),t =

∫ t

0

Yα,s ◦ ds,

Yα∗(1),t =

∫ t

0

Yα,s ◦ dWs,

...

(16)

Notice that f̃r =
∑
α f̃r,α(X̃s)Yα,s are functions depend on the variables (X̃t, Y(0),t, Y(1),t,

. . .). So,

L(0)f̃r = 1 · f̃r,(0) + 0 · f̃r,(1) + · · ·+ Yα · f̃r,α∗(0) + · · ·+ f0f̃
′
r,

L(1)f̃r = 0 · f̃r,(0) + 1 · f̃r,(1) + · · ·+ Yα · f̃r,α∗(1) + · · ·+ f1f̃
′
r.

So, for ME (15) with d ≥ 1 and m ≥ 1,

L(j)f̃r =
∑

α

f̃r,α∗(j)Yα,t +
∑

α

fj · ▽f̃r,αYα,t

=
∑

α

f̃r,α∗(j)Jα,t +
∑

α

fj · ▽f̃r,αJα,t.
(17)
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As f̃r is the series of multiple Stratonovich integrals, L(j)f̃r is expressed as a

series of multiple Stratonovich integrals. By induction, for multi-index γ, Lγ f̃r is

also a series of multiple Stratonovich integrals, and Lγ f̃r can be denoted as follows,

(18) Lγ f̃r =
∑

α

ψγ∗(r)α Jα,t, 0 < t ≤ h,

where ψ
γ∗(r)
α are functions depend on X̃t. When γ = v, ψ

(r)
α = f̃r,α by the definition

of f̃ .
Similar with (17), for multi-index γ which satisfies l(γ) ≥ 1, and j = 0, . . . ,m,

we obtain
∑

α

ψ(j)∗γ
α Jα,t =

∑

α

L(j)ψγαJα,t =
∑

α

ψγα∗(j)Jα,t +
∑

α

f̃j · ▽ψγξ1Jα,t

=
∑

α

ψγα∗(j)Jα,t +
∑

ξ1,ξ2

ψ
(j)
ξ1

· ▽ψγξ2Jξ1,tJξ2,t.
(19)

By comparing coefficients of Jα,t and Lemma 2.1, we have

(20) ψγα∗(j) = ψ(j)∗γ
α −

∑

ξ1×ξ2∋α

ψ
(j)
ξ1

· ▽ψγξ2 , for l(γ) ≥ 1, and l(α) ≥ 0.

Applying the Stratonovich Taylor expansion (9) on ME (15), we get

Φ̃h(X0) = X0 +
∑

l(α)≥0

m∑

r=0

Lαf̃r|t=0Jα∗(r),t

= X0 +
∑

l(α)≥0

m∑

r=0

(
∑

β

ψ
α∗(r)
β (X̃t)Jβ,t)|t=0Jα∗(r),h

= X0 +
∑

l(α)≥0

m∑

r=0

ψα∗(r)v (X0)Jα∗(r),h.

(21)

Assume the numerical method Ψh is expressed by the summation of multiple
Stratonovich integrals,

ΨhX0 = X0 +
∑

l(α)>0

dα(X0)Jα,h.

For EM, we have

d(0) = f0 +
1

2

m∑

r=1

fr · ▽fr,

d(r) = fr for r = 1, . . . ,m,

dγ = 0 for l(γ) ≥ 2.

(22)

To obtain Ψh = Φ̃h, the coefficients of Jα,t in (21) should equal to those in the

numerical method (22), i.e., dγ∗(r) = ψ
γ∗(r)
v . Therefore f̃r,α = ψ

(r)
α and ME are

uniquely defined by the recurrence relation (20).
To demonstrate the idea of construction ME, we take the linear SDE dXt =

AXtdt + BXt ◦ dWt as example. EM is applied on the linear SDE. So it is clear



10 J. DENG

that

d(0)(X0) = ψ(0)
v = A+

1

2
B2X0,

d(r)(X0) = ψ(1)
v = BX0 r = 1, . . . ,m,

dγ(X0) = ψγv = 0 for l(γ) ≥ 2.

From the recurrence relation (20), we have

ψ
(0)
(0)(X0) = −(A+

1

2
B2)2X0, ψ

(1)
(1)(X0) = −B2X0,

ψ
(1)
(0)(X0) = −(A+

1

2
B2)BX0, ψ

(0)
(1)(X0) = −B(A+

1

2
B2)X0.

Since ψ
(1,1)
v = 0 and ψ

(1,1,1)
v = 0, (20) yields that

ψ
(1,1)
(1) (X0) = 0, ψ

(1)
(1,1)(X0) = 2B3X0.

Similarly,

ψ
(1,1,1)
(1) (X0) = 0, ψ

(1,1)
(1,1)(X0) = 0, ψ

(1)
(1,1,1)(X0) = −6B4X0.

As a special case consider A = −aJ and B = −σJ where J =

[
0 1
−1 0

]
, a and

σ is constant. The SDE

(23) dXt = −aJXtdt− σJXtdW
1
t

is a linear stochastic Hamiltonian system, called Kubo oscillator.

Let f̃r in ME (15) be truncated as

f̃r,N =
∑

p(α∗(r))≤N

f̃r,αYα,s =
∑

p(α∗(r))≤N

ψ(r)
α Yα,s,

where N is a positive integer.
The ME with N = 2 is

X̃t = X0 +

∫ t

0

−(aJ +
σ2

2
I)X̃s − [(

σ4

4
− a2)I + aσ2J ]X̃sY(0),s

− [
σ3

2
J − aσI]X̃sY(1),sds+

∫ t

0

−σJX̃s + σ2X̃sY(1),s + 2σ3JX̃sY(1,1),s

− 6σ4X̃sY(1,1,1),s − [
σ3

2
J − aσI]X̃sY(0),s ◦ dW 1

s .

(24)

The comparison of ME (24), original equation (23) and EM is presented in Figure
1. It can been seen that an excellent agreement of the numerical solution with the
exact solution of ME (24).

4. Estimation of the Coefficients of ME

Recalling that the EM is expressed as

(25) ΨhX0 = X0 +
∑

l(α)>0

dα(X0)Jα,h,
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Figure 1. Comparison of various equations and Euler method
with a = 2 and σ = 0.5: (a) Sample trajectories; (b) Mean-square
error.

where

ψ(0)
v = d(0) = f0(Xk) +

1

2

m∑

r=1

fr · ▽fr,

ψ(r)
v = d(r) = fr for r = 1, . . . ,m,

ψγv = dγ = 0 for l(γ) ≥ 2.

(26)

So, we have the following Lemma:

Lemma 4.1. For EM (25), if the Hypothesis [H1] and [H2] are satisfied, then ψγα
in (18) belongs to Bp(α)+p(γ)−1,p(α)+p(γ), and

(27) K(ψγα∗(j)) ≤ K(ψ(j)∗γ
α ) + n

∑

ξ1×ξ2∋α

[p(γ) + p(ξ2)]K(ψ
(j)
ξ1

)K(ψγξ2 ),

Proof: First ψ
(0)
v = d(0) ∈ B1,2, ψ

(r)
v = d(r) ∈ B0,1. Then the lemma follows by

applying an induction on the recurrence relation (20) with Properties 2.2 and 2.6.

Theorem 4.2. For EM (25) and r = 0, . . . ,m, if the Hypothesis [H1] and [H2] are
satisfied, then

K(ψ(r)
α ) ≤ (

m

2
+ 1)l(α)![n(m+ 2)l(α)]l(α).

Proof: Fixing an integer N ≥ 1, and considering the ψγα satisfying l(γ)+ l(α) ≤
N . For j = 0, . . . ,m, Lemma 4.1 implies

(28) K(ψγα∗(j)) ≤ K(ψ(j)∗γ
α ) + 2nN

∑

ξ1×ξ2=α

K(ψ
(j)
ξ1

)K(ψγξ2 ),

Applying induction on ψγα, it can be shown that

(29) K(ψγα∗(j)) ≤ (2nN)−1ul(γ),l(α)+1, l(γ) + l(α) ≤ N and l(γ) ≥ 1,

where ul(γ),l(α) depends on l(γ) and l(α), and is given by

ul(γ),l(α)+1 = ul(γ)+1,l(α) +
∑

ξ1×ξ2=α

u1,l(ξ1)ul(γ),l(ξ2).
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Let l(ξ1) = i. Property 2.2 implies

(30) ul(γ),l(α)+1 = ul(γ)+1,l(α) +

l(α)∑

i=0

Cil(α)u1,iul(γ),l(α)−i,

Applying the exponential generating function

b(x, y) =
∑

k1,k2≥0

1

k1!k2!
uk1+1,k2x

k1yk2

to (30), we have the first order partial differential equation:

∂b

∂y
=
∂b

∂x
+ b(0, y)b(x, y), on [0,+∞)× [0,+∞),

b(x, 0) = nN(2 +m).
(31)

The boundary condition is given by K(ψ
(0)
v ) = 1 + m

2 , K(ψ
(r)
v ) = 1 for r = 1, . . . ,m

and K(ψγv ) = 0 for l(γ) > 1,
In the following of the proof, we are going to solve the partial differential equa-

tions (31).
First consider the partial differential equations below:

∂b̄

∂y
=
∂b̄

∂x
+ g(y)b̄(x, y) on [0,+∞)× [0,+∞),

b̄(x, 0) = nN(2 +m).

(32)

where g(y) is a function on [0,+∞).
Then, we have the solution of (32),

(33) b̄(x, y) = nN(2 +m)e
∫

y

0
g(s)ds.

Let

(34) b̄(0, y) = nN(2 +m)e
∫

y

0
g(s)ds = g(y).

It implies the ordinary differential equation

∂g

∂y
= g2, g(0) = nN(2 +m),

which has the solution

(35) g(y) =
nN(2 +m)

1− nN(2 +m)y
.

Due to (32) and (34), we solve the equations (31) by substituting (35) into (33).
So

u1,N =
∂Nb

∂yN

∣∣∣∣∣
0,0

=
∂Ng

∂yN

∣∣∣∣∣
0

= N ![nN(2 +m)]N+1.

For l(α) = N − 1 and l(γ) = 1, (29) yields that

K(ψγα∗(j)) ≤ (2nN)−1u1,l(α)+1 ≤ (2nN)−1N ![nN(2 +m)]N+1

≤ (
m

2
+ 1)N !(nN(m+ 2))N .
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5. Errors of ME

In general, ME do not converge, but we can find an optimized truncation for a
sufficient small time step. Let ME match with EM up to mean square order N ,

i.e., ψ
γ∗(r)
v = dγ∗(r) for p(γ ∗ (r)) ≤ N and r = 0, . . . ,m. Then the coefficients f̃r,α

of ME are uniquely defined by the recurrence relation (20) for p(α ∗ (r)) ≤ N . So,
we consider ME truncated by the form of
(36)

X̃t,N = X0+

∫ t

0

m∑

r=0

f̃r,N(X̃s,N ) ◦ dW r
s = X0+

∫ t

0

∑

p(α∗(r))≤N

ψ(r)
α (X̃s,N )Yα,s ◦ dW r

s ,

which means that ψ
(r)
α = 0, when p(α ∗ (r)) > N .

5.1. Uniqueness and Existence of Stochastic ME. By property 2.6 and the-

orem 4.2, we show that f̃r is linearly growth,

E||f̃r,N (X)||2 = E||
∑

p(α∗(r))≤N

ψ(r)
α (X)Yα,s||2

≤ CN

N∑

k=1

∑

p(α∗(r))=k

E||ψ(r)
α (X)||2E[Y 2

α,s]

≤ L1(h,N)(1 + E||X ||2) for any X ∈ R
n,

(37)

where

L1(h,N) = CN
N∑

k=1

k![n(m+ 1)(m+ 2)kK]2k[2h]k.

Since
∂ψ(r)

α

∂xi
∈ Bp(α∗(r)),p(α∗(r)),0 for i = 1, . . . , n, similarly, we get

E||∂f̃r,N
∂xi

||2 = E||
∑

p(α∗(r))≤N

∂ψ
(r)
α

∂xi
Yα,s||2 ≤ L2(h,N),

where

L2(h,N) = CK2N

N∑

k=1

k!k2[n(m+ 2)(m+ 1)kK]2k(2h)k.

So

(38) E||f̃r,N(X1)− f̃r,N (X2)||2 ≤ L2(h,N)E||X1 −X2||2.
Then we have an existence and uniqueness results on the stochastic ME.

Theorem 5.1. If the Hypothesis [H1] and [H2] are satisfied, then the truncated
modified equation (36) for EM with fixed h and N has a unique continuous solution

X̃t with the property that

E||X̃h,N ||2 ≤ C(1 + 3||X0||2)eC1L1(h,N)h,

where C and C1 are positive constants independent on h and N .

Proof: The proof of theorem 5.1 is similar to that of Theorem 2.3.1 and Lemma
2.3.2 in [12], and the detail is omitted here.

Corollary 5.2. Under the Hypothesis [H1] and [H2], if h1N
3h ≤ 1/9 and h1 =

2[n(m+ 2)(m+ 1)K]2, then

L1(h,N) <∞, L2(h,N) <∞
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and

E||X̃h,N ||2 <∞.

Proof: When h1N
3h ≤ 1/9, motivated by the fact that

∑N
k=1(

k
N )k < ∞, we

know

L1(h,N) = CN

N∑

k=1

k![n(m+ 2)(m+ 1)kK]2k(2h)k

≤ C

N∑

k=1

k!

NN−1
(
k

3N
)2k

≤ C

N∑

k=1

(
k

3N
)2k <∞.

Moreover

L2(h,N) = CK2N
N∑

k=1

k!k2[n(m+ 2)(m+ 1)kK]2k(2h)k

≤ CK2
N∑

k=1

k!

NN−1
k2(

k

3N
)2k

≤ CK2
N∑

k=1

k!

NN−1
(
k

N
)2k <∞.

Then the corollary follows.

5.2. Optimized Truncation of ME. If ME are truncated in the form of (36),
we have the following estimation on ψγα

Lemma 5.3. If the Hypothesis [H1] and [H2] are satisfied, ψγα in the truncated ME
(36) for EM have the following properties:

1)When p(α) + p(γ) ≤ N , and l(γ) > 1,

ψγα = 0.

2) When l(γ) = 2,

K(ψγα) ≤ C[n(m+ 2)]p(α)p(α)!(q − 1)q−1NN+1,

where p(α) + p(γ) = N + q with 1 ≤ q ≤ N .
3) When γ = (j2, j2, j1) and j2 6= 0

K(ψγα) ≤ C[n(m+ 2)]p(α)p(α)!(q − 1)q−1NN+2,

where p(α) + p(γ) = N + q with 1 ≤ q ≤ 2N .
4)When p(α) + p(γ) > N · l(γ),

ψγα = 0.

Proof: See Appendix.

Then the second moment of L(j2)f̃j1,N (X̃s,N ) and L(j2,j2)f̃j1,N (X̃s,N ) can be
estimated by Lemma 5.3.
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Lemma 5.4. Under the Hypothesis [H1] and [H2], if h1N
3h ≤ 1/9 where h1 =

2[n(m+ 2)(m+ 1)K]2, and γ = (j1, j2) then
1)

E||Lj2 f̃j1,N(X̃s,N )||2 ≤ CN3N+2−p(γ)(h1h)
N−p(γ)

2)

E||L(j2,j2)f̃j1,N (X̃s,N )||2 ≤ CN3N+3−p(γ)(h1h)
N−p(γ)

for s ≤ h

Proof: See Appendix.

Let Φ̃t,N denote the stochastic flow associated to the truncated ME (36). We

can find an optimal truncation for the one step difference between Φ̃h,N and EM
Ψh.

Theorem 5.5. Under the Hypothesis [H1] and [H2], for a sufficiently small h,
there exists N∗ = ⌊e−1(h1h)

−1/3⌋ and h1 = 2[n(m + 2)(m + 1)K]2 such that the
difference between the ME and EM is bounded by

√
E[||Φ̃h,N∗ −Ψh||2] ≤ Ce−h0/(h

1
3 ),

where h0 is a positive constant.

Proof: Applying the stochastic Taylor expansion into the modified equations
(see Lemma 5.6.4 in [10]), we have

Φ̃h,N (X0)−X0 =

m∑

r=0

f̃r(X̃0)J(r),h +R,

whereR is the remainder term of the stochastic Taylor expansion, which is expressed
as

(39) R =

m∑

j1=0

m∑

j2=0

∫ h

0

∫ s1

0

L(j2)f̃j1(X̃s2) ◦ dwj2s2 ◦ dw
j1
s1 .

By (26) and the definition of ψγα (18), the difference of ME and EM is remainder
R, i.e.

Φ̃h,N (X0)−Ψh(X0) = R.

Then we estimate the second moment of the remainder term R
By the relation of multiple Stratonovich integrals and multiple Ito integrals (see

Chapter 5 in [10]), the remainder term is expressed in the form of Ito as

R =

m∑

j1=0

m∑

j2=0

∫ h

0

∫ s1

0

Lj2 f̃j1(X̃s2)dw
j2
s2dw

j1
s1 +

m

2

∫ h

0

∫ s1

0

Lj2 f̃j1(X̃s2)ds2ds1

+
1

2

m∑

j1=0

m∑

j2=1

∫ h

0

∫ s1

0

L(j2,j2)f̃j1(X̃s2)ds2dw
j1
s1 .

Thanks to Ito isometry, the Cauchy-Schwarz inequality and Lemma 5.4, we have

E[R2] ≤ C(h1N
3h)N ,

Motivated by the fact that (ǫx3)x reaches it minimum on x = (e3ǫ)−1/3, we take
N∗ as the integer part of e−1(h1h)

−1/3 such that h1(N
∗)3h ≤ e−3 ≤ 1/9, then

(40) E[R2] ≤ Ce−3N∗

.
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Since e−1(h1h)
−1/3 − 1 ≤ N∗, for h is sufficiently small,

√
E[R2] ≤ Ce−1/[2(h1h)

1
3 ] ≤ Ce−h0/h

1
3 .

for h0 = 1
2 (h1)

− 1
3

Moreover, the global error of ME is resulted as follows

Theorem 5.6. Let Φ̃t,N∗ be the flow associated by the optimal truncated ME stated

in Theorem 5.5, and Ψt be EM, then over the time interval of length T = O(h−
1
3 ),

√
E[||Φ̃nh,N∗ −Ψnh||2] ≤ Ce−h0/(h

1
3 ), for nh < T,

where h0 is a positive constant, and C does not depends on T .

Proof: The proof of theorem 5.6 is similar to that of Theorem 1.1 by taking
advantage of Corollary 5.2, and the detail is omitted here.

6. Error growth of EM on Kubo oscillator

As a first application of Theorem 5.6, we study the error growth of Kubo
oscillator(23). First, the ME of EM is constructed as

X̃t = X0 +

∫ t

0

−(aJ +
σ2

2
I)X̃s − [(

σ4

4
− a2)I + aσ2J ]X̃sY(0),s

− [
σ3

2
J − aσI]X̃sY(1),s + · · · ds+

∫ t

0

−σJX̃s + σ2X̃sY(1),s + 2σ3JX̃sY(1,1),s

− 6σ4X̃sY(1,1,1),s − [
σ3

2
J − aσI]X̃sY(0),s + · · · ◦ dW 1

s .

The exact solution of ME can be expressed in the following form using the equal-
distance time discretization 0 = t0 < t1 < · · · < tN = T , where the time step h is a
small positive number:

X̃tk+1
= eλkF (θ̃k)X̃tk , X̃t0 = X0, k = 0, 1, . . . , N − 1

where

λk = −σ
2

2
h+ σ2Y(1,1),tk+1

+ aσY(1),tk+1
h− (

σ4

4
− a2)

h2

2
− 6σ4Y(1,1,1,1),tk+1

+ · · · ,

F (θ̃k) =

[
cos θ̃ sin θ̃

− sin θ̃ cos θ̃

]
, θ̃k = ah+σY(1),tk+1

−2σ3Y(1,1,1),tk+1
+
σ3

2
Y(1),tk+1

h+· · · .

Moreover, the exact solution of Kubo oscillation is

Xtk+1
= F (θk)Xtk , X̃t0 = X0, k = 0, 1, . . . , N − 1,

where

θk = ah+ σY(1),tk+1
.

We get

E[eλk ] ∼ h
3
2 , and E[(θk − θ̃k)

2] ∼ h3, k = 0, 1, . . . , N − 1.
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Hence if Th is sufficiently small, then

E||X̃tN −XtN ||2 ≤ E||e
∑N−1

k=0 λkF (

N−1∑

k=0

θ̃k)− F (

N−1∑

k=0

θk)||2

≤ E[(e
∑N−1

k=0 λk − 1)2] + E||F (
N−1∑

k=0

θ̃k)− F (

N−1∑

k=0

θk)||2

= O(n2h3) = O(T 2h)

Due to Theorem 5.6, the mean square error of the Euler-Maruyama method is

O(T
√
h) when Th

1
3 is sufficiently small.
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Appendix A. Proofs of Lemmas 5.3 and 5.4

Proof of Lemma 5.3: 1) Let γ be a multi-index satisfying p(γ) ≤ N and
l(γ) > 1. Since ψγv = dγ = 0 for l(γ) > 1, (20) implies that

ψγ(j) = ψ(j)∗γ
v − ψ(j)

v · ▽ψγv = 0.

It shows that ψγα = 0, when p(α) + p(γ) ≤ N , l(α) = 1 and l(γ) > 1.
For a fixed integer i, assume ψγα = 0, when p(α) + p(γ) ≤ N , l(α) < i and

l(γ) > 1. Let α̂ be the multi-index with l(α̂) = i − 1. by applying the recurrence
relation (20) to ψγα∗(j), we have

ψγα̂∗(j) = ψ
(j)∗γ
α̂ −

∑

ξ1×ξ2=α̂

ψ
(j)
ξ1

· ▽ψγξ2 = 0,

where l(α̂) < i and l(ξ1) < i. So ψγα = 0, when p(α) + p(γ) ≤ N , l(α) = i and
l(γ) > 1. Hence 1) is proved by induction.

2) For N + 1 ≤ p(α) + p(γ) ≤ 2N , let γ = (j1, j2) , then (20) implies

ψ(j1,j2)
α = ψ

(j2)
α∗(j1)

+
∑

ξ1×ξ2=α

ψ
(j1)
ξ1

· ▽ψ(j2)
ξ2

.

Here p(α ∗ (j2)) + p((j1)) = p(α) + p(γ) > N implies ψ
(j1)
α∗(j2)

= 0.

Since p(ξ2) + p((j2)) ≤ p(α) + p(γ) ≤ 2N and ψ
(j1)
α∗(j2)

= 0, from Property 2.6 it

follows that

(A.1) K(ψ(j1,j2)
α ) ≤ 2nN

∑

ξ1×ξ2=α

K(ψ
(j1)
ξ1

)K(ψ
(j2)
ξ2

).

Let i = p(ξ1), then p(ξ2) = p(α) − p(ξ1) = N + q − p(γ) − i. Because ψ
(j)
α = 0

for p(α) + p((j)) > N , ψ
(j1)
ξ1

and ψ
(j2)
ξ2

are zero if i = p(ξ1) > N − p((j1)) and

N+q−p(γ)− i = p(ξ2) > N−p((j2)), i.e. i < q−p((j1)), respectively. So applying
Property 2.2 and Theorem 4.2 into (A.1), we obtain

K(ψ(j1,j2)
α )

≤ CN [n(m+ 2)]N+q−p(γ)(N − p(γ) + q)!

N−p((j1))∑

i=q−p((j1))

(N − p(γ) + q − i)N−p(γ)+q−iii.

Since the function (b−x)d−x(a+x)c+x is concave up on [0, b−a], when a+d = b+c
and a ≥ c, it achieves its maximum on x = 0 or b− a. Then,

K(ψ(j1,j2)
α )

≤ CN [2n(m+ 2)]N+q−p(γ)(N − p(γ) + q)!(N − q + 1)(q − 1)q−1(N − 1)N−1

≤ C[2n(m+ 2)]p(α)p(α)!(q − 1)q−1NN+1.

3) Denote

φ(j2,j2,j1)α =
∑

ξ1×ξ2=α

∑

k

ψ
(j2)
k,ξ1

∂ψ
(j2,j1)
ξ2

∂xk
.

Since p(ξ2) + p((j2, j1)) ≤ p(α) + p(γ) ≤ 3N , it follows that

(A.2) K(φ(j2,j2,j1)α ) ≤ 3nN
∑

ξ1×ξ2=α

K(ψ
(j2)
ξ1

)K(ψ
(j2,j1)
ξ2

).
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Because ψ
(j2,j1)
ξ2

= 0 with p((j2, j1)) + p(ξ2) ≤ N , φ
(j2,j2,j1)
α = 0 if p((j2, j1)) +

p(ξ2) < p(α) + p((j2, j2, j1)) ≤ N + 1
Suppose p(α) + p(γ) = N + q with 2 ≤ q ≤ 2N . Let p(ξ1) = i, then p(ξ2) =

N + q− p(γ)− i. So ψ
(j2)
ξ1

= 0 when i+1 > N ; on the other hand ψ
(j2,j1)
ξ2

= 0 when

p(ξ2) + p((j2, j1)) < N + 1 or p(ξ2) + p((j2, j1)) > 2N . It means that φγα 6= 0 when
0 ≤ i ≤ N − 1 and q − 1 − N ≤ i ≤ q − 2. So When q ≤ N + 1, by Theorem 4.2
and the results in 3), we have

K(φ(j2 ,j2,j1)α )

≤ CNN+2[n(m+ 2)]N+q−p(γ)(N + q − p(γ))!

q−2∑

i=0

(q − 2− i)q−2−iii

≤ C[n(m+ 2)]p(α)p(α)!(q − 1)q−1NN+2.

When 1 +N < q ≤ 2N ,

K(φ(j2,j2,j1)α )

≤ CNN+2[2n(m+ 2)]N+q−p(γ)(N + q − p(γ))!

N−1∑

i=q−1−N

(q − 2− i)q−2−iii

≤ CNN+2[2n(m+ 2)]p(α)p(α)!(q − 1−N)q−1−NNN−1

≤ CNN+2[2n(m+ 2)]p(α)p(α)!(q − 1)q−1.

Then 3) is follows from

ψ(j2,j2,j1)
α = ψ

(j2,j1)
(j2)

+ φ(j2,j2,j1)α = ψ
(j2,j1)
(j2)

+
∑

ξ1×ξ2=α

∑

k

ψ
(j2)
k,ξ1

∂ψ
(j2,j1)
ξ2

∂xk
.

4) Since ψγα = 0 for l(γ) = 1 and p(γ) + p(α) > N , the recurrence relation (20)
yields to the result 3).

Proof of Lemma 5.4: Let γ = (j1, j2), by (18) and (5.3), we can show that

Lj2 f̃j1,N is expressed in the form of summation ψ
(j1,j2)
α as follow,

(A.3) Lj2 f̃j1,N (X̃s,N ) =
2N∑

p(α)+p(γ)=N+1

ψγα(X̃s,N )Yα,s.

Since #{α, γ|p(α)+p(γ) = k} ≤ (m+1)k and (
∑N

i=1 ai)
2 ≤ N

∑N
i=1(a

2
i ), we obtain

E[(Lj2 f̃j1,N (X̃s,N ))2] ≤ N
2N∑

k=N+1

E[(
∑

p(α)+p(γ)=k

ψγα(X̃s,N )Yα,s)
2]

≤ N
2N∑

k=N+1

(m+ 1)k
∑

p(α)+p(γ)=k

E||ψγα(X̃s,N )||2E[Y 2
α,s.]

We also know that ψγα ∈ Bp(α)+p(γ)−1,p(α)+p(γ), then by Property 2.6 and Corol-
lary 5.2,

E||ψγα(X̃s,N )||2 ≤ CK2(p(α)+p(γ)−1)(K(ψγα))
2 for s ≤ h.
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Therefore

E[(Lj2 f̃j1,N(X̃s,N ))2] ≤ N
2N∑

k=N+1

(m+ 1)k
∑

p(α)+p(γ)=k

E||ψγα(X̃s,N )||2E[Y 2
α,s]

≤ CN

2N∑

k=N+1

[(m+ 1)K2]k
∑

p(α)+p(γ)=k

[K(ψγα)]
2E[Y 2

α,s].

(A.4)

Let p(α) + p(γ) = N + q for 1 ≤ q ≤ N , and s ≤ h. Applying Corollary 2.5 and
Proposition 5.3 into (A.4), we thus obtain

E[(Lj2 f̃j1,N (X̃s,N ))2] ≤

CN2N+3
N∑

q=1

[(m+ 1)K2]N+q
∑

p(α)+p(γ)
=N+q

(2n2(m+ 2)2h)p(α)p(α)!(q − 1)2(q−1).

Then p(γ) ≤ 4 implies

E[(Lj2 f̃j1,N (X̃s,N ))2] ≤ CN2N+3
N∑

q=1

[n(m+2)(m+1)K]2p(α)(2h)p(α)p(α)!(q−1)2(q−1).

Let h1 = 2n2(m+ 2)2(m+ 1)2K2,

E[(Lj2 f̃j1,N(X̃s,N ))2] ≤ CN2N+3
N∑

q=1

(h1h)
p(α)p(α)!(q − 1)2(q−1)

= CN2N+3(h1h)
N−p(γ)

N∑

q=1

p(α)!(h1(q − 1)2h)qq−2,

(A.5)

For h1N
3h ≤ 1/9 < 1, the summation term in (A.5) is bounded by

N∑

q=1

p(α)!(h1(q − 1)2h)qq−2

≤
N∑

q=1

(N + q − p(γ))!

N q+1
(
q

N
)2qq−2

≤
N∑

q=1

((N + q − p(γ) + 1)/2)N+q−p(γ)

N q+1
(
q

N
)2q

≤
N∑

q=1

NN+q−p(γ)

N q+1
(
q

N
)2q

≤ CNN−p(γ)−1.

(A.6)

It can be verified that the summation
∑N

q=1(
q
N )2q in (A.6) is bounded by a constant.

Then the proof 1) is completed.
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2) Similarly, let γ = (j2, j2, j1) and j2 6= 0, we can show that

E[(L(j2,j2)f̃j1,N(X̃s,N ))2]

= 2N

3N∑

q=N+1

(m+ 1)k
∑

p(α)+p(γ)=q

E||ψ(j2,j2,j1)
α (X̃s,N )||2E[Y 2

α,s]

≤ CN2N+4
3N∑

q=N+1

p(α)!(h1h)
p(α)(q − 1)q−1

≤ CN2N+4(h1h)
N−p(γ)

3N∑

q=N+1

p(α)!(h1(q − 1)2h)qq−2.

(A.7)

When 9h1N
3h ≤ 1, the summation term in (A.7) is bounded by

3N∑

q=N+1

p(α)!(h1(q − 1)2h)qq−2 ≤
3N∑

q=N+1

NN+q−p(γ)

N q+1
(
q

3N
)2q ≤ CNN−p(γ)−1.
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