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Abstract. Let K be a complete algebraically closed p-adic field of characteristic zero.
We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic
meromorphic functions in order to prove results of uniqueness in value sharing prob-
lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic
functions in K or C or in an open disk. Let f, g be two transcendental meromorphic
functions in the whole field K or in C or meromorphic functions in an open disk of
K that are not quotients of bounded analytic functions. We show that if f'P’(f) and
¢'P'(g) share a small function a counting multiplicity, then f =g, provided that the
multiplicity order of zeros of P’ satisfy certain inequalities. A breakthrough in this pa-
per consists of replacing inequalities n > k+2 or n > k+3 used in previous papers by
Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a
sum of g counting functions of zeros with (q—1) times the characteristic function of
the considered meromorphic function.
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1 Introduction

Notation and Definition 1.1. Let K be an algebraically closed field of characteristic zero,
complete with respect to an ultrametric absolute value |-|. We will denote by E a field
thatis either K or C. Throughout the paper we denote by a a point in K. Given R€ [0, +0]
we define disks d(4,R) = {x € K||x—a| <R} and disks d(a,R~) ={x € K||x—a| <R}.
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A polynomial Q(X) € E[X] is called a polynomial of uniqueness for a family of functions
F defined in a subset of E if Q(f) = Q(g) implies f =g. The definition of polynomials
of uniqueness was introduced in [19] by P. Li and C. C. Yang and was studied in many
papers [11,13,20] for complex functions and in [1,2,9,10,17,18], for p-adic functions.

Throughout the paper we will denote by P(X) a polynomial in E[X] such that P’'(X)
is of the form b[T._; (X —a;)% with [ >2 and k; >2. The polynomial P will be said to satisfy
Hypothesis (G) if P(a;)+P(a;) #0, Vi#].

We will improve the main theorems obtained in [5] and [6] with the help of a new
hypothesis denoted by Hypothesis (G) and by thorougly examining the situation with
p-adic and complex analytic and meromorphic functions in order to avoid a lot of exclu-
sions. Moreover, we will prove a new theorem completing the 2nd Main Theorem for
p-adic meromorphic functions. Thanks to this new theorem we will give more precisions
in results on value-sharing problems.

Notation 1.1. Let L be an algebraically closed field, let P € L[x]\ L and let E(P) be the set
of zeros ¢ of P’ such that P(c) # P(d) for every zero d of P’ other than c. We denote by
®(P) its cardinal.

We denote by A(IE) the E-algebra of entire functions in E, by M(E) the field of mero-
morphic functions in E, i.e., the field of fractions of A(E) and by E(x) the field of ra-
tional functions. Throughout the paper, we denote by A(d(a,R™)) the K-algebra of an-
alytic functions in d(a,R™) i.e., the K-algebra of power series } ;> oa,(x—a)" converg-
ing in d(a,R~) and we denote by M(d(a,R™)) the field of meromorphic functions inside
d(a,R™), i.e., the field of fractions of A(d(a,R™)). Moreover, we denote by A;,(d(a,R™))
the KK-subalgebra of A(d(a,R™)) consisting of the bounded analytic functions in d(a,R™),
i.e.,, which satisfy sup,, . |2:|R" < +0c0. We denote by M;(d(a,R™)) the field of fractions
of Ay(d(a,R™)) and finally, we denote by A,(d(a,R™)) the set of unbounded analytic
functions in d(a,R™), i.e., A(d(a,R™))\Ap(d(a,R™)). Similarly, we set M, (d(a,R7)) =
M(d(a,R))\My(d(a,R)).

Theorem 1.1 (see [9]). Let P(X) € K[X]. If ®(P) >2 then P is a polynomial of uniqueness for
A(K). If ®(P) >3 then P is a polynomial of uniqueness for M(K) and for A,(d(a,R™)). If
®(P) >4 then P is a polynomial of uniqueness for M, (d(a,R™)).

Let P(X) € C[X]. If ®(P) >3 then P is a polynomial of uniqueness for A(C). If (P) >4
then P is a polynomial of uniqueness for M(C).

Concerning polynomials such that P’ has exactly two distinct zeros, we know other
results:

Theorem 1.2 (see [1,2,18]). Let P € K|[x] be such that P’ has exactly two distinct zeros 1 of
order c1 and 7y, of order ¢ with min{cy,co} > 2. Then P is a polynomial of uniqueness for M(KK).

Theorem 1.3 (see [9,17]). Let P € K[x] be of degree n > 6 be such that P’ only has two distinct
zeros, one of them being of order 2. Then P is a polynomial of uniqueness for M, (d(0,R™)).
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Theorem 1.4 (see [18]). Let P€C|x] be such that P’ has exactly two distinct zeros 7y, of order c;
and 7y, of order ¢y with min{cy,c, } >2 and max(cq,c2) >3. Then P is a polynomial of uniqueness

for M(C).

In order to state theorems and recall the definition of a small function, we must recall
the definition of the classical Nevanlinna functions both on a p-adic field and on the
field C together with a few specific properties of ultrametric analytic or meromorphic
functions [7,11,13].

Notation 1.2. Let log be a real logarithm function of base b > 1 and let log™ (x) =
max(0,log(x)). Let f € M(E) (resp. f € M(d(0,R™))) having no zero and no pole at 0.
Let r € [0,+00] (resp. r € [O,R]) and let v €d(0,r). If f has a zero of order n at v, we put
w, (h)=n.1If f has a pole of order n at v, we put w, (f) =—n and finally, if f(7y) #0,00, we
set w,(f)=0. These definitions of Nevanlinna’s functions are equivalent to these defined
in [7].

We denote by Z(r, f) the counting function of zeros of f in d(0,r), counting multiplicities,
ie.,
Z(r,f) =max(wy,0)logr+ ) wq (f)(logr—log|y|).
wW(f)>0/ O<‘7‘Sr
Similarly, we denote by Z(r,f) the counting function of zeros of f in d(0,r), ignoring
multiplicities, and set

Z(r,f)=ulogr+ ) (logr—log|v|)
wy(£)>0, 0<|y[<r
with =1 when wy(f) >0 and u=0 else.

In the same way, we set N(r,f) = Z(r,1/f) (resp. N(r,f) = Z(r,1/ f)) to denote the
counting function of poles of f in d(0,r), counting multiplicities (resp. ignoring multiplici-
ties).

For fe M(K) or feM(d(0,R™)), we call Nevanlinna function of f the function T(r,f)=
max{Z(r,f),N(r,f)}.

Consider now a function f € M(C). We can define a function

mirf) =5 [ log " |f(re)las

and we call Nevanlinna function of f the function T(r,f)=m(r,f)+N(r,f).
Now, we must recall the definition of a small function with respect to a meromorphic
function and some pertinent properties.

Definition 1.1. Let f e M(IE) (resp. let f € M(d(0,R™))) such that f(0) #0,c0. A function
a€M(E) (resp. « € M(d(0,R™))) is called a small function with respect to f, if it satisfies

T(r,a) . T(r,a)
AT = TP ARG

=0.
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We denote by M¢(IE) (resp. M(d(0,R™))) the set of small meromorphic functions
with respect to f in E (resp. in d(0,R7)).

Remark 1.1. Thanks to classical properties of the Nevanlinna function T(r,f) with re-
spect to the operations in a field of meromorphic functions, such as T(r,f+g) <T(r,f)+
T(r,g)+0(1) and T(r,fg)<T(r,f)+T(r,g)+0(1), for f,g € M(K) and r >0, it is eas-
ily proven that M¢(IE) (resp. M;(d(0,R™))) is a subfield of M(IE) (resp. M(d(0,R™)))
and that M(E) (resp. M(d(0,R))) is a transcendental extension of M/(EE) (resp. of
Ms(d(0,R7))) [10].

Let us remember the following definition.

Definition 1.2. Let f,g,a € M(E) (resp. let f,g,a € M(d(0,R™))). We say that f and g share
the function o« C.M., if f —a and g—a« have the same zeros with the same multiplicities in
E (resp.in d(0,R7)).

In [5] and [6], we have obtained this general Theorem (where results of [5] and [6]
here are gathered):

Theorem 1.5. Let P be a polynomial of uniqueness for M(K), (resp. for M(C), resp. for
M(d(0,R™))) with 1 >2, ki > ki1, 2<i<I1—1 and let k:Zszi. Suppose P satisfies the
following conditions:
(1) k1 >10+Y}_;max(0,4—k;)+max(0,5—k,),
(2) k1 > k42 (resp. ky > k+3, resp. k1 >k+3),
(3) if 1=2, then ky #k+1,2k,2k+1,3k+1,
(4) if 1=3, then ky #k+1,2k+1,3k; —k, Vi=2,3,
(5) If 1> 4, then ky #k+1.

Let f,g € M(EE) (resp. f,g € M, ((d(a,R™)) be transcendental and let a € M¢(IE) MM, (IK)
(resp. zxer(d(a,R*))ﬁMg(d(a,R*))) be non-identically zero. If f'P'(f) and g'P'(g) share «
C.M., then f=g.

In the field K, several particular applications were given when the small function is
a constant or a Moebius function. On C, we can’t get similar refinements because the
complex Nevanlinna Theory is less accurate than the p-adic Nevanlinna Theory.

In the present paper, thanks to the new Hypothesis (G) introduced below, we mean
to avoid the hypothesis k; > k+2 for M(K) and k; >k+3 for M(C) and for M(d(a,R™)).

But first, we have a new theorem for p-adic analytic functions: First we can improve
results of [5] concerning p-adic analytic functions.

Theorem 1.6. Let P(X)€K[X] be a polynomial of uniqueness for A(K) (resp. for A, (d(a,R™)))
and let P'(X)=b[T'_, (X —a;)%. Let f,g€A(K) be transcendental (resp. let f,g€A,(d(a,R7))),
be such that f'P'(f) and g'P'(g) share CM a small function a € Af(IK)NAg(KK) (resp. a €
Af(d(,R™))NAg(d(a,R7))). If Y ki >21+2 then f =g. Moreover, if f,g belong to A(K), if
w is a constant and if Y1 k;>21+1 then f=g.
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Corollary 1.1. Let P(X) € K[X] be such that ®(P) >2 and let P'(X) = b]‘[;zl(X—ai)ki.
Let f,¢ € A(K) be transcendental such that f'P’'(f) and ¢’ P’(g) share CM a small func-
tion a € A¢(K)NAG(K). If Y!_ k;>2142 then f=g. Moreover, if & is a constant and if
Y ki>21+1then f=g.

Example 1.1. Let c €K be a solution of the algebraic equation:

() - -t

Let

Then we can check that P'(X)=X"(X—1)(X+1)(X—c), P(1)=P(c)#0 and that P(1) #0,
P(~1)#£0, P(1)+P(~1)=c(1/4—1/5) and P(—1)—P(1)=2(1/11—1/9), hence P(—1)
P(c).

Consequently, we can apply Corollary 1.1 and show that if f'P'(f) and g'P’(g) share
a small function a € A¢(K)NA, (K), then f=g.

Remark 1.2. Recall Hypothesis (F) due to H. Fujimoto [12]. A polynomial Q is said to
satisfy Hypothesis (F) if the restriction of Q to the set of zeros of Q' is injective. In the last
example, we may notice that Hypothesis (F) is not satisfied by P.

Corollary 1.2. Let P(X) € K[X] be such that ®(P) >3 and let P'(X) = b]T'_ (X —a;)k.
Let f,g € Ay(d(a,R™)) be such that f'P'(f) and ¢'P'(g) share CM a small function « €
Af(d(a,R™))NAg(d(a,R™)). If Yj_1k; >2142 then f=g.

Corollary 1.3. Let P(X) € K[X] be such that ®(P) >2 (resp. ®(P) > 3) and let P'(X) =
bX"TT'_,(X—a;) with I >3 and let f,g € A(K) (resp. f,g € A,(d(a,R™))) be such that
f'P'(f) and g’ P'(g) share CM a small function a € A ¢ (KK)NA, (K) (resp. a € Af(d(a,R™))N
Ag(d(a,R™))). If n>1+3 then f =g¢. Moreover, if f,¢ belong to A(K), if « is a constant
and if n >[+2then f=g.

In order to improve results of [5] on p-adic meromorphic functions and of [6] on
complex meromorphic functions, we have to state Propositions 1.1 and 1.2 derived from
results of [3] and [4].

Notation and Definition 1.2. Henceforth we assume that P(a;) =0 and that P/(X) is of
the form bT'_; (X —a;)% with [ >2. The polynomial P will be said to satisfy Hypothesis (G)
if P(a;) +P(a]-) #0, Vi#].

Proposition 1.1. Let P € K[X] satisfy Hypothesis (G) and n >2 (resp. n > 3). If meromor-
phic functions f,geM(K) (resp. f,geM(d(a,R™))) satisfy P(f(x))=P(g(x))+C(CeK*),
Vx € K (resp. Vx € d(a,R™)), then both f and g are constant (resp. f and g belong to
Mb(d(a/Ri )))
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Proposition 1.2. Let P C[X] satisfy Hypothesis (G) and n > 3. If meromorphic functions
f,8§€M(C) satisfy P(f(x))=P(g(x))+C(CeC*), VxeC, thenboth f and g are constant.

From [5] and thanks to Propositions 1.1, we can now derive the following Theorems
1.7-1.10:

Theorem 1.7. Let P be a polynomial of uniqueness for M(IK), (resp for M(d(0,R™))) with 1>2,
let P'(X)=b]T_,(X—a;)k with b € K*, ki > ki1, 2<i<1—-1, let k=Y"_,k;, let us be the
biggest of the i such that k; >4 and let s5 =max(0,us—3) and for each m € N, let u,, be the

biggest of the i such that k; >m and let s, =max(0,u,, —2). Suppose P satisfies the following
conditions:

(1) k1 >10+max(0,5—k3) +Z£:3max(0,4—ki) —min(21,Y5 _55m),

(2) either ky > k+2 (resp. k1 > k+3, resp. k1 >k+3) or P satisfies Hypothesis (G),
(3) if 1=2, then ky #k+1,2k,2k+1,3k+1,

(4) if 1=3, then ky # 5 k1 #k+1,2k+1,3k; —k, Vi=2,3,

(5) 1 >4, then ky #k+1.

Let f,g € M(K) (resp. f, geM((d( ~)) be transcendental and let « € My (IK) MM, (IK)
(resp. « € Ms(d(a,R™))NMg(d(a,R™))) be non-identically zero. If f'P'(f) and g'P'(g) share a
C.M., then f=g.

Remark 1.3. The sum )_,;_ss,, is obviously finite.

Corollary 1.4. Let P € K[x] satisfy ®(P) >3 and hypothesis (G), let P'=b[._ (X —a;)ki
with belK*, >3, k;>k;1,2<i<]-1,letk= lezkl, and for each meIN, let u,, be the biggest

of the i such that k; >4, ss = max(0,u5—3) and for every m > 6, let s,, = max(0,u,, —2).
Suppose P satisfies the following conditions:

(1) k1 >10+max(0,5—k) +Z£:3max(0,4—ki) —min(2]—1,Y5 _55m),
(2)if I =3, then k1 #k/2,k+1,2k+1,3k; —k, Vi=2,3,
(3) if [ >4, then ky #k+1.
Let f,g € M(KK) be transcendental and let a € M ¢ (IK) NM, (K) be non-identically zero.
If f'P'(f) and g'P’(g) share «a C.M., then f=g.
Example 1.2. Let

XZO X19 4xl8 4xl7 6Xl6 6X15 4xl4 4xl3 X12 Xll
PX)=2- -2~ = c__C
(X) 20 19 18 + 17 + 16 15 14 + 13 + 12 11

We can check that P'(X) =X1(X—1)°(X+1)* and

P(0)=0 P(1):ic7(—1)7( ! —L> P(—1):—id(i+L).
’ = 10+2j 9+2j/7 = PN10+2] 942

Consequently, we have ®(P) =3 and we check that Hypothesis (G) is satisfied. Now,
let f,g € M(KK) be transcendental and let « € M (IK) M, (K) be non-identically zero. If
f'P'(f) and g'P'(g) share « C.M., then f=g.
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Remark 1.4. In that example, we have k; =10, k =9. Applying our previous work, a
conclusion would have required k; > k+2=11.

Theorem 1.8. Let P be a polynomial of uniqueness for M(C), with 1 > 2, let
P/(X)=b[T'_y (X —a)% with b€ K*, k; > ki1, 2<i<I—1, let k=Y_}_,k;, let us be the biggest
of the i such that k; >4 and let s5 =us—3 and for each m €N, let u,, be the biggest of the i such
that k; >m and let s,, =max (0,u,, —2). Suppose P satisfies the following conditions:

(1) ky >10+max(0,5— k) +Yt_smax(0,4—k;) —min(2L,Y"5_cs,,),
(2) either ki > k+3 or P satisfies Hypothesis (G),

(3) if 1=2, then ki #k+1,2k,2k+1,3k+1,

(4) if 1 =3, then ki #k/2,k1 #k+1,2k+1,3k; —k, Vi=2,3,

(6) If 1 >4, then ki #k+1.

Let f,g € M(C) be transcendental and let o € M¢(C)NM¢(C) be non-identically zero. If
f'P'(f) and ¢'P'(g) share « C.M., then f=gq.

Corollary 1.5. Let P € C[X] satisfy ®(P) >4 and Hypothesis (G), let P’ =b]._, (X —a;)",
ki>kiiq1,2<i<I-—1,let k:Zfzzki, and for each m €N, let u,, be the biggest of the i such
that k; >4, let ss =max(0,us—3) and for every m > 6, let s,, = max(0,u,, —2). Suppose P
satisfies the following conditions:

(1) k1 >10+max(0,5—k) +Z£:3max(0,4—ki) —min(21,Y 5 _55m),
2) ky £k+1.

Let f,g € M(C) and let « € M;(C))NM¢(C) be non-identically zero. If f'P'(f) and
¢'P'(g) share « C.M., then f=g.

As noticed in [5], if f,g belong to M(K) and if « is a constant or a Moebius function,
we can get a more acurate statement:

Theorem 1.9. Let P be a polynomial of uniqueness for M(K), let P'=b[T\_,(x—a;)% with
beK*, 1>2,ki>kiq1,2<i<I-1, let kzxgzzki, and for each m €N, let u,, be the biggest of the
i such that k; >4, let s5 =max (0,us—3) and for every m > 6, let s,, = max (0, u,, —2). Suppose
P satisfies the following conditions:

(1) ky >9+max(0,5—k;) +Zf:3max(0,4—ki) —min(2—1,Y5 _55m),
(2) either ky > k+2 or P satisfies (G),

(3) if 1=2, then ky #k+1,2k,2k+1,3k+1,

(4) if 1=3, then ky #k/2,k+1,2k+1,3k; —k, Vi=2,3.

Let f,g € M(K) be transcendental and let « be a Moebius function. If f'P'(f) and g'P'(g)
share o« C.M., then f=g.

By Theorem 1.4, we can derive Corollary 1.6.
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Corollary 1.6. Let P € K[x] satisfy ®(P) >3, let P'=b]T'_,(x—a;)% with b € K*, I >3,
ki>kiiq1,2<i<l—1,letk= Zi’:zki/ and for each m €N, let u,, be the biggest of the i such
that k; >4, let s5 = max(0,u5—3) and for every m > 6, let s, = max (0, u,, —2). Suppose P
satisfies the following conditions:

(1) ky >9+max(0,5—k;) + ¥ smax(0,4—k;) —min(2] — 1,5 _ss,),
(2) either k1 > k+2 or P satisfies (G),
(3)if =3, then ky #k/2,k+1,2k+1,3k; —k, Vi=2,3.

Let f,g € M(K) be transcendental and let « be a Moebius function. If f'P'(f) and
¢'P'(g) share « CM., then f=g.

And by Theorem 1.7, we have Corollary 1.7.

Corollary 1.7. Let P € K[x] be such that P’ is of the form b(x—ay)"(x—a;)* with k<n,
min(k,n) >2 and with b € K*. Suppose P satisfies the following conditions:

(1) n>9+max(0,5—k),
(2) either n > k+2 or P satisfies (G),
(3) n#k+1,2k,2k+1,3k+1.

Let f,g € M(K) be transcendental and let « be a Moebius function. If f'P'(f) and
¢'P'(g) share « CM., then f=g.

Theorem 1.10. Let P be a polynomial of uniqueness for M(K), let P' =b]T'_,(x—a;)k with
beK*, 1>2, ki>kiyq1,2<i<I—1, let k=Y}_,k;, and for each m €N, let u,, be the biggest of the
i such that k; >4, let s5 =max (0,us—4) and for every m > 6, let s,, = max (0,u,, —3). Suppose
P satisfies the following conditions:
(1) either k1 > k+2 or P satisfies (G),
(2) k1 >9+max(0,5—k;)+¥}_smax(0,4—k;) —min(2] — 1,55 _ss,,),
(3) k1 #k+1.

Let f,g € M(K) be transcendental and let a be a non-zero constant. If f'P'(f) and g'P'(g)
share « C.M., then f =g.

By Theorem 1.4, we can derive Corollary 1.8.

Corollary 1.8. Let P € K[x] satisfy ®(P) >3, let P'=b]T'_,(x—a;)% with b € K*, I >3,
ki>kiiq1,2<i<I-—1,let k:Zfzzki, and for each m €N, let u,, be the biggest of the i such
that k; >4, let ss =max(0,us—3) and for every m > 6, let s,, = max(0,u,, —2). Suppose P
satisfies the following conditions:
(1) k1 > k42 or P satisfies Hypothesis (G),
(2) k1 >9+max(0,5—k;) +¥}_smax(0,4—k;) —min(2] —1,Y 5 _csp).

Let f,g¢ € M(K) be transcendental and let a be a non-zero constant. If f'P'(f) and
¢'P'(g) share « CM., then f=g.
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And by Theorem 1.2, we have Corollary 1.9.

Corollary 1.9. Let P€K[x] be such that P’ is of the form b(x —a1 )" (x —az)* with min (k, 1) >
2 and with b € K*. Suppose P satisfies the following conditions:
(1) n>9+max(0,5—k),
(2) either n > k+2 or P satisfies (G),
G) n£k+1.

Let f,g € M(K) be transcendental and let « be a non-zero constant. If f'P'(f) and
¢'P'(g) share « CM., then f=g.

Example 1.3. Let
_X* 10X 36X%? _ 40x% _ 74X%0 226X _ 84x18

P(X)=2_ —
(X) 24 23 * 22 21 20 * 19 18
_ 312x17 n 321x16 n 88 X1 _ 280x14 + 48X13 n 80X12 _ 32x1
17 16 15 14 13 12 1

We can check that P/(X) = X10(X—2)>(X+1)*(X—1)*. Next, we have P(2) < —134378,
P(1) € [-2,11;—2,10], P(—1) €[2,18;2,19]. Therefore, P(0), P(1), P(—1), P(2) are all dis-
tinct, hence ®(P) =4. Moreover, Hypothesis (G) is satisfied.

Now, let f,eeM(K) (resp. let f,geM, (d(a,R™)), resp. let f,g€M(C)) and let t e M(K)
(resp.letaeM(d(a,R ™)), resp.let a€M(C)) be non-identically zero. If f'P'(f) and ¢'P'(g)
share « C.M., then f=g.

Particularly, when f, g are entire functions in C we can simplify the hypothesis:

Theorem 1.11. Let P be a polynomial of uniqueness for A(C) with 1>2 and ki >k; 1, 1<i<I—1
when 1>2 and let k=Y"\_, k;, let us be the biggest of the i such that k;>4 and let ss=max (0, us—3)
and for each m € N, let u,, be the biggest of the i such that k; > m and let s,, = max(0,u,, —2).
Suppose P satisfies the following conditions:
(1) k1 > k+-2 or P satisfies hypothesis (G),
(2) ky >5+max(0,5—k;)+Y_smax(0,4—k;) —min(2] —3,Y5_ss,).

Let f,g € A(C) be transcendental and let o € Af(C)NAg(C) be non-identically zero. If
f'P'(f) and g'P'(g) share a« C.M., then f=g.

By Proposition 1.2, we have Corollaries 1.10 and 1.11.

Corollary 1.10. Let PeC[X], let P' = b]_ﬂ:1 (X —a;)% with be C*, k; >k;; 1, 1<i<I—1and
let k=Y";_,k;, let us be the biggest of the i such that k; >4 and let t5 = u5—3 and for each
meN, let u,, be the biggest of the i such that k; >m and let t,, = max(0,u,, —2). Suppose
P satisfies the following conditions:
(1) either k; > k+2 or P satisfies hypothesis (G),
(2) k1 >5+max(0,5—k;)+ Y smax(0,4—k;) —min(2] =3, _ss,).

Let f,¢ € M(C) be transcendental and let & € My (C) M, (C) be non-identically zero.
If f'P'(f) and ¢'P’(g) share « C.M., then f=g.
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Corollary 1.11. Let P € C[X] and let P/ = b(X—a1)"(X—a)* with min(k,n) > 2 and
max(n,k) > 3. Suppose that P satisfies n >5+max(0,5—k).

Let f,g € A(C) be transcendental and let « € A¢(C)N A (C) be non-identically zero. If
f'P'(f) and g'P’(g) share « C.M., then f=g.

Example 1.4. Let

X1 5x10 10X° 10X8 5X7  X©
PX)=g7+7 5 *5 *7 %

Then P'(X) = X>(X+1)°. We can apply Corollary 1.11 given f,g € A(C) transcendental
such that f'P'(f) and g’ P’(g) share a small function « € M(C) C.M., we have f=g.

2 The proofs

Notation 2.1. As usual, given a function f € M(E) (resp. M(d(0,R™))), we denote by
S¢(r) a function of r defined in [0,+c0] (resp. in [0, R]), such that

S
im /() =0, resp. lim =
i T(r,f) r—RT(r,f)

We must recall the classical Nevanlinna Main Theorem:

Theorem 2.1 (see [7,12]). Let ay,---,a, €K (resp. aq,---,a, €K, resp. ay,---,a, €C) withn>2,
neN, and let f € M(K) (resp. let f € M(d(0,R™)), resp. let f € M(C)). Let S={ay,---,a,}.
Then, for r >0 we have

n

(n— 1 ; rf a; +N( f)—logi’—l—(‘)(l),
resp. _
(n—1)T <rf)§]é (1, f—a)+N(r,f)+0(1)
resp.

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three
small function:

Theorem 2.2. LetfeA(IK) (resp. let f€A(d(0,R™)), resp. let fEA(C) ) and let ue f € Af(K)
(resp. let ue Ap(d(0,R™)), resp. u€ f € Ap(C)). Then T(r,f) <Z(r,f)+Z(r,f —u)+Ss(r).
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In order to prove Theorem 2.3, we need additional lemmas:

Notation 2.2. Let f € M(d(a,R™)), and let r € [0,R]. By classical results [8,10] we know
that | f(x)| has a limit when |x| tends to r, while being different from r.

We set |f](r)=Hmy x| f(x)].

Lemma 2.1. For every r € [O,R], the mapping |-|(r) is an ultrametric multiplicative norm on
M(d(0,R7)).

The following Lemma 2.2 is the p-adic Schwarz formula:

Lemma 2.2. Let f € A(K) (resp. f€A(d(0,R™))) and let v, 1" €[0,400] (resp. let v',r" €[0,R])
satisfy v <r". Then log(|f|(r"")) —log(|f|(r'))=Z(r",f)—Z(7,f).

Lemma 2.3. Let f € M(K) (resp. f € M(d(0,R™))). Suppose that there exists a € K and a se-
quence of intervals I,,=[uy,v,| such that u, <v, <utyi1, limy,_, ety =00 (resp. limy,_, y ooty =
R) and limy,_,+winfre;, gT(r,f) —Z(r,f —a) =+oco. Set L=} I,. Let b€ K, b#a. Then
Z(r,f=b)=T(r,f)+0(1), VreL.

Proof. We know that the Nevanlinna functions of a meromorphic function f are the same
in K and in an algebraically closed complete extension of K whose absolute value ex-
tends that of K. Consequently, without loss of generality, we can suppose that K is
spherically complete because we know that such a field does admit a spherically com-
plete algeberaically closed extension whose absolute value expands that of K. If f be-
longs to M(K), we can obviously set it in the form g/h, where g, h belong to A(K) and
have no common zero. Next, since K is supposed to be spherically complete, if f belongs
to M(d(0,R™)) we can also set it in the form g/h where g,h belong to A(d(0,R™)) and
have no common zero [8,10]. Consequently, we have T(r, f) =max(Z(r,g),Z(r,h)).
By hypothesis we have

lim <inf T(r,f)—Z(r,f—a)) =00,

n—-+oo \rel,
ie.,
s (e -0) =+
ie.,
ngr-&r-loo <r1é11£max(Z(r,g),Z(r,h)) —Z(r,g—ah)) = +o0.
Set

B, = infmax(Z(r,g),Z(r,h))—Z(r,g—ah)).

rel,

Since the sequence B, tends to +oo, clearly, by Lemma 2.2, the sequence (D,,) defined as

o ls=an()
D =sup (L eI
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tends to zero. Therefore, by Lemma 2.1, we have |g|(r) = |ah|(r) in I, when n is big
enough. Consequently, by Lemma 2.2, we have Z(r,g) =Z(r,ah)+0(1), Vr€ L and hence
T(r,f)=Z(r,h)+0(1)=2Z(r,)+0(1), VreL.

Now, consider g—bh=g—ah+ (a—b)h. By hypothesis we have

ngTw (rlg[fnZ(i’,h) —Z(r,g—ah)) = +-oc0.
On the other hand, of course Z(r,(a—b)h) =Z(r,h)+0O(1). Consequently, since Z(r,g—
bh)=Z(r,g—ah+(a—0b)h), we have

ngr}rloo (rigli(Z(r, (a—Db)h) —Z(r,g—ah)) = +o0.

Consider now the sequence (E,) defined as

g —ahl(r)
£ =590 (T gy )
By Lemma 2.2, that sequence tends to zero and hence, when r is big enough in L, by
Lemma 2.1 we have |g—bh|(r) =|a—0bh|(r). Consequently, when r is big enough in L, we
have Z(r,g—bh)=Z(r,bh)=Z(r,h)+0O(1). Moreover, we have seen that Z(r,g)=Z(r,h)+
O(1) in L, hence max(Z(r,g),Z(r,h)) = Z(,g—bh)O(1) = max(Z(r,g—bh),Z(r,h)+0(1),
ie, T(r,f)=T(r,f—b)+0O(1) in L. O

The second Main Theorem is well known in complex and p-adic analysis and is re-
called below. But first, we can give here a new theorem of that kind which will be efficient
in Theorems 1.8-1.10.

Theorem 2.3. Let f € M(K) (resp. f € M(d(0,R™))) and let ay,---,a; € K be distinct. Then
(G- DT(r,f) < T, Z(r,fa)0(1).

Proof. Suppose the theorem is wrong. There exists f € M(K) (resp. f € M(d(0,R™))) and
a,---,a4 such that (g—1)T(r, f) —27:1 Z(r,f —aj) admits no superior bound in [0, +c0]. So,
there exists a sequence of intervals J; = [ws,ys] such that ws <ys <wsy1, ims_, 4 cows = +00
(resp. lim; s+ ows =R) and

q
Jim (;g]fs(q—l)T(r,f) —j_212<r,f—aj)) =+o0. (2.1)
Let M=U;—Js- Foreach j=1,---,q, we have Z(r,f—a;) <T(r,f)+0O(1) in R} and hence
(2.4) implies that there exists an index t and a sequence of intervals I, = [u,,v,] included
in M, such that u, <v, <u,1, lim,_ { ou, =+o00 (resp. lim,_ {1, = R) and

Jim (inf (T(rf)=Z(r,f ~ar)) ) = +eo. (22)
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Let L=U;_1I,. Thenby Lemma 2.3, in L we have Z(r,g—axh)=T(rf)+0(1), Vk#t. There-
fore Z?Zl Z(r,f—a;)>(q—1)T(r,f)+0(1) in L, a contradiction to (2.4). Consequently, the
Theorem is not wrong. O

Remark 2.1. Theorem 2.3 is trivial for analytic functions since by definition, for a function
feA(K) or A(d(0,R™)) we have T(r,f) =Z(r,f). On the other hand, the theorem does
not apply to meromorphic functions in C. Indeed, consider a meromorphic function f on
C omitting two values a and b. We have Z(r,f —a)+Z(r,f—b) =

In the proof of Theorems 1.7-1.11 will need the following Lemmas:

Lemma 24. Let Q € K[x] (resp. Q e K[X], resp. Q € C[x]) be of degree n and let f € M(K),
(resp. feM(d(0,R™)), resp. f € M(C)) be transcendental. Then

N(r.f)=N(r.f)+N(r.f), Z(r.f)<Z(r.f)+N(r.f)+0(1),
nT(r,f) <T(r.f'Q(f)) < (n+2)T(r,f) ~logr+0(1),

resp.
nT(r,f)<T(r,f'Q(f)) < (n+2)T(r,f)+0(1),
resp.
nT(r,f) <T(r,f'Q(f))+m(r,1/f) < (n+2)T(r,f)+5¢(r)).
Particularly, if f € A(K), resp.

feA(dO,R™)),
then
nT(r,f) <T(r,f'Q(f)) < (n+1)T(r,f) —logr+0(1),
resp.

nT(r,f)<T(r,f'Q(f)) < (n+1)T(r,f)+0(1).

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three
small function:

Lemma 2.5. Let Q(X) € K[X] and let f,g € A(K) (resp. let f,g € A, (d(0,R™))) be such that
Q(f)—Q(g) is bounded. Then f=g.

Proof. The polynomial Q(X)—Q(Y) factorizes in the form (X—Y)F(X,Y) with F(X,Y) €
K[X,Y]. Since Q(f)—Q(g) is bounded, so are both factors because the semi-norm |-
|() is multiplicative on A(K) (resp. on A,(d(0,R™))). Consequently, f—g is a con-
stant ¢ (resp. is a bounded function u € A,(d(0,R™))). Therefore F(f,g) = F(f,f+c)
(resp. F(f,g) =F(f;f+u)). Let n=deg(Q). Then we can check that F(X,X+c) is a poly-
nomial in X of degree n—1. Consequently, if f € A(K), F(f,f+ c) is a non-constant entire
function and therefore is unbounded in K. Similarly, f € (d(0,R ™)), F(X,X+u) is a poly-
nomial in X of degree n—1 with coefficients in A(d(0,R™)) and therefore F(f,f+u) is
unbounded in d(0,R ™), which ends the proof. O
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Proof of Theorem 1.6. Without loss of generality, we may assume that b=1. Put F =
f’l_[é-zl(f—a]-)ki and G :g’]_[;-zl(g—aj)kf. Since f,g € A(K) and since F and G share «
C.M,, then (F—ua)/(G—a) is a meromorphic function having no zeros and no pole in
K (resp. in d(0,R)), hence it is a constant u in KK\ {0} (resp. it is an invertible function
ueA(d(0,R7))).

Suppose u #1. Then,

F=uG+«a(1—c). (2.3)

Let 7 >0. Since a(1—u) € A¢(K) (resp. a(1—u) EAf(d(O,R))), a(1—u) obviously belongs
to Ar(K) (resp. to Ap(d(0,R™))). So, applying Theorem 2.2 to F, we obtain

T(r,F)<Z(r,F)+Z(r,F—a(l—c)) —I—SF( )=Z(r,F)+Z(G)+Sk(r)

I
:.le(r’(f a)*)+Z(r,f') -I-ZZ r,(g—a))+Z(r,g)+55(r)
i=

=
SUT( )+ T(1,8))+ 2 (1, )+ Z(r,8 )+ S4(1).
We also notice that if f,¢ € A(K) and if « € K, we have
T(r,F)<Z(r,F)+Z(r,F—a(1—c)) —logr+0(1)
and therefore we obtain
T(1,F) <1(T(r, )+ T(1,8))+ Z (1, ')+ Z(1,8') ~logr+0(1).

Now, let us go back to the general case. Since f is entire, by Lemma 2.4 we have,

T F) :(Z]%k) (r.f")+0(1).
Consequently, ]
(ikf) T(r,f)<IT(r,f)+T(r,8))+Z(r.g")+S(r).
Similarly, :
(}Zl%kj)T(r,g) <I(T(r,8)+T(r,8))+Z(r,f ) +S(r).
Therefore

(Ek) (r )+ T(r,8)) AT (1, F)+T(r,9))+ Z(r,f ) + Z(r,8')+5/(7)

SQIH+1)(T(r,f)+T(r,8))+S¢(r).
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So,
1
Y ki <2I+1.
=1
Thus, since Z}:lkj >2l+1, we have u=1.
And if « €K, we obtain,

I

Zlkj(T(r,f) +T(r,8)) <2U(T(r, f)+T(r.8))+Z(r,f')+Z(r,8") +5¢(r)
=

<(2I4+1)(T(r,f)+T(r,g))—3logr+0(1),

because T(r,f') < T(r,f)—logr+0(1), hence Z}:lkj <2l which also contradicts the hy-
pothesis ¢ #1 whenever 25-21 kj>2l.

Consequently, in the general case, whenever Z}:lkj >2[+1, we have u =1 and there-
fore f'P'(f)=g'P'(g) hence P(f)—P(g) is a constant D. But then by Lemma 2.5, we have
P(f)=P(g). And since P is a polynomial of uniqueness for A(K) (resp. for A(d(0,R7))),
we can conclude f=g. Similarly, if f,¢ € A(K) and if « is a non-zero constant, we have
have u =1 whenever 25':1 kj>2I and we conclude in the same way. O

On K, we have this theorem from results of [4]:

Theorem 2.4. Let P,Q € K{x] satisfy one of the following two statements:
Y kizs—m+2 (resp. Y ki>s—m+3),

a;eF’ a; €N
Y qi=>2 (resp. Y q;>3).
bjEF” b;eA

If two meromorphic functions f,ge M(K) (resp. f,geM(d(a,R™)))) satisfy P(f(x))=Q(g(x)),
x €K, (resp. x€d(a,R™)) then both f and g are constant (resp. belong to My (d(a,R™)))).

And on C, we have this theorem from results of [3]:

Theorem 2.5. Let P,Q € C[X] satisfy one of the following two conditions:
Y ki>s—m+3, ) gq;>3,

ﬂ,‘GF’ b/'GF”

and if the polynomial P(X)—Q(Y) has no factor of degree 1, then there is no non-constant func-
tion f,g € M(C) such that P(f(x))—Q(g(x))=0, VxeC.

From Theorem 2.5 we can derive the following Theorem 2.6:

Theorem 2.6. Let P,Q € C[X] satisfy one of the following two conditions:
Ekizs—m-i-?a, Z ‘7]23

a;,eF b]'EF”

Then there is no non-constant function f,g€M(C) such that P(f(x))—Q(g(x))=0, VxeC.
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Proof. Let F(X,Y)=P(X)—Q(Y). Since C is algebraically isomorphic to an ultrametric
field such as C, (with p any prime integer), without loss of generality we can transfer the
problem onto the field C,. So, the image of the polynomial F in C,[X,Y] is a polynomial
F(X,Y).

Thus, the hypothesis }, cpki >s—m+3 still holds in C, and similarly, for the hy-
pothesis )}, cp»q; > 3. Suppose for instance } ;e p ki > s—m+3. By Theorem 2.5, there is

no pair of non-constant functions f,g € M(C,) such that P(f(x))—Q(g(x))=0. Particu-
larly, F(X,Y) admits no factor of degree 1 in C,[X,Y]. But then, F(X,Y) does not admit
a factor of degree 1 in C[X,Y] either, because the factorization is conserved by a trans-
fer. Now, we can apply Theorem 2.5 proving that when two functions f,g€ M(C) satisfy

P(f(x))=Q(g(x)), Vx€C, then they are constant. O

Proof of Proposition 1.1. Suppose that two functions f,g € M(K) (resp. f,g € M(d(a,R™)))
satisfy P(f(x))=P(g(x))+C (CeK), Vx€K (resp. Vxed(a,R™)). We can apply Theorem
2.4 by putting Q(X) =P(X)+C. So, we have h=1and b;=a;, i=1,---,I. Let T be the
curve of equation P(X)—P(Y)=C. By hypothesis we have n>2, hence deg(P) >3, so
I' is of degree > 3. Therefore, if I' has no singular point, it is of genus >1 and hence, by
Picard-Berkovich Theorem, the conclusion is immediate. Consequently, we can assume
that I has a singular point («,8). But then P/(«) =P’(B) =0 and hence («,p) is of the form
(ap,ax). Consequently, C = P(a;)—P(ax) and since C # 0, we have h #k. We will prove
that either a; € F/, or ay € F”.

Suppose first that a; ¢ F'UF”. Since a; ¢ F/, there exists i € {2,---,1} such that P(a;) =
P(a;)+C. Now since 1¢ F”, there exists j€{2,---,1} such that P(a;)+C=P(a;). But since
C=—P(a;), we have P(a;) = —P(a;), therefore P(a;)+P(a;) =0. Since P satisfies (G), we
have i = j, hence P(a;) =0. But then C =0, a contradiction. Therefore, we have proven
that a3 € FUF”. Now, by Theorem 2.4, f and g are constant (resp. f and g belong to
My(d(a,R7))). 0
Proof of Proposition 1.2. Suppose that two functions f,g€M(C) satisfy P(f(x))=P(g(x))+
C (CeC),VxeC. We will apply Theorem 2.6 by putting Q(X)=P(X)+C. Since n>3, we
have deg(P) >4 and hence I is of degree > 4. Consequently, if I' has no singular point, it
has genus >2 and hence, by Picard’s Theorem, there exist no functions f,g € M(C) such
that P(f(x))=P(g(x))+C,x€C. Consequently, we can assume that I admits a singular
point (a;,a). The proof is then similar to that of Proposition 1.1. O

Notation 2.3. Let f € M(C) be such that f(0) #0,00. We denote by Z (7, f) the counting
function of the zeros of f each being counted with multiplicity when it is at most 2 and
with multiplicity 2 when it is bigger.

The following basic lemma applies to both complex and meromorphic functions. A
proof is given in [5] for p-adic meromorphic functions and in [6] for complex meromor-
phic functions.

The following Theorem 2.7 is indispensable in the proof of theorems:
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Theorem 2.7. Let P(x) = (x—a1)"[Tip(x—a;)% € E[x] (a; # a;, Vi # j) with 1 >2 and
n > max{ky,---,k;} and let k = Zﬁzzki. Let f,g € M(IE) be transcendental (resp. let f,g €
M(d(a,R™))) and let 8 = P(f)f'P(g)g’. If 6 belongs to M¢(IE)N M, (E), (resp. if 6 belongs
to M¢(d(a,R™))N My (d(a,R™))) then we have the following:

(a) if 1 =2 then n belongs to {k,k+1,2k,2k+1,3k+1},
(b) if 1=3 then n belongs to {k/2,k+1,2k+1,3k, —k,3ks —k},
(c)if1>4 then n=k+1.

Moreover, if f,g belong to M(K) and if 0 is a constant, then n=k-+1. Further, if f,g belong to
A(IE), then 6 does not belong to A¢(IE).

Lemma 2.6. Let f € M(K), (resp. f e M(d'0,R™)), resp. f € M(C)). Then
T(r,f)=Z(r.f)<T(r.f)=Z(r,f)+0(1).

Now, we can extract the following Lemma 2.7 from a result that is proven in several
papers and particularly in Lemma 3 [14] when [E = C and, with precisions in Lemma
11 [5] when E =K. We put

Lemma 2.7. Let f,§€M(C) (resp. f,g € M(IK)) share the value 1 CM. If ¥ s o is not identically
zero, then,

max(T(r,f),T(r,g)) <Ny (1, f)+Zpp (r,f) + Ny (r,.8) +Z ) (r,8) + S (1) +Sg (1),

resp.
max(T(r,f),T(r,g)) <Npy(r,f)+Zp (1, f)+Np (1,8) +Zp (1,8) — 6logr.

We will need the following Lemma 2.8:

Lemma 2.8. Let f,g € M(K) be transcendental (resp. f,g € M, (d(0,R™)), resp. f,g € M(C)).
Let P(x) =x"*1Q(x) be a polynomial such that n >deg(Q)+2 (resp. n>deg(Q)+3, resp. n>

deg(Q)+3). If P'(f)f'=P'(g)g’ then P(f)=P(g).

For simplicity, we can assume a; =0. Set F=f'P'(f)/a and G=¢'P'(g) /. Clearly F
and G share the value 1 C.M..

Since f,g are transcendental, we notice that so are F and G. We will prove that under
the hypotheses of Theorems, Y ¢ is identically zero.

The following lemma holds in the same way in p-adic analysis and in complex anal-
ysis. It is proven in [5] for the p-adic version and in [21] for the complex version.
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Lemma 2.9. Let f,g € M(E) (resp. let f,g€M(d(0,R™)) be non-constant and sharing the value
1 C.M.. Suppose that ¥ 7o =0 and that

(T )+ Zrg) N< N+N(rg)
lmsup (S AT )<
resp.
(2 )29 N () N (rg)
fmsup (S e Tg) )<

Then either f=gor fg=1.

Proofs of Theorems 1.7-1.11. For simplicity, now we set n=k;. Set F= f'P'(f)/a, G=
¢'P'(g)/a and F=P(f), G=P(g). Suppose F # G. We notice that P(x) is of the form
x"1Q(x) with Q € K[x] of degree k. Now, with help of Lemma 2.6, we can check that we

have
T(r,E)—Z(r,F) <T(r,F')—Z(r,F')+0O(1).

Consequently, since (F)' =«F, we have
T(r,E)<T(r,F)+Z(r,F)—Z(r,F)+T(r,a)+0O(1), (2.4)
hence, by (2.4), we obtain
T(r,F) <T(r,F)+(n+1)Z(r.f)+Z(r,Q(f)) =nZ(r,f)

I
—;kiZ(r,f—ai) —Z(r,f)+T(r,a)+0(1),

ie.,

1

T(r,F) < T(r,F)+Z(r,f)+Z(r,Q(f)) —EkiZ(r,f—ai) —Z(r,f")+T(r,a)+0(1), (2.5)

i=2

and similarly,

T(r,G) < T(r,G)+Z(r,g)+Z(r,Q(g) Zkz r,g—a;)—Z(r,¢ )+ T(r,a)+0(1). (2.6)
i=2

Now, it follows from the definition of F and G that
Zpo)(r,F) 4Ny (r,F) <2Z(r +2Zz r,f—a;)+Z(r,f)4+2N(r,f)+T(r,0)+0(1), (2.7)

and similarly

!
Zpy)(r,G)+Np (r,G) <2Z(r,8) —|-ZZZ(r,g—ai) +2Z(r,g')+2N(r,g)+T(r,a)+0(1). (2.8)
i=2
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And particularly, if k;=1, Vie {2,---,1}, then

I

69

Zpo) (r,F)+Npy (r,F) <2Z(r, f)+ Y Z(r,f—a;) + Z(r,f')+2N(r,f )+ T(r,a) +0(1), (2.9)

i=2
and similarly

l

Zp)(r,G)+Np(1,G) <2Z(r,8)+ ) Z(r,g—a;)+Z(r,§')+2N(r,g)+ T(r,a)+0(1). (2.10)

i=2

Suppose now that Yr ¢ is not identically zero. Let us place us in the p-adic context: E=IK.

By Lemma 2.7, we have
T(r,F) <Z(r,F)+ Ny (r,F) +Z (r,G) + Ny (r,G) —3logr,
hence by (2.5), we obtain
T(r,F) <Zy(r,F)+Npy (r,F) + Z)(r,G) + N (,G) + Z (1, f) + Z(r,Q(f))

!
=Y KiZ(r,f—a;)—Z(r,f")+T(r,a) —3logr+0(1),
i=2
and hence by (2.7) and (2.8)

T(r,F) gZZ(r,f)+ZXl:Z(r,f—ai)+Z(r,f’)+2N(r,f)+ZZ(r,g)
i=2

l
+2) Z(r,g—ai)+Z(r,8') +2N(r,g) + Z(r,f) + Z(r,Q(f))

=2

I
=Y kiZ(r,f—a;)—Z(r,f")+2T(r,a) —3logr+0(1),
i=2
and similarly,

!
T(r,é) SZZ(r,g)—|—2§Z(r,g—ai)—i—Z(r,g/)—i—ZN(r,g)—i—ZZ(r,f)
!
+2) Z(r,f—a;)+Z(r,f ) +2N(r, f)+Z(r.8)+ Z(r,Q(g))
i—2

I
—Y kiZ(r,g—a;)—Z(r,g")+2T(r,a) —3logr+0(1).
i=2

(2.11)

(2.12)
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Consequently,
T(r,l?)—l-T(r,@) <5(Z(r,f)+Z(r,2)) Xl: —a;)+Z(r,g—a;))
i=2
+(Z(r,f)+2Z(r,8") +4(N(r,f) +N(r,8))+(Z(r,Q(f)) +Z(r,Q(g)))
+4T(r,a) —6logr+0(1). (2.13)

Moreover, if k;=1, Vi€ {2,---,1}, then by (2.9) and (2.10) we have

1
T(r,F)<2Z(r,f)+ Y Z(r,f—a;)+ Z(r,f )+ 2N(r,f)+2Z(r,g)

i=2

l
+) Z(r,g—a;)+Z(r,g')+2N(r,g) + Z(r.f)+ Z(r,Q(f))

i=2
—Z]:Z(r,f—ai) —Z(r,f")+2T(r,a) —3logr+0(1),
=)

and similarly,
T(r,G) <2Z(r,g) —I-ZI:Z(r,g—ai) +2Z(r,¢' ) +2N(r,g) +2Z(r,f)
i=2
I
+;Z<r,f —a;)+Z(r,f')+2N(r, ) +Z(r,8) +Z(r,Q(g)))

I
_;Z(r,g—ai) —Z(r,¢')+2T(r,a) —3logr+0(1).

Consequently,
T(r,E)+T(r,G) <5(Z(r,f)+Z(r,g)) Z]: a;)+Z(r,g—a;))
+Z(r,Q(f))+Z(r, ( )) (Z(r.f)+Z(r,g"))
+4(N(r,f)+N(r,9)) +4T(r,a) —6logr+0O(1). (2.14)

Now, let us go back to the general case. By Lemma 2.4, we can write Z(r, ') +Z(r,g') <
Z(r,f—ax)+Z(r,g—a2)+N(r,f)+N(r,g) —2logr. Hence, in general, by (2.13) we obtain

1
() + (G SS(Z(0 )+ 2(r)) + L 4=k (200 =)+ 2 =)

+(5—k2) ((Z(r,f —a2)+ Z(r,g—42)) +5(N(r. f) +N(r,8))
+(Z(r,Q(f)+2(r,Q(8))) +4T(r,a) —8logr+0(1),
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and hence, since T(r,Q(f))=kT(r,f)+0(1) and T(r,Q(g)) =kT(r,g)+0(1),

T(r,F)+T(r,G) <5(T(r,f Zl: (r,f—ai)+Z(r,g—ai)))

+(5—k2) ((Z(r,f— a2)+Z(7g a2))+5(N(r,f)+N(r,8))
+k(T(r,f)+T(r,g))+4T(r,a) —8logr+0O(1). (2.15)

Since Fis a polynomial in f of degree n+k+1, we have T(r, F)=n+k+1)T(r,f)+0(1)
and similarly, T(r,G) = (n+k+1)T(r,g) + (1), hence by (2.15) we can derive

(n+k+1)(T(r,f)+T(r,8)) < ((Tf)+T(Vg)) (5—k2)(Z(r,f—a2) +Z(r,8 —02))

+Z4 ki) ((Z(r,f—a;)+Z(r,g—a;))) +5(N(r,f)+N(r,g))
( (r,f)+T(r,g))+4T(r,a) —8logr+0(1), (2.16)
hence
(n+k+1)(Tr,f)+T(r,g)) <10(T(r,f)+T(r.8)) +Z]: (r,.f—ai)+Z(r,g—a;)))
i=3
+(5—k2) ((Z(r,f —a2) + Z(r,g—2)) +k(T(r,f) + T(r,8))
+4T(r,a) —8logr+0(1)),
hence

n(Tr, f)+T(r,8)) <NT(r.f)+T(r,g))+(5—k2) ((Z(r,f —a2) + Z(r,g—a2))
I
+§(4—ki) ((Z(r,f—ai)+Z(r,g—a;)))
+4T(r,a) —8logr+0(1)). (2.17)

Then (5—ky)(Z(r,f—a2)+Z(r,g—a2)) <max(0,5—ky) (T (r,f)+T(r,g))+0O(1) and at least,
foreachi=3,---,], we have

(A=) (Z(r,f —a;) + Z(r,g —a;)) <max(0,4—k;) (T(r, f)+ T(r,8)) +O(1).

Now suppose s5 > 0. That means that k; >5, Vi=3,---,u5s with [ > 5. We notice that the
number of indicies i superior or equal to 2 such that k; > 5 is u5—2. Similarly, for each
m > 5, the number of indicies superior or equal to 1 such that k; >m is u,, —1.

Suppose first E=K. then we can apply Theorem 2.3 and then we obtain }_,°, Z(r, f —
a;) > (us—3)T(r,f)—logr+0(1) and for each m>6, Y., Z(r,g—a;) > (un—2)T(r,8) —
logr+0(1), ie., Y2, Z(r, f —a;) >s5T(r,f) —logr+0(1), ie., L Z(r,g—a;) > s, T(r,8) —
logr+0(1) in Theorems 1.7, 1.9, 1.10.



72 A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

Consequently, by (2.17), we obtain
n(Tr, f)+T(r,8)) <NT(r,f)+T(r,8)) +max(0,5—k2)(Z(r,f —a2) + Z(r,g—a2))

+Xl:max(0,4—ki)(Z(r,f a;)+Z(r,g—a;) Zsm (rf)+T(r.g))
i=3

+4T(r,a)—8logr+0(1)), (2.18)
therefore l
n<9+max(5—k;) +Zmax(0,4—ki) — Zs]-,
i=3 =
a contradiction to the hypotheses of Theorem 1.7.
Consider now the situation in Theorems 1.9 and 1.10. In Theorem 1.9, we have

T(r,a) <logr+0O(1) and in Theorem 1.10, T(r,a) =0. Consequently, Relation (2.18) now
implies

n(Tr,f)+T(r,8)) <NT(r,f)+T(r,8))+max(0,5—k2) (Z(r,f —a2) +Z(r,g - a2))

I
+Y max(0,4—k;) (Z(r,f —a;))+Z(r,g —a;) Zsm (r.f)+T(r,g))

i=3
—4logr+0(1)),
therefore l
n<9+max(0,5—ky)+ Zmax(0,4—ki) — Z S,
i=3 =
but this is incompatible with the hypothesis

1 1)
n>9+max(5—k;) —|—Zmax(0,4—ki) —min (21,25]-) )
i=3 j=5

Now, let us consider the complex context: IE =C. All inequalities above hold just by
replacing each expression —glogr by S¢(r)+S¢(r). However, we cannot apply Theorem
2.3 here but only Theorem 2.1. Therefore we obtain

Us

;(Z(T/f a;)+2(r,g—ai) = (us—4)(T(r, f)+T(r,8)) =ts(T(r,f)+T(r.g)),
Uy,

Y (Z(r,f—ai)+Z(r,g—a;) > (um—3)(T(r,f) + T(r,g)) =tw(T(r,f) +T(r,g)).

i=3

Therefore we obtain

] oo
n<9+max(5—kz) +Zmax<014_ki) - Z tm
i=3 m=>5
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a contradiction to the hypothesis of Theorem 1.8.
Finally, consider the situation in Theorem 1.11. Since N(r,f) = N(r,g) =0, Relation
(2.16) gets
(n+k+1)(T(r, f)+T(r,8)) <5(T(r,f)+T(r,8))+(5—k2)(Z(r,f —a2) + Z(r,g —a2))
l
Z (r.f—ai) +Z(r,g—a;)))

( (r,f)+T(r,8))+4T(r,a)+S¢(r)+Sg(r)).

On the other hand, by applying Theorem 2.1 to f and g, which now are entire functions,
we have

ZZ r,f—a;) > (us—3)T(r,f)=ssT(r,f), EZ r,g—a;) > (us—3)T(r,g) =ssT(r,),

Um Um
ZZ r,f—a;) > (um—2)T(r,f)=suT EZ r,9—a;) > (um—2)T(r,9) =smT(r,9).
Consequently,

! 1)
n+k+1<5+k+max(0,5—ky) +Zmax(0,4—ki) — Z S,
=3 m=1

and therefore
1 )
n<4+max(0,5—k;)+ Emax(0,4—ki) — E S,
i=3 m=1
a contradiction to the hypotheses of Theorem 1.11.
Thus, in the hypotheses of Theorems 1.7-1.11 we have proven that Y ¢ is identically

zero. Henceforth, we can assume that Y ¢ =0 in each theorem.
Note that we can write

/ ! —_1)\2
TF'G:% with ‘P:<(Pf1)2)<(cc/1) )

Since Y ; =0, there exist A, B € E such that

1 A

—_

and A #0.
We notice that Z(r, f) < T(r,f),

N f)<T(r f)Z(0r,f—a) ST(r,f—a) ST(r ) +0(1), i=2, 1,
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and Z(r,f') < T(r,f") <2T(r,f)+0O(1). Similarly for ¢ and ¢’. Moreover, if E =K by
Lemma 2.4 we have

T(r,F)>(n+k)T(r,f), (2.20)

and if E=C, we have
T(r,F)> (n+K)T(r,f)—m (f/)+sf() (2.21)

We will show that F =G in each therorem. We first notice that according to all hypotheses
in Theorems 1.7-1.10 we have

n+k>21+7 (2.22)
and in Theorem 1.11, we have
n+k>21+5. (2.23)

We will consider the following two cases: B=0 and B #0.
Case 1: B=0.

Suppose A # 1. Then, by (2.19), we have F = AG+(1—A). Suppose first E =K.
Applying Theorem 2.1 to F, we obtain

T(r,F)<Z(r, P)+Z(r F—(1—-A))+N(r, P)—logr+o( )

+ZZ a)+Z(r,f)+Z(r,g +ZZ r8—a;)+Z(r,g")
(1) —logr+O(1). (2.24)
By (2.20) and (2.24), we obtain
(n4k)T(r,f) <Z(r, F)+Z(r F—(1-A))+N(r,F)+ —1ogr+o( )

Z(r,f) -I-ZZ r,f—a)+Z(r,f)+Z(r,g -I-ZZ r,g—a;)+Z(r,¢ ) +N(r,f)

i=2
—logr—i—(‘)( ). (2.25)
By (2.25), we have

(n+k)T(r,f) <Z(r,F)+Z(r,F—(1—A))+N(r, F)—logr—i—(‘)( )

SZ(r,f)-l—Zl:Z( r,f—a)+Z(r,f)+Z(r,g -I-ZZ r,g—a;)
i—

i=

L Z(r,g) +N(r,f)—logr+O(1)),
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hence

I I
(R T () <200, f)+ Y200 =00+ Z0r8)+ L2500
+N(r,f)+Z(r,g )+ Z(r,f')—logr+0(1). (2.26)

Then, considering all the previous inequalities, by Lemma 2.4 we can derive the following
from (2.26)

(n+k)T(r,f) <(1+3)T(r,f)+(+2)T(r,g) —3logr+0(1). (2.27)
Since f and g satisfy the same hypothesis, we also have
(n+k)T(r,g) <(I4+3)T(r,g)+ (14+2)T(r,f) —3logr+0(1). (2.28)
Hence, adding (2.27) and (2.28), we have
(n+K)[T(r,f) +T(r,g)] < (21+5) [T(r, f)+T(r,g)] —6logr+0(1),
therefore
n—+k<2l+5. (2.29)

A contradiction to (2.23) proving that A # 1 is impossible whenever B =0, in Theorems
1.7,1.9 and 1.10.
Suppose now E=C. By (2.21), we have

(n+K)T(r,f) <Z(1,F)+ Z(r,F — (1= A)) + N(r,F)+mr —)+sp<)

‘\,\

I
Z D+Z(r,f) —I-m( > (V,g—ai)
&) +N(r, f)+S5(r)+Sg(r).

Here we notice that Z(r, f')+m(r,1/ f') <T(r,1/ f')=T(r,f')+0O(1), hence

I l
(1 HRIT () SZ0,)+ 20 f ~a) +20r.8)+ L2 =)
N1, f)+Z(rg )+ T(r ) +5,(1)+

Then, considering all the previous inequalities in (2.30), similarly we can derive

(n+k)T(r,f) < (l—|—3)T(r,f)—|—(l—|—2)T(r,g)—|—Sf(r)—|—Sg(r). (2.31)

S (7). (2.30)



76 A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

Since f and g satisfy the same hypothesis, we also have
(n+k)T(r,g) < (I+3)T(r,g) +(I+2)T(r,f) + S5 (r) +Sg(1)- (232)
Hence, adding (2.31) and (2.32), we have
(k) [T(r f)+T(r,g)] < (21+5)[T(r,f)+T(r,8)] +S¢(r)+5(r),

therefore n+k <2I+5, a contradiction to (2.23) proving that A #1 is impossible whenever
B=0, in Theorem 1.8.
Consider now the situation in Theorem 1.11. By hypothesis we have

1 o0
ki1 >5+max(0,5—ky)+ Zmax(OA—ki) —min (21, Z sm) ,
i=3 m=5

hence
n+k>10+4(1-2)— Z S=41+2— Z Sy
m=>5 m=5

Since N(r,f)=N(r,g) =0, we can use Theorem 2.1, for entire functions and we obtain

Us

Y Z(r,f—a;) > (us—=3)T(r,f)+Ss(r)+Sg(r),
i=3

and for each m > 6,

Um

;Z(r,g—ﬂi) > (um—=2)T(r,8)+S¢(r))+Sg(),

ie.,
Us

Y Z(r,f—a;)=s5T(r,f)+S¢(r)+Sg(r)

i=3

and
Um

;Z(r,g—ai) ZsmT(r,g)—l—Sf(r)—l—Sg(r).
Now, Relation (2.16) now gets
(n+k+1)(T(r,f)+T(r,g))
<5(T(r,f)+T(r,g))+(5—k2)(Z(r,f—a2)+Z(r,g—a2))

1
+§(4_ki) ((Z(r.f=ai)+Z(r,g—a:))) +k(T(r, f)+T(r,8)) + S5 (r)+Sg(r),
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therefore
n+k<9+4(1-2) Zs]_21+1— Zsm

a contradiction to the hypothesis n+k>2I —|—5 of Theorem 1.11. Consequently, the hypoth-
esis A #1 does not hold when B=0. Henceforth we suppose B #0.

Case 2: B£0.

Consider first the situation when E=K, i.e., in Theorems 1.7 and in Theorems 1.9 and
1.10. By (2.20) we have Immediately,

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)

<Z(r,f) Xl: a;)+Z(r,f')+ Xl: Z(r,g—a;)

+Z(r,¢ )—I— N(r,f)+N(r,g)+4T(r,a)+0(1)
[T(r,f)+T(r8)]+T(r,f')+T(r,g)+4T(r,a)+0O(1)
3)(T(r,f)+T(r,g))+4T(r,a)—2logr,

IA A

(1+
(1+
hence by Lemma 2.4,

Z(r,F)+Z(r,G)+N(r,F)+N(r,G) < (I4+3)(T(r,f) +4T(r,a) —2logr+0(1)).  (2.33)

Moreover, by (2.19), T(r,F) =T(r,G)+0(1) and by Lemma 2.4, we have

T(0,f) < — (T E)+T(r) +0(1) and  T(r,8) < —(T(r,G)+T(7,0)) +0(1).

Consequently,
T(r,f)+T(r,g)<2 [%M(T(r,l-")-i-T(r,oc))} +0(1), (2.34a)
Z(r,F)+Z(r,G)+N(r,F)+N(r,G)
< HH6q, 1—*)+(21i6+4):r< &) —2logr+0(1) (2.34b)
= ntk +k & ' -

Now, by Hypotheses, in Theorems 1.7, 1.9, 1.10 by (2.22), we have n+k > 2[4-7. Conse-
quently, by relation (2.34b) we obtain

Z(r,F)+Z(r,G)+N(r,F)+N(r,G) < iiigm F)+ (% +4)T(r0) +0(1),  (2.39)

and similarly,

_ _ _ _ 2046 20+6
Z(r,F)+Z(r,G)+N(r,F)+N(r,G)<21—j__7T( ,G)+ (ZI—L+4)T(r,a)+o(1), (2.36)
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hence

. Z(r,F)+Z(r,G)+N(r,F)+N(r,G)
limsup ( max(T(r,B),T(r,G)) )<1

Therefore, by Lemma 2.9, and Theorems 1.7, 1.9, 1.10, we have either F=G, or FG=1.
Suppose FG =1. Then f'P'(f)g'P'(g) = a?. But in Theorems 1.7, 1.9, 1.10, we have
assumed that n #k+1 and if [ =2, then n # 2k,2k+1,3k+1 and if [ =3 then n # k,3k, —
k,3ks —k. Consequently, we have a contradiction to Theorem 2.7. Thus, the hypothesis
FG=1is impossible and therefore we have F=G.
Consider now the situation when E =C, i.e., in Theorems 1.8 and 1.11. The proof is
very similar to that in the case when E =K. We have

Z(r,F) <Z(r,f) +ZZ r,f—a;)+Z(r,f')+S¢(r),
N(r,F)<N (V/f)+5f( r),

and similarly for G, so we can derive

Z(r,F)+ Z(r G)+N(r,F)+N(r,G)

I
<Z(r,f) Z +Z(r, f' Z r,g—a;)
+Z(r,8')+N(r,f)+N(r,g) +S(r)+Sg(r)
<(I4+2) [T(r, f)+T(r,8)] +S5(r)+Sq (7). (2.37)

Moreover, by (2.19), T(r,F) =T(r,G)+0(1) and, by Lemma 2.4, we have

T(r,f)< = T E)+85(r) and T(r,g)< %_i_kT(r,G)-i-Sg(r).

Consequently,
2
T(r,f)+T(r,g) < +kT(r JF)+S¢(r)+Sg(r).
Thus, (2.37) implies

Z(r,F)+Z(r,G)+N(r,F)+N(r,G) < an%:T( JF)+S(r)+Sg(r).

Now, as in Theorems 1.7, 1.9, 1.10, we can check that n+k>2/+7 in Theorem 1.8. Conse-
quently, the previous inequality implies
2l4+6

Z(r,F)+Z(r,G)+N(r,F)+N(r,G) < Zl—T(r F)+S¢(r)+Sg(r)
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and similarly,

Z(rF)+Z(r,G)+N(r,F)+N(1,G) < %T(n(}) LS /(r)+54(r),

hence by Lemma 2.9 again, we have F=G or FG=1. Then, by Theorem 2.7 as in Theorems
1.7, 1.9, 1.10, the hypotheses of Theorem 1.8 prevent the case FG =1 and therefore F =G.
Consider now the situation in Theorem 1.11. Relation (2.37) implies

Z(r,F)+Z(r,G) <(142)[T(r,f)+T(r,8)] +S4(r)+Ss (7). (2.38)

Moreover, by (16), T(r,F)=T(r,G)+0O(1) and, by Lemma 2.4, we have

T(r,f)g%_i_kT(r,F)—i—Sf(r) and T(r,g)g%_i_kT(r,G)—i—Sg(r).

Consequently,

T(r,f)+T(r,8) S~ T(7E)+57(r)+ 54 r).

Thus, (2.37) implies
1
Z(r,F)+Z(r,G) <Z(r, )+ Y Z(r, f—a))+ Z(r, )+ Z(r,8)
i=2

+i:7(r,g—ai) +Z(r,8")+S5(r)+Sg(r)

<4[T(r,f)+T(r,8)] +S5(r)+S;(r).

Therefore,

= = 21+4

Z(r,F)+Z(r,G) < n——l-kT(r'P) +S¢(r)+Sq(r),
hence by (2.23) we have

_ — 21+4

Z(r,F)+Z(r,G) < mT(r,F) +S¢(r)+Sg(r).

In the same way, this proves that either F =G of FG=1. But by Theorem 2.7, FG=1is
impossible. Hence F =G.

Thus, in Theorems 1.7-1.11, we have proven that F=G, i.e., f'P'(f) =g'P'(g). Conse-
quently, P(f)—P(g) is a constant C. Then, by Lemma 2.8 and Proposition 1.1, in Theo-
rems 1.7, 1.9, 1.10, we have P(f) =P(g) and by Lemma 2.8 and Proposition 1.2, we have
P(f) = P(g) in Theorems 1.8 and 1.11. Finally, in each theorem, P is a polynomial of
uniqueness for the family of functions we consider. Consequently, f =g. O



80 A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

Acknowledgements

Partially funded by the research project CONICYT (Insercién de nuevos investigadores
en la academia, NO. 79090014) from the Chilean Government.

References

[1] T.T. H. An,]. T. Y. Wang and P. M. Wong, Unique range sets and uniqueness polynomials in
positive characteristic II, Acta Arithmetica, (2005), 115-143.

[2] T. T. H. An, J. T. Y. Wang and P. M. Wong, Strong uniqueness polynomials: the complex
case, Complex Variables, 49(1) (2004), 25-54.

[3] T. T. H. An and N. T. N. Diep, Genus one factors of curves dened by separated variable
polynomials, J. Number. Theory, 133 (2013), 2616-2634.

[4] T. T. H. An and A. Escassut, Meromorphic solutions of equations over non-archimedean
fields, Ramanujan J., 15(3) (2008), 415-433.

[5] K.Boussaf, A. Escassut and J. Ojeda, p-adic meromorphic functions f'P’(f),¢'P'(g) sharing
a small function, Bulletin des Sciences Mathématiques, 136(2) (2012), 172-200.

[6] K. Boussaf, A. Escassut and J. Ojeda, Complex meromorphic functions f'P’'(f), §'P'(g)
sharing a small function, Indagationes, 24(1) (2013), 15-41.

[7] A.Boutabaa, Théorie de Nevanlinna p-adique, Manuscripta Math., 67 (1990), 251-269.

[8] A.Escassut, Analytic Elements in p-Adic Analysis, World Scientific Publishing Co. Pte. Ltd.
Singapore, 1995.

[9] A.Escassut, Meromorphic functions of uniqueness, Bulletin des Sciences Mathématiques,
131(3) (2007), 219-241.

[10] A.Escassut, p-adic value distribution, Some Topics on Value Distribution and Differentabil-
ity in Complex and P-Adic Analysis, 42-138. Mathematics Monograph, Series 11, Science
Press, Beijing, 2008.

[11] H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math.,
122(6) (2000), 1175-1203.

[12] W. K. Hayman, Meromorphic Functions, Oxford University Press, 1975.

[13] P. C. Hu and C. C. Yang, Meromorphic Functions over Non-Archimedean Fields, Kluwer
Academic Publishers, 2000.

[14] X. Hua and C. C. Yang, Uniqueness and value-sharing of meromorphic functions, Ann.
Acad. Sci. Fenn. Math., 22 (1997), 395-406.

[15] W.Linand H.Yi, Uniqueness theorems for meromorphic functions concerning fixed-points,
Complex Var. Theory Appl., 49(11) (2004), 793-806.

[16] R. Nevanlinna, Le Théoreme de Picard-Borel et la Théorie des Fonctions Méromorphes,
Gauthiers-Villars, Paris, 1929.

[17] J.Ojeda, Uniqueness for ultrametric analytic functions, Bulletin Mathématique des Sciences
Mathématiques de Roumanie, 54.

[18] J. T. Y. Wang, Uniqueness polynomials and bi-unique range sets, Acta Arithmetica, 104
(2002), 183-200.

[19] C.C. Yang and P. Li, Some further results on the functional equation P(f) = Q(g), Series
Advances in Complex Analysis and Applications, Value Distribution Theory and Related
Topics, 219-231, Kluwer Academic Publishers, Dordrecht-Boston-London, 2004.



A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81 81

[20] C.C. Yang and X. Hua, Unique polynomials of entire and meromorphic functions, Matem-
aticheskaia Fizika Analys Geometriye, 4(3) (1997), 391-398.

[21] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables and
Applications, 28 (1995), 1-11.



