Complex and *p***-Adic Meromorphic Functions** f'P'(f), g'P'(g) **Sharing a Small Function**

Alain Escassut¹, Kamal Boussaf¹ and Jacqueline Ojeda^{2,*}

 ¹ Laboratoire de Mathematiques, UMR 6620, Université Blaise Pascal, Les Cézeaux, Aubiere 63171, France
 ² Departamento de Matematica, Facultad de Ciencias Fsicasy Matematicas,

Universidad de Concepcion, Concepcion, Chile

Received 10 September 2013; Accepted (in revised version) 1 March 2014

Available online 31 March 2014

Abstract. Let \mathbb{K} be a complete algebraically closed *p*-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for *p*-adic meromorphic functions in order to prove results of uniqueness in value sharing problems, both on \mathbb{K} and on \mathbb{C} . Let *P* be a polynomial of uniqueness for meromorphic functions in \mathbb{K} or \mathbb{C} or in an open disk. Let *f*, *g* be two transcendental meromorphic functions in the whole field \mathbb{K} or in \mathbb{C} or meromorphic functions in an open disk of \mathbb{K} that are not quotients of bounded analytic functions. We show that if f'P'(f) and g'P'(g) share a small function α counting multiplicity, then f = g, provided that the multiplicity order of zeros of *P'* satisfy certain inequalities. A breakthrough in this paper consists of replacing inequalities $n \ge k+2$ or $n \ge k+3$ used in previous papers by Hypothesis (G). In the *p*-adic context, another consists of giving a lower bound for a sum of *q* counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function.

Key Words: Meromorphic, nevanlinna, sharing value, unicity, distribution of values.

AMS Subject Classifications: 12J25, 30D35, 30G06

1 Introduction

Notation and Definition 1.1. Let \mathbb{K} be an algebraically closed field of characteristic zero, complete with respect to an ultrametric absolute value $|\cdot|$. We will denote by \mathbb{E} a field that is either \mathbb{K} or \mathbb{C} . Throughout the paper we denote by *a* a point in \mathbb{K} . Given $R \in [0, +\infty]$ we define disks $d(a, R) = \{x \in \mathbb{K} | |x-a| \le R\}$ and disks $d(a, R^-) = \{x \in \mathbb{K} | |x-a| < R\}$.

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. *Email addresses:* alain.escassut@math.univ-bpclermont.fr (A. Escassut), kamal.boussaf@math.univ-bpclermont.fr (K. Boussaf), jacqojeda@udec.cl (J. Ojeda)

A polynomial $Q(X) \in \mathbb{E}[X]$ is called *a polynomial of uniqueness for a family of functions* \mathcal{F} *defined in a subset of* \mathbb{E} if Q(f) = Q(g) implies f = g. The definition of polynomials of uniqueness was introduced in [19] by P. Li and C. C. Yang and was studied in many papers [11, 13, 20] for complex functions and in [1, 2, 9, 10, 17, 18], for *p*-adic functions.

Throughout the paper we will denote by P(X) a polynomial in $\mathbb{E}[X]$ such that P'(X) is of the form $b\prod_{i=1}^{l} (X-a_i)^{k_i}$ with $l \ge 2$ and $k_1 \ge 2$. The polynomial *P* will be said *to satisfy Hypothesis* (*G*) if $P(a_i) + P(a_j) \ne 0$, $\forall i \ne j$.

We will improve the main theorems obtained in [5] and [6] with the help of a new hypothesis denoted by Hypothesis (G) and by thorougly examining the situation with *p*-adic and complex analytic and meromorphic functions in order to avoid a lot of exclusions. Moreover, we will prove a new theorem completing the 2nd Main Theorem for *p*-adic meromorphic functions. Thanks to this new theorem we will give more precisions in results on value-sharing problems.

Notation 1.1. Let *L* be an algebraically closed field, let $P \in L[x] \setminus L$ and let $\Xi(P)$ be the set of zeros *c* of *P*' such that $P(c) \neq P(d)$ for every zero *d* of *P*' other than *c*. We denote by $\Phi(P)$ its cardinal.

We denote by $\mathcal{A}(\mathbb{E})$ the \mathbb{E} -algebra of entire functions in \mathbb{E} , by $\mathcal{M}(\mathbb{E})$ the field of meromorphic functions in \mathbb{E} , i.e., the field of fractions of $\mathcal{A}(\mathbb{E})$ and by $\mathbb{E}(x)$ the field of rational functions. Throughout the paper, we denote by $\mathcal{A}(d(a,R^-))$ the \mathbb{K} -algebra of analytic functions in $d(a,R^-)$ i.e., the \mathbb{K} -algebra of power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ converging in $d(a,R^-)$ and we denote by $\mathcal{M}(d(a,R^-))$ the field of meromorphic functions inside $d(a,R^-)$, i.e., the field of fractions of $\mathcal{A}(d(a,R^-))$. Moreover, we denote by $\mathcal{A}_b(d(a,R^-))$ the \mathbb{K} -subalgebra of $\mathcal{A}(d(a,R^-))$ consisting of the bounded analytic functions in $d(a,R^-)$, i.e., which satisfy $\sup_{n \in \mathbb{N}} |a_n|R^n < +\infty$. We denote by $\mathcal{M}_b(d(a,R^-))$ the field of fractions of $\mathcal{A}_b(d(a,R^-))$ and finally, we denote by $\mathcal{A}_u(d(a,R^-))$ the set of unbounded analytic functions in $d(a,R^-)$, i.e., $\mathcal{A}(d(a,R^-)) \setminus \mathcal{A}_b(d(a,R^-))$. Similarly, we set $\mathcal{M}_u(d(a,R^-)) = \mathcal{M}(d(a,R^-)) \setminus \mathcal{M}_b(d(a,R^-))$.

Theorem 1.1 (see [9]). Let $P(X) \in \mathbb{K}[X]$. If $\Phi(P) \ge 2$ then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$. If $\Phi(P) \ge 3$ then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ and for $\mathcal{A}_u(d(a, \mathbb{R}^-))$. If $\Phi(P) \ge 4$ then P is a polynomial of uniqueness for $\mathcal{M}_u(d(a, \mathbb{R}^-))$.

Let $P(X) \in \mathbb{C}[X]$. If $\Phi(P) \ge 3$ then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{C})$. If $\Phi(P) \ge 4$ then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$.

Concerning polynomials such that P' has exactly two distinct zeros, we know other results:

Theorem 1.2 (see [1, 2, 18]). Let $P \in \mathbb{K}[x]$ be such that P' has exactly two distinct zeros γ_1 of order c_1 and γ_2 of order c_2 with $\min\{c_1, c_2\} \ge 2$. Then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$.

Theorem 1.3 (see [9,17]). Let $P \in \mathbb{K}[x]$ be of degree $n \ge 6$ be such that P' only has two distinct zeros, one of them being of order 2. Then P is a polynomial of uniqueness for $\mathcal{M}_u(d(0, R^-))$.

Theorem 1.4 (see [18]). Let $P \in \mathbb{C}[x]$ be such that P' has exactly two distinct zeros γ_1 of order c_1 and γ_2 of order c_2 with $\min\{c_1, c_2\} \ge 2$ and $\max(c_1, c_2) \ge 3$. Then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$.

In order to state theorems and recall the definition of a small function, we must recall the definition of the classical Nevanlinna functions both on a *p*-adic field and on the field \mathbb{C} together with a few specific properties of ultrametric analytic or meromorphic functions [7, 11, 13].

Notation 1.2. Let log be a real logarithm function of base b > 1 and let $\log^+(x) = \max(0, \log(x))$. Let $f \in \mathcal{M}(\mathbb{E})$ (resp. $f \in \mathcal{M}(d(0, R^-))$) having no zero and no pole at 0. Let $r \in [0, +\infty]$ (resp. $r \in [0, R]$) and let $\gamma \in d(0, r)$. If f has a zero of order n at γ , we put $\omega_{\gamma}(h) = n$. If f has a pole of order n at γ , we put $\omega_{\gamma}(f) = -n$ and finally, if $f(\gamma) \neq 0, \infty$, we set $\omega_{\gamma}(f) = 0$. These definitions of Nevanlinna's functions are equivalent to these defined in [7].

We denote by Z(r, f) the *counting function of zeros of* f in d(0, r), counting multiplicities, i.e.,

$$Z(r,f) = \max(\omega_0,0)\log r + \sum_{\omega_{\gamma}(f) > 0, \ 0 < |\gamma| \le r} \omega_{\gamma}(f)(\log r - \log|\gamma|)$$

Similarly, we denote by $\overline{Z}(r, f)$ the counting function of zeros of f in d(0, r), ignoring multiplicities, and set

$$\overline{Z}(r,f) = u \log r + \sum_{\omega_{\gamma}(f) > 0, \ 0 < |\gamma| \le r} (\log r - \log |\gamma|)$$

with u = 1 when $\omega_0(f) > 0$ and u = 0 else.

In the same way, we set N(r,f) = Z(r,1/f) (resp. $\overline{N}(r,f) = \overline{Z}(r,1/f)$) to denote the *counting function of poles of f* in d(0,r), counting multiplicities (resp. ignoring multiplicities).

For $f \in \mathcal{M}(\mathbb{K})$ or $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$, we call *Nevanlinna function of* f the function $T(r, f) = \max \{Z(r, f), N(r, f)\}$.

Consider now a function $f \in \mathcal{M}(\mathbb{C})$. We can define a function

$$m(r,f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta$$

and we call *Nevanlinna function of f* the function T(r, f) = m(r, f) + N(r, f).

Now, we must recall the definition of a *small function* with respect to a meromorphic function and some pertinent properties.

Definition 1.1. Let $f \in \mathcal{M}(\mathbb{E})$ (resp. let $f \in \mathcal{M}(d(0, R^-))$) such that $f(0) \neq 0, \infty$. A function $\alpha \in \mathcal{M}(\mathbb{E})$ (resp. $\alpha \in \mathcal{M}(d(0, R^-))$) is called *a small function with respect to f*, if it satisfies

$$\lim_{r \to +\infty} \frac{T(r,\alpha)}{T(r,f)} = 0, \quad \text{resp.} \quad \lim_{r \to R^-} \frac{T(r,\alpha)}{T(r,f)} = 0.$$

We denote by $\mathfrak{M}_f(\mathbb{E})$ (resp. $\mathfrak{M}_f(d(0,R^-))$) the set of small meromorphic functions with respect to f in \mathbb{E} (resp. in $d(0,R^-)$).

Remark 1.1. Thanks to classical properties of the Nevanlinna function T(r, f) with respect to the operations in a field of meromorphic functions, such as $T(r, f+g) \leq T(r, f) + T(r,g) + O(1)$ and $T(r,fg) \leq T(r,f) + T(r,g) + O(1)$, for $f,g \in \mathcal{M}(\mathbb{K})$ and r > 0, it is easily proven that $\mathcal{M}_f(\mathbb{E})$ (resp. $\mathcal{M}_f(d(0,R^-))$) is a subfield of $\mathcal{M}(\mathbb{E})$ (resp. $\mathcal{M}(d(0,R^-))$) and that $\mathcal{M}(\mathbb{E})$ (resp. $\mathcal{M}(d(0,R))$) is a transcendental extension of $\mathcal{M}_f(\mathbb{E})$ (resp. of $\mathcal{M}_f(d(0,R^-))$) [10].

Let us remember the following definition.

Definition 1.2. Let $f, g, \alpha \in \mathcal{M}(\mathbb{E})$ (resp. let $f, g, \alpha \in \mathcal{M}(d(0, R^-))$). We say that f and g *share the function* α *C.M.*, if $f - \alpha$ and $g - \alpha$ have the same zeros with the same multiplicities in \mathbb{E} (resp. in $d(0, R^-)$).

In [5] and [6], we have obtained this general Theorem (where results of [5] and [6] here are gathered):

Theorem 1.5. Let *P* be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, (resp. for $\mathcal{M}(\mathbb{C})$, resp. for $\mathcal{M}(d(0,R^-))$) with $l \ge 2$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge 10 + \sum_{i=3}^{l} \max(0, 4 - k_i) + \max(0, 5 - k_2),$ (2) $k_1 \ge k+2$ (resp. $k_1 \ge k+3$, resp. $k_1 \ge k+3$), (3) if l = 2, then $k_1 \ne k+1, 2k, 2k+1, 3k+1,$ (4) if l = 3, then $k_1 \ne k+1, 2k+1, 3k_i - k, \forall i = 2, 3,$

(5) If $l \ge 4$, then $k_1 \ne k+1$.

Let $f,g \in \mathcal{M}(\mathbb{E})$ (resp. $f,g \in \mathcal{M}_u((d(a,R^-)))$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{E}) \cap \mathcal{M}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}_f(d(a,R^-)) \cap \mathcal{M}_g(d(a,R^-))$) be non-identically zero. If f'P'(f) and g'P'(g) share α *C.M.*, then f = g.

In the field \mathbb{K} , several particular applications were given when the small function is a constant or a Moebius function. On \mathbb{C} , we can't get similar refinements because the complex Nevanlinna Theory is less accurate than the *p*-adic Nevanlinna Theory.

In the present paper, thanks to the new Hypothesis (G) introduced below, we mean to avoid the hypothesis $k_1 \ge k+2$ for $\mathcal{M}(\mathbb{K})$ and $k_1 \ge k+3$ for $\mathcal{M}(\mathbb{C})$ and for $\mathcal{M}(d(a, R^-))$.

But first, we have a new theorem for *p*-adic analytic functions: First we can improve results of [5] concerning *p*-adic analytic functions.

Theorem 1.6. Let $P(X) \in \mathbb{K}[X]$ be a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}_u(d(a, R^-)))$ and let $P'(X) = b \prod_{i=1}^{l} (X - a_i)^{k_i}$. Let $f, g \in \mathcal{A}(\mathbb{K})$ be transcendental (resp. let $f, g \in \mathcal{A}_u(d(a, R^-)))$, be such that f'P'(f) and g'P'(g) share CM a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{A}_f(d(, R^-)) \cap \mathcal{A}_g(d(a, R^-)))$. If $\sum_{i=1}^{l} k_i \ge 2l + 2$ then f = g. Moreover, if f, g belong to $\mathcal{A}(\mathbb{K})$, if α is a constant and if $\sum_{i=1}^{l} k_i \ge 2l + 1$ then f = g. **Corollary 1.1.** Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \ge 2$ and let $P'(X) = b \prod_{i=1}^{l} (X-a_i)^{k_i}$. Let $f,g \in \mathcal{A}(\mathbb{K})$ be transcendental such that f'P'(f) and g'P'(g) share CM a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$. If $\sum_{i=1}^{l} k_i \ge 2l+2$ then f = g. Moreover, if α is a constant and if $\sum_{i=1}^{l} k_i \ge 2l+1$ then f = g.

Example 1.1. Let $c \in \mathbb{K}$ be a solution of the algebraic equation:

$$X^{11}\left(\frac{1}{11} - \frac{1}{10}\right) - X^9\left(\frac{1}{9} - \frac{1}{8}\right) + X\left(\frac{1}{10} - \frac{1}{8}\right) - \frac{1}{11} + \frac{1}{9} = 0.$$

Let

$$P(X) = \frac{X^{11}}{11} - \frac{cX^{10}}{10} - \frac{X^9}{9} + \frac{cX^8}{8}.$$

Then we can check that $P'(X) = X^7(X-1)(X+1)(X-c)$, $P(1) = P(c) \neq 0$ and that $P(1) \neq 0$, $P(-1) \neq 0$, P(1)+P(-1)=c(1/4-1/5) and P(-1)-P(1)=2(1/11-1/9), hence $P(-1) \neq P(c)$.

Consequently, we can apply Corollary 1.1 and show that if f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$, then f = g.

Remark 1.2. Recall Hypothesis (F) due to H. Fujimoto [12]. A polynomial Q is said to satisfy Hypothesis (F) if the restriction of Q to the set of zeros of Q' is injective. In the last example, we may notice that Hypothesis (F) is not satisfied by P.

Corollary 1.2. Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \ge 3$ and let $P'(X) = b \prod_{i=1}^{l} (X-a_i)^{k_i}$. Let $f,g \in \mathcal{A}_u(d(a,R^-))$ be such that f'P'(f) and g'P'(g) share CM a small function $\alpha \in \mathcal{A}_f(d(a,R^-)) \cap \mathcal{A}_g(d(a,R^-))$. If $\sum_{i=1}^{l} k_i \ge 2l+2$ then f = g.

Corollary 1.3. Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \ge 2$ (resp. $\Phi(P) \ge 3$) and let $P'(X) = bX^n \prod_{i=2}^{l} (X-a_i)$ with $l \ge 3$ and let $f,g \in \mathcal{A}(\mathbb{K})$ (resp. $f,g \in \mathcal{A}_u(d(a,R^-))$) be such that f'P'(f) and g'P'(g) share CM a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{A}_f(d(a,R^-)) \cap \mathcal{A}_g(d(a,R^-))$). If $n \ge l+3$ then f = g. Moreover, if f,g belong to $\mathcal{A}(\mathbb{K})$, if α is a constant and if $n \ge l+2$ then f = g.

In order to improve results of [5] on *p*-adic meromorphic functions and of [6] on complex meromorphic functions, we have to state Propositions 1.1 and 1.2 derived from results of [3] and [4].

Notation and Definition 1.2. Henceforth we assume that $P(a_1) = 0$ and that P'(X) is of the form $b\prod_{i=1}^{l} (X-a_i)^{k_i}$ with $l \ge 2$. The polynomial *P* will be said *to satisfy Hypothesis* (*G*) if $P(a_i) + P(a_i) \ne 0$, $\forall i \ne j$.

Proposition 1.1. Let $P \in \mathbb{K}[X]$ satisfy Hypothesis (G) and $n \ge 2$ (resp. $n \ge 3$). If meromorphic functions $f,g \in \mathcal{M}(\mathbb{K})$ (resp. $f,g \in \mathcal{M}(d(a,R^-))$) satisfy $P(f(x)) = P(g(x)) + C(C \in \mathbb{K}^*)$, $\forall x \in \mathbb{K}$ (resp. $\forall x \in d(a,R^-)$), then both f and g are constant (resp. f and g belong to $\mathcal{M}_b(d(a,R^-))$).

Proposition 1.2. Let $P \in \mathbb{C}[X]$ satisfy Hypothesis (G) and $n \ge 3$. If meromorphic functions $f, g \in \mathcal{M}(\mathbb{C})$ satisfy $P(f(x)) = P(g(x)) + C(C \in \mathbb{C}^*)$, $\forall x \in \mathbb{C}$, then both f and g are constant.

From [5] and thanks to Propositions 1.1, we can now derive the following Theorems 1.7-1.10:

Theorem 1.7. Let *P* be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, (resp for $\mathcal{M}(d(0, \mathbb{R}^{-}))$) with $l \ge 2$, let $P'(X) = b \prod_{i=1}^{l} (X-a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, let u_5 be the biggest of the *i* such that $k_i > 4$ and let $s_5 = \max(0, u_5 - 3)$ and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > m$ and let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge 10 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(2l, \sum_{m=5}^{\infty} s_m),$ (2) either $k_1 \ge k+2$ (resp. $k_1 \ge k+3$, resp. $k_1 \ge k+3$) or *P* satisfies Hypothesis (*G*), (3) if l = 2, then $k_1 \ne k+1, 2k, 2k+1, 3k+1,$ (4) if l = 3, then $k_1 \ne \frac{k}{2}, k_1 \ne k+1, 2k+1, 3k_i - k, \forall i = 2, 3,$ (5) $l \ge 4$, then $k_1 \ne k+1$.

Let $f,g \in \mathcal{M}(\mathbb{K})$ (resp. $f,g \in \mathcal{M}((d(a,R^{-})))$ be transcendental and let $\alpha \in \mathcal{M}_{f}(\mathbb{K}) \cap \mathcal{M}_{g}(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}_{f}(d(a,R^{-})) \cap \mathcal{M}_{g}(d(a,R^{-})))$ be non-identically zero. If f'P'(f) and g'P'(g) share α *C.M.*, then f = g.

Remark 1.3. The sum $\sum_{m=5}^{\infty} s_m$ is obviously finite.

Corollary 1.4. Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \ge 3$ and hypothesis (G), let $P' = b \prod_{i=1}^{l} (X-a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \ge 3$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > 4$, $s_5 = \max(0, u_5 - 3)$ and for every $m \ge 6$, let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge 10 + \max(0.5 - k_2) + \sum_{i=3}^{l} \max(0.4 - k_i) - \min(2l - 1, \sum_{m=5}^{\infty} s_m),$ (2) if l = 3, then $k_1 \ne k/2, k+1, 2k+1, 3k_i - k, \forall i = 2, 3,$

(3) if $l \ge 4$, then $k_1 \ne k+1$.

Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example 1.2. Let

$$P(X) = \frac{X^{20}}{20} - \frac{X^{19}}{19} - \frac{4X^{18}}{18} + \frac{4X^{17}}{17} + \frac{6X^{16}}{16} - \frac{6X^{15}}{15} - \frac{4X^{14}}{14} + \frac{4X^{13}}{13} + \frac{X^{12}}{12} - \frac{X^{11}}{11} + \frac{4X^{13}}{11} + \frac{X^{12}}{12} - \frac{X^{11}}{11} + \frac{X^{12}}{11} - \frac{X^{11}}{11} + \frac{X^{12}}{11} - \frac{X^{12}}{11} - \frac{X^{12}}{11} - \frac{X^{13}}{11} + \frac{X^{12}}{12} - \frac{X^{11}}{11} + \frac{X^{12}}{11} - \frac{X^{12}}{11} - \frac{X^{12}}{11} - \frac{X^{12}}{11} - \frac{X^{12}}{11} - \frac{X^{13}}{11} - \frac{X^{13}}{11}$$

We can check that $P'(X) = X^{10}(X-1)^5(X+1)^4$ and

$$P(0) = 0, \quad P(1) = \sum_{j=0}^{4} C_4^j (-1)^j \left(\frac{1}{10+2j} - \frac{1}{9+2j} \right), \quad P(-1) = -\sum_{j=0}^{4} C_4^j \left(\frac{1}{10+2j} + \frac{1}{9+2j} \right).$$

Consequently, we have $\Phi(P) = 3$ and we check that Hypothesis (G) is satisfied. Now, let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark 1.4. In that example, we have $k_1 = 10$, k = 9. Applying our previous work, a conclusion would have required $k_1 \ge k+2=11$.

Theorem 1.8. Let *P* be a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$, with $l \ge 2$, let $P'(X) = b \prod_{i=1}^{l} (X-a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, let u_5 be the biggest of the *i* such that $k_i > 4$ and let $s_5 = u_5 - 3$ and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > m$ and let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge 10 + \max(0.5 - k_2) + \sum_{i=3}^{l} \max(0.4 - k_i) - \min(2l, \sum_{m=5}^{\infty} s_m),$

(2) either $k_1 \ge k+3$ or *P* satisfies Hypothesis (G),

(3) if l = 2, then $k_1 \neq k+1, 2k, 2k+1, 3k+1$,

(4) *if* l = 3, *then* $k_1 \neq k/2, k_1 \neq k+1, 2k+1, 3k_i - k$, $\forall i = 2, 3$,

(5) If $l \ge 4$, then $k_1 \ne k+1$.

Let $f,g \in \mathcal{M}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{C}) \cap \mathcal{M}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Corollary 1.5. Let $P \in \mathbb{C}[X]$ satisfy $\Phi(P) \ge 4$ and Hypothesis (G), let $P' = b \prod_{i=1}^{l} (X - a_i)^{k_i}$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \ge 6$, let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge 10 + \max(0.5 - k_2) + \sum_{i=3}^{l} \max(0.4 - k_i) - \min(2l, \sum_{m=5}^{\infty} s_m),$ (2) $k_1 \ne k+1.$

Let $f,g \in \mathcal{M}(\mathbb{C})$ and let $\alpha \in \mathcal{M}_f(\mathbb{C}) \cap \mathcal{M}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

As noticed in [5], if f,g belong to $\mathcal{M}(\mathbb{K})$ and if α is a constant or a Moebius function, we can get a more acurate statement:

Theorem 1.9. Let *P* be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, let $P' = b \prod_{i=1}^{l} (x-a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \ge 2$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \ge 6$, let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(2l - 1, \sum_{m=5}^{\infty} s_m),$

(2) either $k_1 \ge k+2$ or P satisfies (G),

(3) if l = 2, then $k_1 \neq k+1, 2k, 2k+1, 3k+1$,

(4) if l = 3, then $k_1 \neq k/2, k+1, 2k+1, 3k_i - k, \forall i = 2, 3$.

Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Theorem 1.4, we can derive Corollary 1.6.

Corollary 1.6. Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \ge 3$, let $P' = b \prod_{i=1}^{l} (x-a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \ge 3$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \ge 6$, let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(2l - 1, \sum_{m=5}^{\infty} s_m),$

(2) either $k_1 \ge k+2$ or *P* satisfies (G),

(3) if l = 3, then $k_1 \neq k/2, k+1, 2k+1, 3k_i - k, \forall i = 2, 3$.

Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

And by Theorem 1.7, we have Corollary 1.7.

Corollary 1.7. Let $P \in \mathbb{K}[x]$ be such that P' is of the form $b(x-a_1)^n(x-a_2)^k$ with $k \le n$, $\min(k,n) \ge 2$ and with $b \in \mathbb{K}^*$. Suppose *P* satisfies the following conditions:

(1) $n \ge 9 + \max(0, 5-k)$,

(2) either $n \ge k+2$ or P satisfies (G),

(3) $n \neq k+1, 2k, 2k+1, 3k+1$.

Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Theorem 1.10. Let *P* be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, let $P' = b \prod_{i=1}^{l} (x-a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \ge 2$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 4)$ and for every $m \ge 6$, let $s_m = \max(0, u_m - 3)$. Suppose *P* satisfies the following conditions:

(1) either $k_1 \ge k+2$ or P satisfies (G),

(2) $k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(2l - 1, \sum_{m=5}^{\infty} s_m),$

(3)
$$k_1 \neq k+1$$
.

Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Theorem 1.4, we can derive Corollary 1.8.

Corollary 1.8. Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \ge 3$, let $P' = b \prod_{i=1}^{l} (x-a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \ge 3$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$, and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \ge 6$, let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge k+2$ or *P* satisfies Hypothesis (G),

(2) $k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(2l - 1, \sum_{m=5}^{\infty} s_m).$

Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

And by Theorem 1.2, we have Corollary 1.9.

Corollary 1.9. Let $P \in \mathbb{K}[x]$ be such that P' is of the form $b(x-a_1)^n(x-a_2)^k$ with $\min(k,n) \ge 2$ and with $b \in \mathbb{K}^*$. Suppose P satisfies the following conditions:

(1) $n \ge 9 + \max(0, 5 - k)$,

(2) either $n \ge k+2$ or *P* satisfies (G),

(3) $n \neq k+1$.

Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example 1.3. Let

$D(\mathbf{Y}) =$	X^{24}	$10X^{2}$	23 36 X^{22}	$40X^{21}$	$74X^{20}$	226X ¹⁹	$84X^{18}$	
$I(\Lambda) -$	24	23	22	21	20	19	18	
	312	$2X^{17}$	$321X^{16}$	$88X^{15}$	$280X^{14}$			$32X^{11}$
	1	17	16	15	14	13	12	11.

We can check that $P'(X) = X^{10}(X-2)^5(X+1)^4(X-1)^4$. Next, we have P(2) < -134378, $P(1) \in [-2,11;-2,10]$, $P(-1) \in [2,18;2,19]$. Therefore, P(0), P(1), P(-1), P(2) are all distinct, hence $\Phi(P) = 4$. Moreover, Hypothesis (G) is satisfied.

Now, let $f,g \in \mathcal{M}(\mathbb{K})$ (resp. let $f,g \in \mathcal{M}_u(d(a, \mathbb{R}^-))$), resp. let $f,g \in \mathcal{M}(\mathbb{C})$) and let $\alpha \in \mathcal{M}(\mathbb{K})$ (resp. let $\alpha \in \mathcal{M}(d(a, \mathbb{R}^-))$), resp. let $\alpha \in \mathcal{M}(\mathbb{C})$) be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Particularly, when f, g are entire functions in \mathbb{C} we can simplify the hypothesis:

Theorem 1.11. Let *P* be a polynomial of uniqueness for $\mathcal{A}(\mathbb{C})$ with $l \ge 2$ and $k_i \ge k_{i+1}$, $1 \le i \le l-1$ when l > 2 and let $k = \sum_{i=2}^{l} k_i$, let u_5 be the biggest of the *i* such that $k_i > 4$ and let $s_5 = \max(0, u_5 - 3)$ and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > m$ and let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) $k_1 \ge k+2$ or P satisfies hypothesis (G),

(2) $k_1 \ge 5 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(2l - 3, \sum_{m=5}^{\infty} s_m).$

Let $f,g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_f(\mathbb{C}) \cap \mathcal{A}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Proposition 1.2, we have Corollaries 1.10 and 1.11.

Corollary 1.10. Let $P \in \mathbb{C}[X]$, let $P' = b \prod_{i=1}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{C}^*$, $k_i \ge k_{i+1}$, $1 \le i \le l-1$ and let $k = \sum_{i=2}^{l} k_i$, let u_5 be the biggest of the *i* such that $k_i > 4$ and let $t_5 = u_5 - 3$ and for each $m \in \mathbb{N}$, let u_m be the biggest of the *i* such that $k_i > m$ and let $t_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

(1) either $k_1 \ge k+2$ or *P* satisfies hypothesis (G),

(2) $k_1 \ge 5 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(2l - 3, \sum_{m=5}^{\infty} s_m).$

Let $f,g \in \mathcal{M}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{C}) \cap \mathcal{M}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g. **Corollary 1.11.** Let $P \in \mathbb{C}[X]$ and let $P' = b(X-a_1)^n(X-a)^k$ with $\min(k,n) \ge 2$ and $\max(n,k) \ge 3$. Suppose that *P* satisfies $n \ge 5 + \max(0,5-k)$.

Let $f,g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_f(\mathbb{C}) \cap \mathcal{A}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example 1.4. Let

$$P(X) = \frac{X^{11}}{11} + \frac{5X^{10}}{10} + \frac{10X^9}{9} + \frac{10X^8}{8} + \frac{5X^7}{7} + \frac{X^6}{6}.$$

Then $P'(X) = X^5(X+1)^5$. We can apply Corollary 1.11 given $f, g \in \mathcal{A}(\mathbb{C})$ transcendental such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{M}(\mathbb{C})$ C.M., we have f = g.

2 The proofs

Notation 2.1. As usual, given a function $f \in \mathcal{M}(\mathbb{E})$ (resp. $\mathcal{M}(d(0,R^{-}))$), we denote by $S_f(r)$ a function of r defined in $[0, +\infty]$ (resp. in [0,R]), such that

$$\lim_{r \to +\infty} \frac{S_f(r)}{T(r,f)} = 0, \quad \text{resp.} \lim_{r \to R} \frac{S_f(r)}{T(r,f)} = 0.$$

We must recall the classical Nevanlinna Main Theorem:

Theorem 2.1 (see [7,12]). Let $a_1, \dots, a_n \in \mathbb{K}$ (resp. $a_1, \dots, a_n \in \mathbb{K}$, resp. $a_1, \dots, a_n \in \mathbb{C}$) with $n \ge 2$, $n \in \mathbb{N}$, and let $f \in \mathcal{M}(\mathbb{K})$ (resp. let $f \in \mathcal{M}(d(0, \mathbb{R}^-))$), resp. let $f \in \mathcal{M}(\mathbb{C})$). Let $S = \{a_1, \dots, a_n\}$. Then, for r > 0 we have

$$(n-1)T(r,f) \leq \sum_{j=1}^{n} \overline{Z}(r,f-a_j) + \overline{N}(r,f) - \log r + \mathcal{O}(1),$$

resp.

$$(n-1)T(r,f) \leq \sum_{j=1}^{n} \overline{Z}(r,f-a_j) + \overline{N}(r,f) + \mathcal{O}(1),$$

resp.

$$(n-1)T(r,f) \leq \sum_{j=1}^{n} \overline{Z}(r,f-a_j) + \overline{N}(r,f) + S_f(r).$$

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three small function:

Theorem 2.2. Let $f \in \mathcal{A}(\mathbb{K})$ (resp. let $f \in \mathcal{A}(d(0, \mathbb{R}^-))$), resp. let $f \in \mathcal{A}(\mathbb{C})$) and let $u \in f \in \mathcal{A}_f(\mathbb{K})$ (resp. let $u \in \mathcal{A}_f(d(0, \mathbb{R}^-))$), resp. $u \in f \in \mathcal{A}_f(\mathbb{C})$). Then $T(r, f) \leq \overline{Z}(r, f) + \overline{Z}(r, f - u) + S_f(r)$.

In order to prove Theorem 2.3, we need additional lemmas:

Notation 2.2. Let $f \in \mathcal{M}(d(a, R^-))$, and let $r \in [0, R]$. By classical results [8, 10] we know that |f(x)| has a limit when |x| tends to r, while being different from r.

We set $|f|(r) = \lim_{|x| \to r_t |x| \neq r} |f(x)|$.

Lemma 2.1. For every $r \in [0,R]$, the mapping $|\cdot|(r)$ is an ultrametric multiplicative norm on $\mathcal{M}(d(0,R^{-}))$.

The following Lemma 2.2 is the *p*-adic Schwarz formula:

Lemma 2.2. Let $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}(d(0,R^{-}))$) and let $r',r'' \in [0,+\infty]$ (resp. let $r',r'' \in [0,R]$) satisfy r' < r''. Then $\log(|f|(r'')) - \log(|f|(r')) = Z(r'',f) - Z(r',f)$.

Lemma 2.3. Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}(d(0, R^-))$). Suppose that there exists $a \in \mathbb{K}$ and a sequence of intervals $I_n = [u_n, v_n]$ such that $u_n < v_n < u_{n+1}$, $\lim_{n \to +\infty} u_n = +\infty$ (resp. $\lim_{n \to +\infty} u_n = R$) and $\lim_{n \to +\infty} \inf_{r \in I_n} qT(r, f) - Z(r, f - a) = +\infty$. Set $L = \bigcup_{n=0}^{+\infty} I_n$. Let $b \in \mathbb{K}$, $b \neq a$. Then Z(r, f - b) = T(r, f) + O(1), $\forall r \in L$.

Proof. We know that the Nevanlinna functions of a meromorphic function f are the same in \mathbb{K} and in an algebraically closed complete extension of \mathbb{K} whose absolute value extends that of \mathbb{K} . Consequently, without loss of generality, we can suppose that \mathbb{K} is spherically complete because we know that such a field does admit a spherically complete algebraically closed extension whose absolute value expands that of \mathbb{K} . If f belongs to $\mathcal{M}(\mathbb{K})$, we can obviously set it in the form g/h, where g, h belong to $\mathcal{A}(\mathbb{K})$ and have no common zero. Next, since \mathbb{K} is supposed to be spherically complete, if f belongs to $\mathcal{M}(d(0, \mathbb{R}^-))$ we can also set it in the form g/h where g,h belong to $\mathcal{A}(d(0, \mathbb{R}^-))$ and have no common zero [8, 10]. Consequently, we have $T(r, f) = \max(Z(r, g), Z(r, h))$.

By hypothesis we have

$$\lim_{n \to +\infty} \left(\inf_{r \in I_n} T(r, f) - Z(r, f - a) \right) = +\infty$$

i.e.,

$$\lim_{n\to+\infty} \left(\inf_{r\in I_n} T(r,f) - Z(r,f-a) \right) = +\infty,$$

i.e.,

$$\lim_{n \to +\infty} \left(\inf_{r \in I_n} \max(Z(r,g), Z(r,h)) - Z(r,g-ah) \right) = +\infty$$

Set

$$B_n = \inf_{r \in I_n} \max(Z(r,g), Z(r,h)) - Z(r,g-ah))$$

Since the sequence B_n tends to $+\infty$, clearly, by Lemma 2.2, the sequence (D_n) defined as

$$D_n = \sup_{r \in I_n} \left(\frac{|g - ah|(r)|}{\max(|g|(r), |h|(r))} \right)$$

tends to zero. Therefore, by Lemma 2.1, we have |g|(r) = |ah|(r) in I_n when n is big enough. Consequently, by Lemma 2.2, we have Z(r,g) = Z(r,ah) + O(1), $\forall r \in L$ and hence T(r,f) = Z(r,h) + O(1) = Z(r,g) + O(1), $\forall r \in L$.

Now, consider g-bh=g-ah+(a-b)h. By hypothesis we have

$$\lim_{n \to +\infty} \left(\inf_{r \in I_n} Z(r,h) - Z(r,g-ah) \right) = +\infty$$

On the other hand, of course Z(r,(a-b)h) = Z(r,h) + O(1). Consequently, since Z(r,g-bh) = Z(r,g-ah+(a-b)h), we have

$$\lim_{n\to+\infty} \left(\inf_{r\in I_n} (Z(r,(a-b)h) - Z(r,g-ah)) \right) = +\infty.$$

Consider now the sequence (E_n) defined as

$$E_n = \sup_{r \in I_n} \left(\frac{|g-ah|(r)|}{|(a-b)h|(r)|} \right).$$

By Lemma 2.2, that sequence tends to zero and hence, when *r* is big enough in *L*, by Lemma 2.1 we have |g-bh|(r) = |a-bh|(r). Consequently, when *r* is big enough in *L*, we have Z(r,g-bh) = Z(r,bh) = Z(r,h) + O(1). Moreover, we have seen that Z(r,g) = Z(r,h) + O(1) in *L*, hence max $(Z(r,g),Z(r,h)) = Z(,g-bh)O(1) = \max(Z(r,g-bh),Z(r,h)+O(1)$, i.e., T(r,f) = T(r,f-b) + O(1) in *L*.

The second Main Theorem is well known in complex and *p*-adic analysis and is recalled below. But first, we can give here a new theorem of that kind which will be efficient in Theorems 1.8-1.10.

Theorem 2.3. Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$) and let $a_1, \dots, a_q \in \mathbb{K}$ be distinct. Then $(q-1)T(r, f) \leq \sum_{i=1}^{q} Z(r, f-a_i) \mathcal{O}(1)$.

Proof. Suppose the theorem is wrong. There exists $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}(d(0, R^-))$) and a_1, \dots, a_q such that $(q-1)T(r, f) - \sum_{j=1}^q Z(r, f-a_j)$ admits no superior bound in $[0, +\infty]$. So, there exists a sequence of intervals $J_s = [w_s, y_s]$ such that $w_s < y_s < w_{s+1}$, $\lim_{s \to +\infty} w_s = +\infty$ (resp. $\lim_{s \to +\infty} w_s = R$) and

$$\lim_{s \to +\infty} \left(\inf_{r \in J_s} (q-1)T(r,f) - \sum_{j=1}^q Z(r,f-a_j) \right) = +\infty.$$
(2.1)

Let $M = \bigcup_{s=0}^{\infty} J_s$. For each $j = 1, \dots, q$, we have $Z(r, f - a_i) \le T(r, f) + O(1)$ in \mathbb{R}_+ and hence (2.4) implies that there exists an index t and a sequence of intervals $I_n = [u_n, v_n]$ included in M, such that $u_n < v_n < u_{n+1}$, $\lim_{n \to +\infty} u_n = +\infty$ (resp. $\lim_{n \to +\infty} u_n = R$) and

$$\lim_{n \to +\infty} \left(\inf_{r \in I_n} (T(r, f) - Z(r, f - a_t)) \right) = +\infty.$$
(2.2)

Let $L = \bigcup_{n=1}^{\infty} I_n$. Then by Lemma 2.3, in *L* we have $Z(r,g-a_kh) = T(rf) + O(1)$, $\forall k \neq t$. Therefore $\sum_{j=1}^{q} Z(r,f-a_j) \ge (q-1)T(r,f) + O(1)$ in *L*, a contradiction to (2.4). Consequently, the Theorem is not wrong.

Remark 2.1. Theorem 2.3 is trivial for analytic functions since by definition, for a function $f \in \mathcal{A}(\mathbb{K})$ or $\mathcal{A}(d(0,R^{-}))$ we have T(r,f) = Z(r,f). On the other hand, the theorem does not apply to meromorphic functions in \mathbb{C} . Indeed, consider a meromorphic function f on \mathbb{C} omitting two values a and b. We have Z(r, f - a) + Z(r, f - b) = 0.

In the proof of Theorems 1.7-1.11 will need the following Lemmas:

Lemma 2.4. Let $Q \in \mathbb{K}[x]$ (resp. $Q \in \mathbb{K}[X]$, resp. $Q \in \mathbb{C}[x]$) be of degree n and let $f \in \mathcal{M}(\mathbb{K})$, (resp. $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$, resp. $f \in \mathcal{M}(\mathbb{C})$) be transcendental. Then

$$N(r,f') = N(r,f) + \overline{N}(r,f), \quad Z(r,f') \le Z(r,f) + \overline{N}(r,f) + \mathcal{O}(1),$$

$$nT(r,f) \le T(r,f'Q(f)) \le (n+2)T(r,f) - \log r + \mathcal{O}(1),$$

resp.

$$nT(r,f) \le T(r,f'Q(f)) \le (n+2)T(r,f) + O(1),$$

resp.

$$nT(r,f) \le T(r,f'Q(f)) + m(r,1/f') \le (n+2)T(r,f) + S_f(r))$$

Particularly, if $f \in \mathcal{A}(\mathbb{K})$ *, resp.*

$$f \in \mathcal{A}(d(0,R^-)),$$

then

$$nT(r,f) \le T(r,f'Q(f)) \le (n+1)T(r,f) - \log r + O(1),$$

resp.

$$nT(r,f) \leq T(r,f'Q(f)) \leq (n+1)T(r,f) + \mathcal{O}(1).$$

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three small function:

Lemma 2.5. Let $Q(X) \in \mathbb{K}[X]$ and let $f, g \in \mathcal{A}(\mathbb{K})$ (resp. let $f, g \in \mathcal{A}_u(d(0, \mathbb{R}^-)))$ be such that Q(f) - Q(g) is bounded. Then f = g.

Proof. The polynomial Q(X) - Q(Y) factorizes in the form (X - Y)F(X,Y) with $F(X,Y) \in \mathbb{K}[X,Y]$. Since Q(f) - Q(g) is bounded, so are both factors because the semi-norm $|\cdot|(r)$ is multiplicative on $\mathcal{A}(\mathbb{K})$ (resp. on $\mathcal{A}_u(d(0,R^-))$). Consequently, f - g is a constant c (resp. is a bounded function $u \in \mathcal{A}_b(d(0,R^-))$). Therefore F(f,g) = F(f,f+c) (resp. F(f,g) = F(f;f+u)). Let $n = \deg(Q)$. Then we can check that F(X,X+c) is a polynomial in X of degree n-1. Consequently, if $f \in \mathcal{A}(\mathbb{K})$, F(f,f+c) is a non-constant entire function and therefore is unbounded in \mathbb{K} . Similarly, $f \in (d(0,R^-))$, F(X,X+u) is a polynomial in X of degree n-1 with coefficients in $\mathcal{A}(d(0,R^-))$ and therefore F(f,f+u) is unbounded in $d(0,R^-)$, which ends the proof. □

Proof of Theorem 1.6. Without loss of generality, we may assume that b = 1. Put $F = f'\prod_{j=1}^{l} (f-a_j)^{k_j}$ and $G = g'\prod_{j=1}^{l} (g-a_j)^{k_j}$. Since $f,g \in \mathcal{A}(\mathbb{K})$ and since F and G share α C.M., then $(F-\alpha)/(G-\alpha)$ is a meromorphic function having no zeros and no pole in \mathbb{K} (resp. in $d(0,R^-)$), hence it is a constant u in $\mathbb{K} \setminus \{0\}$ (resp. it is an invertible function $u \in \mathcal{A}(d(0,R^-))$).

Suppose $u \neq 1$. Then,

$$F = uG + \alpha(1 - c). \tag{2.3}$$

Let r > 0. Since $\alpha(1-u) \in \mathcal{A}_f(\mathbb{K})$ (resp. $\alpha(1-u) \in \mathcal{A}_f(d(0, \mathbb{R}^))$), $\alpha(1-u)$ obviously belongs to $\mathcal{A}_F(\mathbb{K})$ (resp. to $\mathcal{A}_F(d(0, \mathbb{R}^-))$). So, applying Theorem 2.2 to F, we obtain

$$T(r,F) \leq \overline{Z}(r,F) + \overline{Z}(r,F-\alpha(1-c)) + S_F(r) = \overline{Z}(r,F) + \overline{Z}(G) + S_F(r)$$
$$= \sum_{j=1}^{l} \overline{Z}(r,(f-a_j)^k) + \overline{Z}(r,f') + \sum_{j=1}^{l} \overline{Z}(r,(g-a_j)^k) + \overline{Z}(r,g') + S_f(r)$$
$$\leq l(T(r,f) + T(r,g)) + Z(r,f') + Z(r,g') + S_f(r).$$

We also notice that if $f, g \in \mathcal{A}(\mathbb{K})$ and if $\alpha \in \mathbb{K}$, we have

$$T(r,F) \leq \overline{Z}(r,F) + \overline{Z}(r,F-\alpha(1-c)) - \log r + \mathcal{O}(1)$$

and therefore we obtain

$$T(r,F) \le l(T(r,f) + T(r,g)) + Z(r,f') + Z(r,g') - \log r + O(1).$$

Now, let us go back to the general case. Since f is entire, by Lemma 2.4 we have,

$$T(r,F) = \left(\sum_{j=1}^{l} k_j\right) T(r,f) + Z(r,f') + O(1).$$

Consequently,

$$\left(\sum_{j=1}^{l} k_{j}\right) T(r,f) \leq l(T(r,f) + T(r,g)) + Z(r,g') + S_{f}(r).$$

Similarly,

$$\left(\sum_{j=1}^{l} k_{j}\right) T(r,g) \leq l(T(r,g) + T(r,g)) + Z(r,f') + S_{f}(r).$$

Therefore

$$\left(\sum_{j=1}^{l} k_{j}\right) (T(r,f) + T(r,g)) \leq 2l(T(r,f) + T(r,g)) + Z(r,f') + Z(r,g') + S_{f}(r)$$

$$\leq (2l+1)(T(r,f) + T(r,g)) + S_{f}(r).$$

So,

$$\sum_{j=1}^{l} k_j \leq 2l+1$$

Thus, since $\sum_{j=1}^{l} k_j > 2l+1$, we have u = 1. And if $\alpha \in \mathbb{K}$, we obtain,

$$\sum_{j=1}^{l} k_j(T(r,f) + T(r,g)) \le 2l(T(r,f) + T(r,g)) + Z(r,f') + Z(r,g') + S_f(r)$$

$$\le (2l+1)(T(r,f) + T(r,g)) - 3\log r + O(1),$$

because $T(r, f') \leq T(r, f) - \log r + \mathcal{O}(1)$, hence $\sum_{j=1}^{l} k_j \leq 2l$ which also contradicts the hypothesis $c \neq 1$ whenever $\sum_{j=1}^{l} k_j > 2l$.

Consequently, in the general case, whenever $\sum_{j=1}^{l} k_j > 2l+1$, we have u = 1 and therefore f'P'(f) = g'P'(g) hence P(f) - P(g) is a constant D. But then by Lemma 2.5, we have P(f) = P(g). And since P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}(d(0, \mathbb{R}^-))$), we can conclude f = g. Similarly, if $f, g \in \mathcal{A}(\mathbb{K})$ and if α is a non-zero constant, we have have u = 1 whenever $\sum_{j=1}^{l} k_j > 2l$ and we conclude in the same way.

On \mathbb{K} , we have this theorem from results of [4]:

Theorem 2.4. Let $P, Q \in \mathbb{K}[x]$ satisfy one of the following two statements:

$$\sum_{a_i \in F'} k_i \ge s - m + 2 \quad (resp. \sum_{a_i \in \Delta} k_i \ge s - m + 3),$$
$$\sum_{b_j \in F''} q_j \ge 2 \quad (resp. \sum_{b_i \in \Delta} q_j \ge 3).$$

If two meromorphic functions $f,g \in \mathcal{M}(\mathbb{K})$ (resp. $f,g \in \mathcal{M}(d(a,R^-))$)) satisfy P(f(x)) = Q(g(x)), $x \in \mathbb{K}$, (resp. $x \in d(a,R^-)$) then both f and g are constant (resp. belong to $\mathcal{M}_b(d(a,R^-))$)).

And on \mathbb{C} , we have this theorem from results of [3]:

Theorem 2.5. Let $P, Q \in \mathbb{C}[X]$ satisfy one of the following two conditions:

$$\sum_{a_i\in F'}k_j\geq s-m+3, \quad \sum_{b_j\in F''}q_i\geq 3,$$

and if the polynomial P(X) - Q(Y) has no factor of degree 1, then there is no non-constant function $f,g \in \mathcal{M}(\mathbb{C})$ such that P(f(x)) - Q(g(x)) = 0, $\forall x \in \mathbb{C}$.

From Theorem 2.5 we can derive the following Theorem 2.6:

Theorem 2.6. Let $P, Q \in \mathbb{C}[X]$ satisfy one of the following two conditions:

$$\sum_{a_i\in F'}k_i\geq s-m+3, \quad \sum_{b_j\in F''}q_j\geq 3.$$

Then there is no non-constant function $f,g \in \mathcal{M}(\mathbb{C})$ such that P(f(x)) - Q(g(x)) = 0, $\forall x \in \mathbb{C}$.

Proof. Let F(X,Y) = P(X) - Q(Y). Since \mathbb{C} is algebraically isomorphic to an ultrametric field such as \mathbb{C}_p (with p any prime integer), without loss of generality we can transfer the problem onto the field \mathbb{C}_p . So, the image of the polynomial F in $\mathbb{C}_p[X,Y]$ is a polynomial $\widetilde{F}(X,Y)$.

Thus, the hypothesis $\sum_{a_i \in F'} k_i \ge s - m + 3$ still holds in \mathbb{C}_p and similarly, for the hypothesis $\sum_{b_j \in F''} q_j \ge 3$. Suppose for instance $\sum_{a_i \in F'} k_i \ge s - m + 3$. By Theorem 2.5, there is no pair of non-constant functions $f, g \in \mathcal{M}(\mathbb{C}_p)$ such that P(f(x)) - Q(g(x)) = 0. Particularly, $\tilde{F}(X,Y)$ admits no factor of degree 1 in $\mathbb{C}_p[X,Y]$. But then, F(X,Y) does not admit a factor of degree 1 in $\mathbb{C}[X,Y]$ either, because the factorization is conserved by a transfer. Now, we can apply Theorem 2.5 proving that when two functions $f,g \in \mathcal{M}(\mathbb{C})$ satisfy $P(f(x)) = Q(g(x)), \forall x \in \mathbb{C}$, then they are constant.

Proof of Proposition 1.1. Suppose that two functions $f,g \in \mathcal{M}(\mathbb{K})$ (resp. $f,g \in \mathcal{M}(d(a,R^-))$) satisfy P(f(x)) = P(g(x)) + C ($C \in \mathbb{K}$), $\forall x \in \mathbb{K}$ (resp. $\forall x \in d(a,R^-)$). We can apply Theorem 2.4 by putting Q(X) = P(X) + C. So, we have h = l and $b_i = a_i$, $i = 1, \dots, l$. Let Γ be the curve of equation P(X) - P(Y) = C. By hypothesis we have $n \ge 2$, hence deg $(P) \ge 3$, so Γ is of degree ≥ 3 . Therefore, if Γ has no singular point, it is of genus ≥ 1 and hence, by Picard-Berkovich Theorem, the conclusion is immediate. Consequently, we can assume that Γ has a singular point (α, β) . But then $P'(\alpha) = P'(\beta) = 0$ and hence (α, β) is of the form (a_h, a_k) . Consequently, $C = P(a_h) - P(a_k)$ and since $C \ne 0$, we have $h \ne k$. We will prove that either $a_1 \in F'$, or $a_1 \in F''$.

Suppose first that $a_1 \notin F' \cup F''$. Since $a_1 \notin F'$, there exists $i \in \{2, \dots, l\}$ such that $P(a_1) = P(a_i) + C$. Now since $1 \notin F''$, there exists $j \in \{2, \dots, l\}$ such that $P(a_1) + C = P(a_i)$. But since $C = -P(a_i)$, we have $P(a_j) = -P(a_i)$, therefore $P(a_i) + P(a_j) = 0$. Since P satisfies (G), we have i = j, hence $P(a_i) = 0$. But then C = 0, a contradiction. Therefore, we have proven that $a_1 \in F' \cup F''$. Now, by Theorem 2.4, f and g are constant (resp. f and g belong to $\mathcal{M}_b(d(a, R^-)))$.

Proof of Proposition 1.2. Suppose that two functions $f,g \in \mathcal{M}(\mathbb{C})$ satisfy $P(f(x)) = P(g(x)) + C(C \in \mathbb{C})$, $\forall x \in \mathbb{C}$. We will apply Theorem 2.6 by putting Q(X) = P(X) + C. Since $n \ge 3$, we have deg(P) ≥ 4 and hence Γ is of degree ≥ 4 . Consequently, if Γ has no singular point, it has genus ≥ 2 and hence, by Picard's Theorem, there exist no functions $f,g \in \mathcal{M}(\mathbb{C})$ such that $P(f(x)) = P(g(x)) + C, x \in \mathbb{C}$. Consequently, we can assume that Γ admits a singular point (a_h, a_k). The proof is then similar to that of Proposition 1.1.

Notation 2.3. Let $f \in \mathcal{M}(\mathbb{C})$ be such that $f(0) \neq 0, \infty$. We denote by $Z_{[2]}(r, f)$ the counting function of the zeros of f each being counted with multiplicity when it is at most 2 and with multiplicity 2 when it is bigger.

The following basic lemma applies to both complex and meromorphic functions. A proof is given in [5] for *p*-adic meromorphic functions and in [6] for complex meromorphic functions.

The following Theorem 2.7 is indispensable in the proof of theorems:

Theorem 2.7. Let $P(x) = (x-a_1)^n \prod_{i=2}^l (x-a_i)^{k_i} \in \mathbb{E}[x]$ $(a_i \neq a_j, \forall i \neq j)$ with $l \ge 2$ and $n \ge \max\{k_2, \dots, k_l\}$ and let $k = \sum_{i=2}^l k_i$. Let $f, g \in \mathcal{M}(\mathbb{E})$ be transcendental (resp. let $f, g \in \mathcal{M}(d(a, R^-))$) and let $\theta = P(f)f'P(g)g'$. If θ belongs to $\mathcal{M}_f(\mathbb{E}) \cap \mathcal{M}_g(\mathbb{E})$, (resp. if θ belongs to $\mathcal{M}_f(d(a, R^-)) \cap \mathcal{M}_g(d(a, R^-))$) then we have the following:

(a) if l = 2 then n belongs to $\{k, k+1, 2k, 2k+1, 3k+1\}$,

(b) if l = 3 then n belongs to $\{k/2, k+1, 2k+1, 3k_2 - k, 3k_3 - k\}$,

(*c*) *if* $l \ge 4$ *then* n = k+1.

Moreover, if f,g belong to $\mathcal{M}(\mathbb{K})$ and if θ is a constant, then n = k+1. Further, if f,g belong to $\mathcal{A}(\mathbb{E})$, then θ does not belong to $\mathcal{A}_f(\mathbb{E})$.

Lemma 2.6. Let $f \in \mathcal{M}(\mathbb{K})$, (resp. $f \in \mathcal{M}(d'0, \mathbb{R}^-)$), resp. $f \in \mathcal{M}(\mathbb{C})$). Then

$$T(r,f) - Z(r,f) \le T(r,f') - Z(r,f') + O(1).$$

Now, we can extract the following Lemma 2.7 from a result that is proven in several papers and particularly in Lemma 3 [14] when $\mathbb{E} = \mathbb{C}$ and, with precisions in Lemma 11 [5] when $\mathbb{E} = \mathbb{K}$. We put

$$\Psi_{F,G} = \frac{F''}{F'} - \frac{2F'}{F-1} - \frac{G''}{G'} + \frac{2G'}{G-1}.$$

Lemma 2.7. Let $f,g \in \mathcal{M}(\mathbb{C})$ (resp. $f,g \in \mathcal{M}(\mathbb{K})$) share the value 1 CM. If $\Psi_{f,g}$ is not identically zero, then,

$$\max(T(r,f),T(r,g)) \le N_{[2]}(r,f) + Z_{[2]}(r,f) + N_{[2]}(r,g) + Z_{[2]}(r,g) + S_f(r) + S_g(r),$$

resp.

$$\max(T(r,f),T(r,g)) \le N_{[2]}(r,f) + Z_{[2]}(r,f) + N_{[2]}(r,g) + Z_{[2]}(r,g) - 6\log r.$$

We will need the following Lemma 2.8:

Lemma 2.8. Let $f,g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f,g \in \mathcal{M}_u(d(0,R^-))$), resp. $f,g \in \mathcal{M}(\mathbb{C})$). Let $P(x) = x^{n+1}Q(x)$ be a polynomial such that $n \ge deg(Q) + 2$ (resp. $n \ge deg(Q) + 3$, resp. $n \ge deg(Q) + 3$). If P'(f)f' = P'(g)g' then P(f) = P(g).

For simplicity, we can assume $a_1 = 0$. Set $F = f'P'(f)/\alpha$ and $G = g'P'(g)/\alpha$. Clearly F and G share the value 1 C.M..

Since *f*,*g* are transcendental, we notice that so are *F* and *G*. We will prove that under the hypotheses of Theorems, $\Psi_{F,G}$ is identically zero.

The following lemma holds in the same way in *p*-adic analysis and in complex analysis. It is proven in [5] for the *p*-adic version and in [21] for the complex version.

Lemma 2.9. Let $f,g \in \mathcal{M}(\mathbb{E})$ (resp. let $f,g \in \mathcal{M}(d(0,R^-))$) be non-constant and sharing the value 1 C.M.. Suppose that $\Psi_{f,g} = 0$ and that

$$\limsup_{r \to +\infty} \left(\frac{\overline{Z}(r,f) + \overline{Z}(r,g) + \overline{N}(r,f) + \overline{N}(r,g)}{\max(T(r,f),T(r,g))} \right) < 1,$$

resp.

$$\limsup_{r \to R^{-}} \Big(\frac{\overline{Z}(r,f) + \overline{Z}(r,g) + \overline{N}(r,f) + \overline{N}(r,g)}{\max(T(r,f),T(r,g))} \Big) < 1.$$

Then either f = g or fg = 1.

Proofs of Theorems 1.7-1.11. For simplicity, now we set $n = k_1$. Set $F = f'P'(f)/\alpha$, $G = g'P'(g)/\alpha$ and $\hat{F} = P(f)$, $\hat{G} = P(g)$. Suppose $F \neq G$. We notice that P(x) is of the form $x^{n+1}Q(x)$ with $Q \in K[x]$ of degree k. Now, with help of Lemma 2.6, we can check that we have

$$T(r,\widehat{F}) - Z(r,\widehat{F}) \leq T(r,\widehat{F}') - Z(r,\widehat{F}') + \mathcal{O}(1).$$

Consequently, since $(\widehat{F})' = \alpha F$, we have

$$T(r,\hat{F}) \le T(r,F) + Z(r,\hat{F}) - Z(r,F) + T(r,\alpha) + O(1),$$
(2.4)

hence, by (2.4), we obtain

$$T(r,\widehat{F}) \leq T(r,F) + (n+1)Z(r,f) + Z(r,Q(f)) - nZ(r,f) -\sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) + O(1),$$

i.e.,

$$T(r,\widehat{F}) \le T(r,F) + Z(r,f) + Z(r,Q(f)) - \sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) + O(1), \quad (2.5)$$

and similarly,

$$T(r,\widehat{G}) \le T(r,G) + Z(r,g) + Z(r,Q(g)) - \sum_{i=2}^{l} k_i Z(r,g-a_i) - Z(r,g') + T(r,\alpha) + \mathcal{O}(1).$$
(2.6)

Now, it follows from the definition of *F* and *G* that

$$Z_{[2]}(r,F) + N_{[2]}(r,F) \le 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + T(r,\alpha) + O(1), \quad (2.7)$$

and similarly

$$Z_{[2]}(r,G) + N_{[2]}(r,G) \le 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + T(r,\alpha) + O(1).$$
(2.8)

A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

And particularly, if $k_i = 1, \forall i \in \{2, \dots, l\}$, then

$$Z_{[2]}(r,F) + N_{[2]}(r,F) \le 2Z(r,f) + \sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + T(r,\alpha) + O(1), \quad (2.9)$$

and similarly

$$Z_{[2]}(r,G) + N_{[2]}(r,G) \le 2Z(r,g) + \sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + T(r,\alpha) + \mathcal{O}(1).$$
(2.10)

Suppose now that $\Psi_{F,G}$ is not identically zero. Let us place us in the *p*-adic context: $\mathbb{E} = \mathbb{K}$. By Lemma 2.7, we have

$$T(r,F) \le Z_{[2]}(r,F) + N_{[2]}(r,F) + Z_{[2]}(r,G) + N_{[2]}(r,G) - 3\log r,$$

hence by (2.5), we obtain

$$T(r,\widehat{F}) \leq Z_{[2]}(r,F) + N_{[2]}(r,F) + Z_{[2]}(r,G) + N_{[2]}(r,G) + Z(r,f) + Z(r,Q(f)) - \sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) - 3\log r + O(1),$$

and hence by (2.7) and (2.8)

$$T(r,\widehat{F}) \leq 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + Z(r,f) + Z(r,Q(f)) - \sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + 2T(r,\alpha) - 3\log r + 0(1),$$
(2.11)

and similarly,

$$T(r,\widehat{G}) \leq 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + Z(r,g) + Z(r,Q(g)) - \sum_{i=2}^{l} k_i Z(r,g-a_i) - Z(r,g') + 2T(r,\alpha) - 3\log r + O(1).$$
(2.12)

Consequently,

$$\begin{split} T(r,\widehat{F}) + T(r,\widehat{G}) \leq & 5(Z(r,f) + Z(r,g)) + \sum_{i=2}^{l} (4 - k_i)(Z(r,f - a_i) + Z(r,g - a_i)) \\ & + (Z(r,f') + Z(r,g')) + 4(\overline{N}(r,f) + \overline{N}(r,g)) + (Z(r,Q(f)) + Z(r,Q(g))) \\ & + 4T(r,\alpha) - 6\log r + \mathcal{O}(1). \end{split}$$

Moreover, if $k_i = 1$, $\forall i \in \{2, \dots, l\}$, then by (2.9) and (2.10) we have

$$T(r,\widehat{F}) \leq 2Z(r,f) + \sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + 2Z(r,g) + \sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + Z(r,f) + Z(r,Q(f)) - \sum_{i=2}^{l} Z(r,f-a_i) - Z(r,f') + 2T(r,\alpha) - 3\log r + O(1),$$

and similarly,

$$T(r,\widehat{G}) \leq 2Z(r,g) + \sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + 2Z(r,f)$$

+
$$\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + Z(r,g) + Z(r,Q(g)))$$

-
$$\sum_{i=2}^{l} Z(r,g-a_i) - Z(r,g') + 2T(r,\alpha) - 3\log r + O(1).$$

Consequently,

$$T(r,\widehat{F}) + T(r,\widehat{G}) \leq 5(Z(r,f) + Z(r,g)) + \sum_{i=2}^{l} (Z(r,f-a_i) + Z(r,g-a_i)) + Z(r,Q(f)) + Z(r,Q(g)) + (Z(r,f') + Z(r,g')) + 4(\overline{N}(r,f) + \overline{N}(r,g)) + 4T(r,\alpha) - 6\log r + O(1).$$
(2.14)

Now, let us go back to the general case. By Lemma 2.4, we can write $Z(r, f') + Z(r, g') \le Z(r, f - a_2) + Z(r, g - a_2) + \overline{N}(r, f) + \overline{N}(r, g) - 2\log r$. Hence, in general, by (2.13) we obtain

$$T(r,\widehat{F}) + T(r,\widehat{G}) \leq 5(Z(r,f) + Z(r,g)) + \sum_{i=3}^{l} (4-k_i) \left((Z(r,f-a_i) + Z(r,g-a_i)) \right) \\ + (5-k_2) \left((Z(r,f-a_2) + Z(r,g-a_2)) + 5(\overline{N}(r,f) + \overline{N}(r,g)) \right) \\ + (Z(r,Q(f)) + Z(r,Q(g))) + 4T(r,\alpha) - 8\log r + 0(1),$$

70

and hence, since T(r,Q(f)) = kT(r,f) + O(1) and T(r,Q(g)) = kT(r,g) + O(1),

$$T(r,\widehat{F}) + T(r,\widehat{G}) \leq 5(T(r,f) + T(r,g)) + \sum_{i=3}^{l} (4-k_i) \left((Z(r,f-a_i) + Z(r,g-a_i)) \right) \\ + (5-k_2) \left((Z(r,f-a_2) + Z(r,g-a_2)) + 5(\overline{N}(r,f) + \overline{N}(r,g)) \right) \\ + k(T(r,f) + T(r,g)) + 4T(r,\alpha) - 8\log r + O(1).$$
(2.15)

Since \widehat{F} is a polynomial in f of degree n+k+1, we have $T(r,\widehat{F}) = (n+k+1)T(r,f) + O(1)$ and similarly, $T(r,\widehat{G}) = (n+k+1)T(r,g) + O(1)$, hence by (2.15) we can derive

$$(n+k+1)(T(r,f)+T(r,g)) \le 5(T(r,f)+T(r,g)) + (5-k_2)(Z(r,f-a_2)+Z(r,g-a_2)) + \sum_{i=3}^{l} (4-k_i)((Z(r,f-a_i)+Z(r,g-a_i))) + 5(\overline{N}(r,f)+\overline{N}(r,g)) + k(T(r,f)+T(r,g)) + 4T(r,\alpha) - 8\log r + O(1),$$
(2.16)

hence

$$\begin{split} (n+k+1)(Tr,f)+T(r,g)) \leq & 10(T(r,f)+T(r,g)) + \sum_{i=3}^{l} (4-k_i) \left((Z(r,f-a_i)+Z(r,g-a_i)) \right) \\ & + (5-k_2) \left((Z(r,f-a_2)+Z(r,g-a_2)) + k(T(r,f)+T(r,g)) \right) \\ & + 4T(r,\alpha) - 8\log r + O(1)), \end{split}$$

hence

$$n(Tr,f) + T(r,g)) \le 9(T(r,f) + T(r,g)) + (5-k_2) ((Z(r,f-a_2) + Z(r,g-a_2)) + \sum_{i=3}^{l} (4-k_i) ((Z(r,f-a_i) + Z(r,g-a_i))) + 4T(r,\alpha) - 8\log r + O(1)).$$

$$(2.17)$$

Then $(5-k_2)(Z(r, f-a_2)+Z(r, g-a_2)) \le \max(0, 5-k_2)(T(r, f)+T(r, g))+O(1)$ and at least, for each $i=3, \dots, l$, we have

$$(4-k_i)(Z(r,f-a_i)+Z(r,g-a_i)) \le \max(0,4-k_i)(T(r,f)+T(r,g))+O(1).$$

Now suppose $s_5 > 0$. That means that $k_i \ge 5$, $\forall i = 3, \dots, u_5$ with $l \ge 5$. We notice that the number of indicies *i* superior or equal to 2 such that $k_i \ge 5$ is $u_5 - 2$. Similarly, for each m > 5, the number of indicies superior or equal to 1 such that $k_i \ge m$ is $u_m - 1$.

Suppose first $\mathbb{E} = \mathbb{K}$. then we can apply Theorem 2.3 and then we obtain $\sum_{i=3}^{u_5} Z(r, f - a_i) \ge (u_5 - 3)T(r, f) - \log r + O(1)$ and for each $m \ge 6$, $\sum_{i=3}^{u_m} Z(r, g - a_i) \ge (u_m - 2)T(r, g) - \log r + O(1)$, i.e., $\sum_{i=3}^{u_5} Z(r, f - a_i) \ge s_5T(r, f) - \log r + O(1)$, i.e., $\sum_{i=3}^{u_m} Z(r, g - a_i) \ge s_mT(r, g) - \log r + O(1)$ in Theorems 1.7, 1.9, 1.10.

Consequently, by (2.17), we obtain

$$n(Tr,f) + T(r,g)) \le 9(T(r,f) + T(r,g)) + \max(0,5-k_2)(Z(r,f-a_2) + Z(r,g-a_2)) + \sum_{i=3}^{l} \max(0,4-k_i)(Z(r,f-a_i) + Z(r,g-a_i)) - \sum_{m=5}^{\infty} s_m(T(r,f) + T(r,g)) + 4T(r,\alpha) - 8\log r + O(1)),$$
(2.18)

therefore

$$n \le 9 + \max(5-k_2) + \sum_{i=3}^{l} \max(0,4-k_i) - \sum_{j=5}^{\infty} s_j,$$

a contradiction to the hypotheses of Theorem 1.7.

Consider now the situation in Theorems 1.9 and 1.10. In Theorem 1.9, we have $T(r,\alpha) \le \log r + O(1)$ and in Theorem 1.10, $T(r,\alpha) = 0$. Consequently, Relation (2.18) now implies

$$\begin{split} n(Tr,f) + T(r,g)) &\leq 9(T(r,f) + T(r,g)) + \max(0,5-k_2)(Z(r,f-a_2) + Z(r,g-a_2)) \\ &+ \sum_{i=3}^{l} \max(0,4-k_i) \left(Z(r,f-a_i) + Z(r,g-a_i) \right) - \sum_{m=5}^{\infty} s_m(T(r,f) + T(r,g)) \\ &- 4\log r + O(1)), \end{split}$$

therefore

$$n < 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \sum_{m=5}^{\infty} s_m$$

but this is incompatible with the hypothesis

$$n \ge 9 + \max(5-k_2) + \sum_{i=3}^{l} \max(0,4-k_i) - \min\left(2l, \sum_{j=5}^{\infty} s_j\right).$$

Now, let us consider the complex context: $\mathbb{E} = \mathbb{C}$. All inequalities above hold just by replacing each expression $-q\log r$ by $S_f(r) + S_g(r)$. However, we cannot apply Theorem 2.3 here but only Theorem 2.1. Therefore we obtain

$$\sum_{i=3}^{u_5} (Z(r,f-a_i) + Z(r,g-a_i) \ge (u_5-4)(T(r,f) + T(r,g)) = t_5(T(r,f) + T(r,g)),$$

$$\sum_{i=3}^{U_m} (Z(r,f-a_i) + Z(r,g-a_i) \ge (u_m-3)(T(r,f) + T(r,g)) = t_m(T(r,f) + T(r,g)).$$

Therefore we obtain

...

$$n \le 9 + \max(5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \sum_{m=5}^{\infty} t_m$$

A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

a contradiction to the hypothesis of Theorem 1.8.

Finally, consider the situation in Theorem 1.11. Since N(r, f) = N(r, g) = 0, Relation (2.16) gets

$$\begin{aligned} (n+k+1)(T(r,f)+T(r,g)) &\leq 5(T(r,f)+T(r,g)) + (5-k_2)(Z(r,f-a_2)+Z(r,g-a_2)) \\ &+ \sum_{i=3}^{l} (4-k_i) \left((Z(r,f-a_i)+Z(r,g-a_i)) \right) \\ &+ k(T(r,f)+T(r,g)) + 4T(r,\alpha) + S_f(r) + S_g(r)). \end{aligned}$$

On the other hand, by applying Theorem 2.1 to f and g, which now are entire functions, we have

$$\sum_{i=3}^{u_5} Z(r, f-a_i) \ge (u_5-3)T(r, f) = s_5T(r, f), \qquad \sum_{i=3}^{u_5} Z(r, g-a_i) \ge (u_5-3)T(r, g) = s_5T(r, g),$$

$$\sum_{i=3}^{u_m} Z(r, f-a_i) \ge (u_m-2)T(r, f) = s_mT(r, f), \qquad \sum_{i=3}^{u_m} Z(r, g-a_i) \ge (u_m-2)T(r, g) = s_mT(r, g).$$

Consequently,

$$n+k+1 \le 5+k+\max(0,5-k_2) + \sum_{i=3}^{l} \max(0,4-k_i) - \sum_{m=1}^{\infty} s_m,$$

and therefore

$$n \le 4 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \sum_{m=1}^{\infty} s_m,$$

a contradiction to the hypotheses of Theorem 1.11.

Thus, in the hypotheses of Theorems 1.7-1.11 we have proven that $\Psi_{F,G}$ is identically zero. Henceforth, we can assume that $\Psi_{F,G} = 0$ in each theorem.

Note that we can write

$$\Psi_{F,G} = \frac{\phi'}{\phi} \quad \text{with } \phi = \left(\frac{F'}{(F-1)^2}\right) \left(\frac{(G-1)^2}{G'}\right).$$

Since $\Psi_{F,G} = 0$, there exist $A, B \in \mathbb{E}$ such that

$$\frac{1}{G-1} = \frac{A}{F-1} + B,$$
(2.19)

and $A \neq 0$.

We notice that $\overline{Z}(r, f) \leq T(r, f)$,

$$\overline{N}(r,f) \le T(r,f)\overline{Z}(r,f-a_i) \le T(r,f-a_i) \le T(r,f) + \mathcal{O}(1), \quad i=2,\cdots,l,$$

and $\overline{Z}(r, f') \leq T(r, f') \leq 2T(r, f) + O(1)$. Similarly for *g* and *g'*. Moreover, if $\mathbb{E} = \mathbb{K}$ by Lemma 2.4 we have

$$T(r,F) \ge (n+k)T(r,f), \tag{2.20}$$

and if $\mathbb{E} = \mathbb{C}$, we have

$$T(r,F) \ge (n+k)T(r,f) - m\left(r,\frac{1}{f'}\right) + S_f(r).$$
 (2.21)

We will show that F = G in each theorem. We first notice that according to all hypotheses in Theorems 1.7-1.10 we have

$$n+k \ge 2l+7 \tag{2.22}$$

and in Theorem 1.11, we have

$$n+k \ge 2l+5.$$
 (2.23)

We will consider the following two cases: B = 0 and $B \neq 0$.

Case 1: *B* = 0.

Suppose $A \neq 1$. Then, by (2.19), we have F = AG + (1-A). Suppose first $\mathbb{E} = \mathbb{K}$. Applying Theorem 2.1 to *F*, we obtain

$$T(r,F) \leq \overline{Z}(r,F) + \overline{Z}(r,F-(1-A)) + \overline{N}(r,F) - \log r + \mathcal{O}(1)$$

$$\leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{Z}(r,g')$$

$$+ \overline{N}(r,f) - \log r + \mathcal{O}(1).$$
(2.24)

By (2.20) and (2.24), we obtain

$$(n+k)T(r,f) \leq \overline{Z}(r,F) + \overline{Z}(r,F-(1-A)) + \overline{N}(r,F) + -\log r + \mathcal{O}(1)$$

$$\leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{Z}(r,g') + \overline{N}(r,f)$$

$$-\log r + \mathcal{O}(1).$$
(2.25)

By (2.25), we have

$$\begin{aligned} (n+k)T(r,f) \leq &\overline{Z}(r,F) + \overline{Z}(r,F-(1-A)) + \overline{N}(r,F) - \log r + \mathcal{O}(1) \\ \leq &\overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) \\ &+ \overline{Z}(r,g') + \overline{N}(r,f) - \log r + \mathcal{O}(1)), \end{aligned}$$

hence

$$(n+k)T(r,f) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{N}(r,f) + \overline{Z}(r,g') + \overline{Z}(r,f') - \log r + \mathcal{O}(1).$$

$$(2.26)$$

Then, considering all the previous inequalities, by Lemma 2.4 we can derive the following from (2.26)

$$(n+k)T(r,f) \le (l+3)T(r,f) + (l+2)T(r,g) - 3\log r + O(1).$$
(2.27)

Since *f* and *g* satisfy the same hypothesis, we also have

$$(n+k)T(r,g) \le (l+3)T(r,g) + (l+2)T(r,f) - 3\log r + O(1).$$
(2.28)

Hence, adding (2.27) and (2.28), we have

$$(n+k)[T(r,f)+T(r,g)] \le (2l+5)[T(r,f)+T(r,g)]-6\log r+O(1),$$

therefore

$$n+k < 2l+5.$$
 (2.29)

A contradiction to (2.23) proving that $A \neq 1$ is impossible whenever B = 0, in Theorems 1.7, 1.9 and 1.10.

Suppose now $\mathbb{E} = \mathbb{C}$. By (2.21), we have

$$(n+k)T(r,f) \leq \overline{Z}(r,F) + \overline{Z}(r,F-(1-A)) + \overline{N}(r,F) + m\left(r,\frac{1}{f'}\right) + S_F(r)$$

$$\leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + m\left(r,\frac{1}{f'}\right) + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i)$$

$$+ \overline{Z}(r,g') + \overline{N}(r,f) + S_f(r) + S_g(r).$$

Here we notice that $\overline{Z}(r, f') + m(r, 1/f') \le T(r, 1/f') = T(r, f') + O(1)$, hence

$$(n+k)T(r,f) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{N}(r,f) + \overline{Z}(r,g') + T(r,f') + S_f(r) + S_g(r).$$

$$(2.30)$$

Then, considering all the previous inequalities in (2.30), similarly we can derive

$$(n+k)T(r,f) \le (l+3)T(r,f) + (l+2)T(r,g) + S_f(r) + S_g(r).$$
(2.31)

Since *f* and *g* satisfy the same hypothesis, we also have

$$(n+k)T(r,g) \le (l+3)T(r,g) + (l+2)T(r,f) + S_f(r) + S_g(r).$$
(2.32)

Hence, adding (2.31) and (2.32), we have

$$(n+k)[T(r,f)+T(r,g)] \le (2l+5)[T(r,f)+T(r,g)] + S_f(r) + S_g(r),$$

therefore $n+k \le 2l+5$, a contradiction to (2.23) proving that $A \ne 1$ is impossible whenever B=0, in Theorem 1.8.

Consider now the situation in Theorem 1.11. By hypothesis we have

$$k_1 \ge 5 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min\left(2l, \sum_{m=5}^{\infty} s_m\right),$$

hence

$$n+k \ge 10+4(l-2) - \sum_{m=5}^{\infty} s_m = 4l + 2 - \sum_{m=5}^{\infty} s_m.$$

Since N(r, f) = N(r, g) = 0, we can use Theorem 2.1, for entire functions and we obtain

$$\sum_{i=3}^{u_5} Z(r, f-a_i) \ge (u_5-3)T(r, f) + S_f(r) + S_g(r),$$

and for each $m \ge 6$,

$$\sum_{i=3}^{u_m} Z(r,g-a_i) \ge (u_m-2)T(r,g) + S_f(r)) + S_g(r),$$

i.e.,

$$\sum_{i=3}^{u_5} Z(r, f - a_i) \ge s_5 T(r, f) + S_f(r) + S_g(r)$$

and

$$\sum_{i=3}^{u_m} Z(r,g-a_i) \ge s_m T(r,g) + S_f(r) + S_g(r).$$

Now, Relation (2.16) now gets

$$(n+k+1)(T(r,f)+T(r,g)) \le (Z(r,f-a_2)+Z(r,g-a_2)) + \sum_{i=3}^{l} (4-k_i)((Z(r,f-a_i)+Z(r,g-a_i))) + k(T(r,f)+T(r,g)) + S_f(r) + S_g(r),$$

A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

therefore

$$n+k \le 9+4(l-2) - \sum_{j=5}^{\infty} s_j = 2l+1 - \sum_{m=5}^{\infty} s_m$$

a contradiction to the hypothesis $n+k \ge 2l+5$ of Theorem 1.11. Consequently, the hypothesis $A \ne 1$ does not hold when B = 0. Henceforth we suppose $B \ne 0$. **Case 2**: $B \ne 0$.

Consider first the situation when $\mathbb{E} = \mathbb{K}$, i.e., in Theorems 1.7 and in Theorems 1.9 and 1.10. By (2.20) we have Immediately,

$$\begin{split} \overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \\ \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) \\ + \overline{Z}(r,g') + \overline{N}(r,f) + \overline{N}(r,g) + 4T(r,\alpha) + \mathcal{O}(1) \\ \leq (l+1) \left[T(r,f) + T(r,g) \right] + T(r,f') + T(r,g') + 4T(r,\alpha) + \mathcal{O}(1) \\ \leq (l+3) (T(r,f) + T(r,g)) + 4T(r,\alpha) - 2\log r, \end{split}$$

hence by Lemma 2.4,

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le (l+3)(T(r,f) + 4T(r,\alpha) - 2\log r + \mathcal{O}(1)).$$
(2.33)

Moreover, by (2.19), T(r,F) = T(r,G) + O(1) and by Lemma 2.4, we have

$$T(r,f) \le \frac{1}{n+k}(T(r,F)+T(r,\alpha)) + O(1)$$
 and $T(r,g) \le \frac{1}{n+k}(T(r,G)+T(r,\alpha)) + O(1).$

Consequently,

$$T(r,f) + T(r,g) \le 2 \left[\frac{1}{n+k} (T(r,F) + T(r,\alpha)) \right] + \mathcal{O}(1),$$

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G)$$
(2.34a)

$$\leq \frac{2l+6}{n+k}T(r,F) + \left(\frac{2l+6}{n+k}+4\right)T(r,\alpha) - 2\log r + O(1).$$
(2.34b)

Now, by Hypotheses, in Theorems 1.7, 1.9, 1.10 by (2.22), we have $n+k \ge 2l+7$. Consequently, by relation (2.34b) we obtain

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2l+6}{2l+7}T(r,F) + \left(\frac{2l+6}{2l+7} + 4\right)T(r,\alpha) + \mathcal{O}(1), \quad (2.35)$$

and similarly,

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2l+6}{2l+7}T(r,G) + \left(\frac{2l+6}{2l+7}+4\right)T(r,\alpha) + \mathcal{O}(1), \quad (2.36)$$

hence

$$\limsup_{r \to +\infty} \left(\frac{\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G)}{\max(T(r,F),T(r,G))} \right) < 1.$$

Therefore, by Lemma 2.9, and Theorems 1.7, 1.9, 1.10, we have either F = G, or FG = 1.

Suppose FG = 1. Then $f'P'(f)g'P'(g) = \alpha^2$. But in Theorems 1.7, 1.9, 1.10, we have assumed that $n \neq k+1$ and if l = 2, then $n \neq 2k, 2k+1, 3k+1$ and if l = 3 then $n \neq k, 3k_2 - k, 3k_3 - k$. Consequently, we have a contradiction to Theorem 2.7. Thus, the hypothesis FG = 1 is impossible and therefore we have F = G.

Consider now the situation when $\mathbb{E} = \mathbb{C}$, i.e., in Theorems 1.8 and 1.11. The proof is very similar to that in the case when $\mathbb{E} = \mathbb{K}$. We have

$$\begin{split} \overline{Z}(r,F) &\leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + S_f(r), \\ \overline{N}(r,F) &\leq \overline{N}(r,f) + S_f(r), \end{split}$$

and similarly for *G*, so we can derive

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G)$$

$$\leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i)$$

$$+ \overline{Z}(r,g') + \overline{N}(r,f) + \overline{N}(r,g) + S_f(r) + S_g(r)$$

$$\leq (l+2) \left[T(r,f) + T(r,g) \right] + S_f(r) + S_g(r). \qquad (2.37)$$

Moreover, by (2.19), T(r,F) = T(r,G) + O(1) and, by Lemma 2.4, we have

$$T(r,f) \le \frac{1}{n+k}T(r,F) + S_f(r)$$
 and $T(r,g) \le \frac{1}{n+k}T(r,G) + S_g(r)$.

Consequently,

$$T(r,f) + T(r,g) \le \frac{2}{n+k}T(r,F) + S_f(r) + S_g(r)$$

Thus, (2.37) implies

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2l+6}{n+k}T(r,F) + S_f(r) + S_g(r).$$

Now, as in Theorems 1.7, 1.9, 1.10, we can check that $n+k \ge 2l+7$ in Theorem 1.8. Consequently, the previous inequality implies

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2l+6}{2l+7}T(r,F) + S_f(r) + S_g(r)$$

78

A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

and similarly,

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2l+6}{2l+7}T(r,G) + S_f(r) + S_g(r),$$

hence by Lemma 2.9 again, we have F=G or FG=1. Then, by Theorem 2.7 as in Theorems 1.7, 1.9, 1.10, the hypotheses of Theorem 1.8 prevent the case FG=1 and therefore F=G.

Consider now the situation in Theorem 1.11. Relation (2.37) implies

$$\overline{Z}(r,F) + \overline{Z}(r,G) \le (l+2) \left[T(r,f) + T(r,g) \right] + S_f(r) + S_g(r).$$
(2.38)

Moreover, by (16), T(r,F) = T(r,G) + O(1) and, by Lemma 2.4, we have

$$T(r,f) \le \frac{1}{n+k}T(r,F) + S_f(r)$$
 and $T(r,g) \le \frac{1}{n+k}T(r,G) + S_g(r)$.

Consequently,

$$T(r,f) + T(r,g) \le \frac{2}{n+k}T(r,F) + S_f(r) + S_g(r)$$

Thus, (2.37) implies

$$\overline{Z}(r,F) + \overline{Z}(r,G) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{Z}(r,g') + S_f(r) + S_g(r) \leq 4[T(r,f) + T(r,g)] + S_f(r) + S_g(r).$$

Therefore,

$$\overline{Z}(r,F) + \overline{Z}(r,G) \leq \frac{2l+4}{n+k}T(r,F) + S_f(r) + S_g(r),$$

hence by (2.23) we have

$$\overline{Z}(r,F) + \overline{Z}(r,G) \leq \frac{2l+4}{2l+5}T(r,F) + S_f(r) + S_g(r).$$

In the same way, this proves that either F = G of FG = 1. But by Theorem 2.7, FG = 1 is impossible. Hence F = G.

Thus, in Theorems 1.7-1.11, we have proven that F = G, i.e., f'P'(f) = g'P'(g). Consequently, P(f) - P(g) is a constant *C*. Then, by Lemma 2.8 and Proposition 1.1, in Theorems 1.7, 1.9, 1.10, we have P(f) = P(g) and by Lemma 2.8 and Proposition 1.2, we have P(f) = P(g) in Theorems 1.8 and 1.11. Finally, in each theorem, *P* is a polynomial of uniqueness for the family of functions we consider. Consequently, f = g.

Acknowledgements

Partially funded by the research project CONICYT (Inserción de nuevos investigadores en la academia, NO. 79090014) from the Chilean Government.

References

- T. T. H. An, J. T. Y. Wang and P. M. Wong, Unique range sets and uniqueness polynomials in positive characteristic II, Acta Arithmetica, (2005), 115–143.
- [2] T. T. H. An, J. T. Y. Wang and P. M. Wong, Strong uniqueness polynomials: the complex case, Complex Variables, 49(1) (2004), 25–54.
- [3] T. T. H. An and N. T. N. Diep, Genus one factors of curves dened by separated variable polynomials, J. Number. Theory, 133 (2013), 2616-2634.
- [4] T. T. H. An and A. Escassut, Meromorphic solutions of equations over non-archimedean fields, Ramanujan J., 15(3) (2008), 415–433.
- [5] K. Boussaf, A. Escassut and J. Ojeda, *p*-adic meromorphic functions f'P'(f), g'P'(g) sharing a small function, Bulletin des Sciences Mathématiques, 136(2) (2012), 172–200.
- [6] K. Boussaf, A. Escassut and J. Ojeda, Complex meromorphic functions f'P'(f), g'P'(g) sharing a small function, Indagationes, 24(1) (2013), 15–41.
- [7] A. Boutabaa, Théorie de Nevanlinna p-adique, Manuscripta Math., 67 (1990), 251–269.
- [8] A. Escassut, Analytic Elements in *p*-Adic Analysis, World Scientific Publishing Co. Pte. Ltd. Singapore, 1995.
- [9] A. Escassut, Meromorphic functions of uniqueness, Bulletin des Sciences Mathématiques, 131(3) (2007), 219–241.
- [10] A. Escassut, p-adic value distribution, Some Topics on Value Distribution and Differentability in Complex and P-Adic Analysis, 42–138. Mathematics Monograph, Series 11, Science Press, Beijing, 2008.
- [11] H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math., 122(6) (2000), 1175–1203.
- [12] W. K. Hayman, Meromorphic Functions, Oxford University Press, 1975.
- [13] P. C. Hu and C. C. Yang, Meromorphic Functions over Non-Archimedean Fields, Kluwer Academic Publishers, 2000.
- [14] X. Hua and C. C. Yang, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22 (1997), 395–406.
- [15] W. Lin and H. Yi, Uniqueness theorems for meromorphic functions concerning fixed-points, Complex Var. Theory Appl., 49(11) (2004), 793–806.
- [16] R. Nevanlinna, Le Théorème de Picard-Borel et la Théorie des Fonctions Méromorphes, Gauthiers-Villars, Paris, 1929.
- [17] J. Ojeda, Uniqueness for ultrametric analytic functions, Bulletin Mathématique des Sciences Mathématiques de Roumanie, 54.
- [18] J. T. Y. Wang, Uniqueness polynomials and bi-unique range sets, Acta Arithmetica, 104 (2002), 183–200.
- [19] C. C. Yang and P. Li, Some further results on the functional equation P(f) = Q(g), Series Advances in Complex Analysis and Applications, Value Distribution Theory and Related Topics, 219–231, Kluwer Academic Publishers, Dordrecht-Boston-London, 2004.

A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

- [20] C. C. Yang and X. Hua, Unique polynomials of entire and meromorphic functions, Matematicheskaia Fizika Analys Geometriye, 4(3) (1997), 391–398.
- [21] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables and Applications, 28 (1995), 1–11.