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Abstract. Let K be a complete algebraically closed p-adic field of characteristic zero.
We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic
meromorphic functions in order to prove results of uniqueness in value sharing prob-
lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic
functions in K or C or in an open disk. Let f , g be two transcendental meromorphic
functions in the whole field K or in C or meromorphic functions in an open disk of
K that are not quotients of bounded analytic functions. We show that if f ′P′( f ) and
g′P′(g) share a small function α counting multiplicity, then f = g, provided that the
multiplicity order of zeros of P′ satisfy certain inequalities. A breakthrough in this pa-
per consists of replacing inequalities n≥ k+2 or n≥ k+3 used in previous papers by
Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a
sum of q counting functions of zeros with (q−1) times the characteristic function of
the considered meromorphic function.
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AMS Subject Classifications: 12J25, 30D35, 30G06

1 Introduction

Notation and Definition 1.1. Let K be an algebraically closed field of characteristic zero,
complete with respect to an ultrametric absolute value |·|. We will denote by E a field
that is either K or C. Throughout the paper we denote by a a point in K. Given R∈[0,+∞]
we define disks d(a,R)={x∈K||x−a|≤R} and disks d(a,R−)={x∈K||x−a|<R}.
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A polynomial Q(X)∈E[X] is called a polynomial of uniqueness for a family of functions
F defined in a subset of E if Q( f ) = Q(g) implies f = g. The definition of polynomials
of uniqueness was introduced in [19] by P. Li and C. C. Yang and was studied in many
papers [11, 13, 20] for complex functions and in [1, 2, 9, 10, 17, 18], for p-adic functions.

Throughout the paper we will denote by P(X) a polynomial in E[X] such that P′(X)
is of the form b∏

l
i=1(X−ai)

ki with l≥2 and k1≥2. The polynomial P will be said to satisfy
Hypothesis (G) if P(ai)+P(aj) 6=0, ∀i 6= j.

We will improve the main theorems obtained in [5] and [6] with the help of a new
hypothesis denoted by Hypothesis (G) and by thorougly examining the situation with
p-adic and complex analytic and meromorphic functions in order to avoid a lot of exclu-
sions. Moreover, we will prove a new theorem completing the 2nd Main Theorem for
p-adic meromorphic functions. Thanks to this new theorem we will give more precisions
in results on value-sharing problems.

Notation 1.1. Let L be an algebraically closed field, let P∈L[x]\L and let Ξ(P) be the set
of zeros c of P′ such that P(c) 6= P(d) for every zero d of P′ other than c. We denote by
Φ(P) its cardinal.

We denote by A(E) the E-algebra of entire functions in E, by M(E) the field of mero-
morphic functions in E, i.e., the field of fractions of A(E) and by E(x) the field of ra-
tional functions. Throughout the paper, we denote by A(d(a,R−)) the K-algebra of an-
alytic functions in d(a,R−) i.e., the K-algebra of power series ∑

∞
n=0an(x−a)n converg-

ing in d(a,R−) and we denote by M(d(a,R−)) the field of meromorphic functions inside
d(a,R−), i.e., the field of fractions of A(d(a,R−)). Moreover, we denote by Ab(d(a,R−))
the K-subalgebra of A(d(a,R−)) consisting of the bounded analytic functions in d(a,R−),
i.e., which satisfy supn∈N

|an |Rn
<+∞. We denote by Mb(d(a,R−)) the field of fractions

of Ab(d(a,R−)) and finally, we denote by Au(d(a,R−)) the set of unbounded analytic
functions in d(a,R−), i.e., A(d(a,R−))\Ab(d(a,R−)). Similarly, we set Mu(d(a,R−)) =
M(d(a,R−))\Mb(d(a,R−)).

Theorem 1.1 (see [9]). Let P(X)∈K[X]. If Φ(P)≥2 then P is a polynomial of uniqueness for
A(K). If Φ(P)≥ 3 then P is a polynomial of uniqueness for M(K) and for Au(d(a,R−)). If
Φ(P)≥4 then P is a polynomial of uniqueness for Mu(d(a,R−)).

Let P(X)∈C[X]. If Φ(P)≥ 3 then P is a polynomial of uniqueness for A(C). If Φ(P)≥ 4
then P is a polynomial of uniqueness for M(C).

Concerning polynomials such that P′ has exactly two distinct zeros, we know other
results:

Theorem 1.2 (see [1, 2, 18]). Let P∈K[x] be such that P′ has exactly two distinct zeros γ1 of
order c1 and γ2 of order c2 with min{c1,c2}≥2. Then P is a polynomial of uniqueness for M(K).

Theorem 1.3 (see [9, 17]). Let P∈K[x] be of degree n≥6 be such that P′ only has two distinct
zeros, one of them being of order 2. Then P is a polynomial of uniqueness for Mu(d(0,R−)).
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Theorem 1.4 (see [18]). Let P∈C[x] be such that P′ has exactly two distinct zeros γ1 of order c1

and γ2 of order c2 with min{c1,c2}≥2 and max(c1,c2)≥3. Then P is a polynomial of uniqueness
for M(C).

In order to state theorems and recall the definition of a small function, we must recall
the definition of the classical Nevanlinna functions both on a p-adic field and on the
field C together with a few specific properties of ultrametric analytic or meromorphic
functions [7, 11, 13].

Notation 1.2. Let log be a real logarithm function of base b > 1 and let log+(x) =
max(0,log(x)). Let f ∈M(E) (resp. f ∈M(d(0,R−))) having no zero and no pole at 0.
Let r∈ [0,+∞] (resp. r∈ [0,R]) and let γ∈ d(0,r). If f has a zero of order n at γ, we put
ωγ(h)=n. If f has a pole of order n at γ, we put ωγ( f )=−n and finally, if f (γ) 6=0,∞, we
set ωγ( f )=0. These definitions of Nevanlinna’s functions are equivalent to these defined
in [7].

We denote by Z(r, f ) the counting function of zeros of f in d(0,r), counting multiplicities,
i.e.,

Z(r, f )=max(ω0,0)logr+ ∑
ωγ( f )>0, 0<|γ|≤r

ωγ( f )(logr−log|γ|).

Similarly, we denote by Z(r, f ) the counting function of zeros of f in d(0,r), ignoring
multiplicities, and set

Z(r, f )=ulogr+ ∑
ωγ( f )>0, 0<|γ|≤r

(logr−log|γ|)

with u=1 when ω0( f )>0 and u=0 else.
In the same way, we set N(r, f ) = Z(r,1/ f ) (resp. N(r, f ) = Z(r,1/ f )) to denote the

counting function of poles of f in d(0,r), counting multiplicities (resp. ignoring multiplici-
ties).

For f ∈M(K) or f ∈M(d(0,R−)), we call Nevanlinna function of f the function T(r, f )=
max

{
Z(r, f ),N(r, f )

}
.

Consider now a function f ∈M(C). We can define a function

m(r, f )=
1

2π

∫ 2π

0
log+ | f (reiθ)|dθ

and we call Nevanlinna function of f the function T(r, f )=m(r, f )+N(r, f ).
Now, we must recall the definition of a small function with respect to a meromorphic

function and some pertinent properties.

Definition 1.1. Let f ∈M(E) (resp. let f ∈M(d(0,R−))) such that f (0) 6=0,∞. A function
α∈M(E) (resp. α∈M(d(0,R−))) is called a small function with respect to f , if it satisfies

lim
r→+∞

T(r,α)

T(r, f )
=0, resp. lim

r→R−

T(r,α)

T(r, f )
=0.
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We denote by M f (E) (resp. M f (d(0,R−))) the set of small meromorphic functions
with respect to f in E (resp. in d(0,R−)).

Remark 1.1. Thanks to classical properties of the Nevanlinna function T(r, f ) with re-
spect to the operations in a field of meromorphic functions, such as T(r, f +g)≤T(r, f )+
T(r,g)+O(1) and T(r, f g)≤T(r, f )+T(r,g)+O(1) , for f ,g ∈M(K) and r > 0, it is eas-
ily proven that M f (E) (resp. M f (d(0,R−))) is a subfield of M(E) (resp. M(d(0,R−)))

and that M(E) (resp. M(d(0,R))) is a transcendental extension of M f (E)
(
resp. of

M f (d(0,R−))
)

[10].

Let us remember the following definition.

Definition 1.2. Let f ,g,α∈M(E) (resp. let f ,g,α∈M(d(0,R−))). We say that f and g share
the function α C.M., if f −α and g−α have the same zeros with the same multiplicities in
E (resp. in d(0,R−)).

In [5] and [6], we have obtained this general Theorem (where results of [5] and [6]
here are gathered):

Theorem 1.5. Let P be a polynomial of uniqueness for M(K), (resp. for M(C), resp. for
M(d(0,R−))) with l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l−1 and let k = ∑

l
i=2ki. Suppose P satisfies the

following conditions:

(1) k1 ≥10+∑
l
i=3max(0,4−ki)+max(0,5−k2),

(2) k1 ≥ k+2 (resp. k1≥ k+3, resp. k1≥ k+3),

(3) if l=2, then k1 6= k+1,2k,2k+1,3k+1,

(4) if l=3, then k1 6= k+1,2k+1,3ki−k, ∀i=2,3,

(5) If l≥4, then k1 6= k+1.

Let f ,g∈M(E) (resp. f ,g∈Mu((d(a,R−)) be transcendental and let α∈M f (E)∩Mg(K)
(resp. α∈M f (d(a,R−))∩Mg(d(a,R−))) be non-identically zero. If f ′P′( f ) and g′P′(g) share α

C.M., then f = g.

In the field K, several particular applications were given when the small function is
a constant or a Moebius function. On C, we can’t get similar refinements because the
complex Nevanlinna Theory is less accurate than the p-adic Nevanlinna Theory.

In the present paper, thanks to the new Hypothesis (G) introduced below, we mean
to avoid the hypothesis k1≥ k+2 for M(K) and k1≥ k+3 for M(C) and for M(d(a,R−)).

But first, we have a new theorem for p-adic analytic functions: First we can improve
results of [5] concerning p-adic analytic functions.

Theorem 1.6. Let P(X)∈K[X] be a polynomial of uniqueness for A(K) (resp. for Au(d(a,R−)))
and let P′(X)=b∏

l
i=1(X−ai)

ki . Let f ,g∈A(K) be transcendental (resp. let f ,g∈Au(d(a,R−))),
be such that f ′P′( f ) and g′P′(g) share CM a small function α ∈A f (K)∩Ag(K) (resp. α ∈

A f (d(,R
−))∩Ag(d(a,R−))). If ∑

l
i=1ki ≥2l+2 then f = g. Moreover, if f ,g belong to A(K), if

α is a constant and if ∑
l
i=1ki ≥2l+1 then f = g.
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Corollary 1.1. Let P(X) ∈ K[X] be such that Φ(P)≥ 2 and let P′(X) = b∏
l
i=1(X−ai)

ki .
Let f ,g∈A(K) be transcendental such that f ′P′( f ) and g′P′(g) share CM a small func-
tion α∈A f (K)∩Ag(K). If ∑

l
i=1ki ≥2l+2 then f = g. Moreover, if α is a constant and if

∑
l
i=1ki ≥2l+1 then f = g.

Example 1.1. Let c∈K be a solution of the algebraic equation:

X11
( 1

11
−

1

10

)
−X9

(1

9
−

1

8

)
+X

( 1

10
−

1

8

)
−

1

11
+

1

9
=0.

Let

P(X)=
X11

11
−

cX10

10
−

X9

9
+

cX8

8
.

Then we can check that P′(X)=X7(X−1)(X+1)(X−c), P(1)=P(c) 6=0 and that P(1) 6=0,
P(−1) 6=0, P(1)+P(−1)=c(1/4−1/5) and P(−1)−P(1)=2(1/11−1/9), hence P(−1) 6=
P(c).

Consequently, we can apply Corollary 1.1 and show that if f ′P′( f ) and g′P′(g) share
a small function α∈A f (K)∩Ag(K), then f = g.

Remark 1.2. Recall Hypothesis (F) due to H. Fujimoto [12]. A polynomial Q is said to
satisfy Hypothesis (F) if the restriction of Q to the set of zeros of Q′ is injective. In the last
example, we may notice that Hypothesis (F) is not satisfied by P.

Corollary 1.2. Let P(X) ∈ K[X] be such that Φ(P)≥ 3 and let P′(X) = b∏
l
i=1(X−ai)

ki .
Let f ,g ∈Au(d(a,R−)) be such that f ′P′( f ) and g′P′(g) share CM a small function α ∈
A f (d(a,R−))∩Ag(d(a,R−)). If ∑

l
i=1ki ≥2l+2 then f = g.

Corollary 1.3. Let P(X)∈K[X] be such that Φ(P)≥ 2 (resp. Φ(P)≥ 3) and let P′(X) =
bXn ∏

l
i=2(X−ai) with l ≥ 3 and let f ,g ∈A(K) (resp. f ,g ∈Au(d(a,R−))) be such that

f ′P′( f ) and g′P′(g) share CM a small function α∈A f (K)∩Ag(K) (resp. α∈A f (d(a,R−))∩
Ag(d(a,R−))). If n≥ l+3 then f = g. Moreover, if f ,g belong to A(K), if α is a constant
and if n≥ l+2 then f = g.

In order to improve results of [5] on p-adic meromorphic functions and of [6] on
complex meromorphic functions, we have to state Propositions 1.1 and 1.2 derived from
results of [3] and [4].

Notation and Definition 1.2. Henceforth we assume that P(a1)= 0 and that P′(X) is of
the form b∏

l
i=1(X−ai)

ki with l≥2. The polynomial P will be said to satisfy Hypothesis (G)
if P(ai)+P(aj) 6=0, ∀i 6= j.

Proposition 1.1. Let P∈K[X] satisfy Hypothesis (G) and n≥2 (resp. n≥3). If meromor-
phic functions f ,g∈M(K) (resp. f ,g∈M(d(a,R−))) satisfy P( f (x))=P(g(x))+C(C∈K∗),
∀x ∈ K (resp. ∀x ∈ d(a,R−)), then both f and g are constant (resp. f and g belong to
Mb(d(a,R−))).
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Proposition 1.2. Let P∈C[X] satisfy Hypothesis (G) and n≥3. If meromorphic functions
f ,g∈M(C) satisfy P( f (x))=P(g(x))+C(C∈C∗), ∀x∈C, then both f and g are constant.

From [5] and thanks to Propositions 1.1, we can now derive the following Theorems
1.7-1.10:

Theorem 1.7. Let P be a polynomial of uniqueness for M(K), (resp for M(d(0,R−))) with l≥2,
let P′(X)=b∏

l
i=1(X−ai)

ki with b ∈K∗, ki ≥ ki+1, 2≤ i ≤ l−1, let k = ∑
l
i=2ki, let u5 be the

biggest of the i such that ki > 4 and let s5 =max(0,u5−3) and for each m ∈ N, let um be the
biggest of the i such that ki >m and let sm =max(0,um−2). Suppose P satisfies the following
conditions:

(1) k1 ≥10+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l,∑∞

m=5sm),

(2) either k1 ≥ k+2 (resp. k1≥ k+3, resp. k1≥ k+3) or P satisfies Hypothesis (G),

(3) if l=2, then k1 6= k+1,2k,2k+1,3k+1,

(4) if l=3, then k1 6=
k
2 ,k1 6= k+1,2k+1,3ki−k, ∀i=2,3,

(5) l≥4, then k1 6= k+1.

Let f ,g∈M(K) (resp. f ,g∈M((d(a,R−)) be transcendental and let α∈M f (K)∩Mg(K)
(resp. α∈M f (d(a,R−))∩Mg(d(a,R−))) be non-identically zero. If f ′P′( f ) and g′P′(g) share α

C.M., then f = g.

Remark 1.3. The sum ∑
∞
m=5sm is obviously finite.

Corollary 1.4. Let P∈K[x] satisfy Φ(P)≥ 3 and hypothesis (G), let P′=b∏
l
i=1(X−ai)

ki

with b∈K∗, l≥3, ki≥ki+1, 2≤i≤l−1, let k=∑
l
i=2ki, and for each m∈N, let um be the biggest

of the i such that ki > 4, s5 =max(0,u5−3) and for every m≥ 6, let sm =max(0,um−2).
Suppose P satisfies the following conditions:

(1) k1 ≥10+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l−1,∑∞

m=5sm),

(2) if l=3, then k1 6= k/2,k+1,2k+1,3ki−k, ∀i=2,3,

(3) if l≥4, then k1 6= k+1.

Let f ,g∈M(K) be transcendental and let α∈M f (K)∩Mg(K) be non-identically zero.
If f ′P′( f ) and g′P′(g) share α C.M., then f = g.

Example 1.2. Let

P(X)=
X20

20
−

X19

19
−

4X18

18
+

4X17

17
+

6X16

16
−

6X15

15
−

4X14

14
+

4X13

13
+

X12

12
−

X11

11
.

We can check that P′(X)=X10(X−1)5(X+1)4 and

P(0)=0, P(1)=
4

∑
j=0

C
j
4(−1)j

( 1

10+2j
−

1

9+2j

)
, P(−1)=−

4

∑
j=0

C
j
4

( 1

10+2j
+

1

9+2j

)
.

Consequently, we have Φ(P) = 3 and we check that Hypothesis (G) is satisfied. Now,
let f ,g∈M(K) be transcendental and let α∈M f (K)∩Mg(K) be non-identically zero. If
f ′P′( f ) and g′P′(g) share α C.M., then f = g.
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Remark 1.4. In that example, we have k1 = 10, k = 9. Applying our previous work, a
conclusion would have required k1≥ k+2=11.

Theorem 1.8. Let P be a polynomial of uniqueness for M(C), with l ≥ 2, let
P′(X)=b∏

l
i=1(X−ai)

ki with b∈K∗, ki≥ki+1, 2≤ i≤ l−1, let k=∑
l
i=2ki, let u5 be the biggest

of the i such that ki >4 and let s5 =u5−3 and for each m∈N, let um be the biggest of the i such
that ki >m and let sm =max(0,um−2). Suppose P satisfies the following conditions:

(1) k1≥10+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l,∑∞

m=5sm),

(2) either k1≥ k+3 or P satisfies Hypothesis (G),

(3) if l=2, then k1 6= k+1,2k,2k+1,3k+1,

(4) if l=3, then k1 6= k/2,k1 6= k+1,2k+1,3ki−k, ∀i=2,3,

(5) If l≥4, then k1 6= k+1.

Let f ,g ∈M(C) be transcendental and let α ∈M f (C)∩Mg(C) be non-identically zero. If
f ′P′( f ) and g′P′(g) share α C.M., then f = g.

Corollary 1.5. Let P∈C[X] satisfy Φ(P)≥4 and Hypothesis (G), let P′=b∏
l
i=1(X−ai)

ki ,
ki ≥ ki+1, 2≤ i≤ l−1, let k=∑

l
i=2ki, and for each m∈N, let um be the biggest of the i such

that ki > 4, let s5 =max(0,u5−3) and for every m≥ 6, let sm =max(0,um−2). Suppose P
satisfies the following conditions:

(1) k1≥10+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l,∑∞

m=5sm),

(2) k1 6= k+1.

Let f ,g ∈M(C) and let α ∈M f (C))∩Mg(C) be non-identically zero. If f ′P′( f ) and
g′P′(g) share α C.M., then f = g.

As noticed in [5], if f ,g belong to M(K) and if α is a constant or a Moebius function,
we can get a more acurate statement:

Theorem 1.9. Let P be a polynomial of uniqueness for M(K), let P′=b∏
l
i=1(x−ai)

ki with
b∈K∗, l≥2, ki≥ki+1, 2≤i≤ l−1, let k=∑

l
i=2ki, and for each m∈N, let um be the biggest of the

i such that ki >4, let s5 =max(0,u5−3) and for every m≥6, let sm =max(0,um−2). Suppose
P satisfies the following conditions:

(1) k1≥9+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l−1,∑∞

m=5sm),

(2) either k1≥ k+2 or P satisfies (G),

(3) if l=2, then k1 6= k+1,2k,2k+1,3k+1,

(4) if l=3, then k1 6= k/2,k+1,2k+1,3ki−k, ∀i=2,3.

Let f ,g∈M(K) be transcendental and let α be a Moebius function. If f ′P′( f ) and g′P′(g)
share α C.M., then f = g.

By Theorem 1.4, we can derive Corollary 1.6.
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Corollary 1.6. Let P ∈ K[x] satisfy Φ(P)≥ 3, let P′=b∏
l
i=1(x−ai)

ki with b ∈ K∗, l ≥ 3,
ki ≥ ki+1, 2≤ i≤ l−1, let k=∑

l
i=2ki, and for each m∈N, let um be the biggest of the i such

that ki > 4, let s5 =max(0,u5−3) and for every m≥ 6, let sm =max(0,um−2). Suppose P
satisfies the following conditions:

(1) k1 ≥9+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l−1,∑∞

m=5sm),

(2) either k1 ≥ k+2 or P satisfies (G),

(3) if l=3, then k1 6= k/2,k+1,2k+1,3ki−k, ∀i=2,3.

Let f ,g ∈M(K) be transcendental and let α be a Moebius function. If f ′P′( f ) and
g′P′(g) share α C.M., then f = g.

And by Theorem 1.7, we have Corollary 1.7.

Corollary 1.7. Let P∈K[x] be such that P′ is of the form b(x−a1)
n(x−a2)k with k≤ n,

min(k,n)≥2 and with b∈K∗. Suppose P satisfies the following conditions:

(1) n≥9+max(0,5−k),

(2) either n≥ k+2 or P satisfies (G),

(3) n 6= k+1,2k,2k+1,3k+1.

Let f ,g ∈M(K) be transcendental and let α be a Moebius function. If f ′P′( f ) and
g′P′(g) share α C.M., then f = g.

Theorem 1.10. Let P be a polynomial of uniqueness for M(K), let P′=b∏
l
i=1(x−ai)

ki with
b∈K∗, l≥2, ki≥ki+1, 2≤i≤ l−1, let k=∑

l
i=2ki, and for each m∈N, let um be the biggest of the

i such that ki >4, let s5 =max(0,u5−4) and for every m≥6, let sm =max(0,um−3). Suppose
P satisfies the following conditions:

(1) either k1 ≥ k+2 or P satisfies (G),

(2) k1 ≥9+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l−1,∑∞

m=5sm),

(3) k1 6= k+1.

Let f ,g∈M(K) be transcendental and let α be a non-zero constant. If f ′P′( f ) and g′P′(g)
share α C.M., then f = g.

By Theorem 1.4, we can derive Corollary 1.8.

Corollary 1.8. Let P ∈ K[x] satisfy Φ(P)≥ 3, let P′=b∏
l
i=1(x−ai)

ki with b ∈ K∗, l ≥ 3,
ki ≥ ki+1, 2≤ i≤ l−1, let k=∑

l
i=2ki, and for each m∈N, let um be the biggest of the i such

that ki > 4, let s5 =max(0,u5−3) and for every m≥ 6, let sm =max(0,um−2). Suppose P
satisfies the following conditions:

(1) k1 ≥ k+2 or P satisfies Hypothesis (G),

(2) k1 ≥9+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l−1,∑∞

m=5sm).

Let f ,g ∈M(K) be transcendental and let α be a non-zero constant. If f ′P′( f ) and
g′P′(g) share α C.M., then f = g.
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And by Theorem 1.2, we have Corollary 1.9.

Corollary 1.9. Let P∈K[x] be such that P′ is of the form b(x−a1)
n(x−a2)k with min(k,n)≥

2 and with b∈K∗. Suppose P satisfies the following conditions:

(1) n≥9+max(0,5−k),

(2) either n≥ k+2 or P satisfies (G),

(3) n 6= k+1.

Let f ,g ∈M(K) be transcendental and let α be a non-zero constant. If f ′P′( f ) and
g′P′(g) share α C.M., then f = g.

Example 1.3. Let

P(X)=
X24

24
−

10X23

23
+

36X22

22
−

40X21

21
−

74X20

20
+

226X19

19
−

84X18

18

−
312X17

17
+

321X16

16
+

88X15

15
−

280X14

14
+

48X13

13
+

80X12

12
−

32X11

11
.

We can check that P′(X)=X10(X−2)5(X+1)4(X−1)4. Next, we have P(2)<−134378,
P(1)∈ [−2,11;−2,10], P(−1)∈ [2,18;2,19]. Therefore, P(0), P(1), P(−1), P(2) are all dis-
tinct, hence Φ(P)=4. Moreover, Hypothesis (G) is satisfied.

Now, let f ,g∈M(K) (resp. let f ,g∈Mu(d(a,R−)), resp. let f ,g∈M(C)) and let α∈M(K)
(resp. let α∈M(d(a,R−)), resp. let α∈M(C)) be non-identically zero. If f ′P′( f ) and g′P′(g)
share α C.M., then f = g.

Particularly, when f , g are entire functions in C we can simplify the hypothesis:

Theorem 1.11. Let P be a polynomial of uniqueness for A(C) with l≥2 and ki≥ki+1, 1≤i≤l−1
when l>2 and let k=∑

l
i=2ki, let u5 be the biggest of the i such that ki>4 and let s5=max(0,u5−3)

and for each m∈N, let um be the biggest of the i such that ki >m and let sm =max(0,um−2).
Suppose P satisfies the following conditions:

(1) k1≥ k+2 or P satisfies hypothesis (G),

(2) k1≥5+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l−3,∑∞

m=5sm).

Let f ,g ∈A(C) be transcendental and let α ∈A f (C)∩Ag(C) be non-identically zero. If
f ′P′( f ) and g′P′(g) share α C.M., then f = g.

By Proposition 1.2, we have Corollaries 1.10 and 1.11.

Corollary 1.10. Let P∈C[X], let P′=b∏
l
i=1(X−ai)

ki with b∈C∗, ki≥ki+1, 1≤ i≤ l−1 and
let k=∑

l
i=2ki, let u5 be the biggest of the i such that ki >4 and let t5 =u5−3 and for each

m∈N, let um be the biggest of the i such that ki >m and let tm =max(0,um−2). Suppose
P satisfies the following conditions:

(1) either k1 ≥ k+2 or P satisfies hypothesis (G),

(2) k1≥5+max(0,5−k2)+∑
l
i=3max(0,4−ki)−min(2l−3,∑∞

m=5sm).

Let f ,g∈M(C) be transcendental and let α∈M f (C)∩Mg(C) be non-identically zero.
If f ′P′( f ) and g′P′(g) share α C.M., then f = g.



60 A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

Corollary 1.11. Let P ∈ C[X] and let P′ = b(X−a1)
n(X−a)k with min(k,n) ≥ 2 and

max(n,k)≥3. Suppose that P satisfies n≥5+max(0,5−k).
Let f ,g∈A(C) be transcendental and let α∈A f (C)∩Ag(C) be non-identically zero. If

f ′P′( f ) and g′P′(g) share α C.M., then f = g.

Example 1.4. Let

P(X)=
X11

11
+

5X10

10
+

10X9

9
+

10X8

8
+

5X7

7
+

X6

6
.

Then P′(X)=X5(X+1)5. We can apply Corollary 1.11 given f ,g∈A(C) transcendental
such that f ′P′( f ) and g′P′(g) share a small function α∈M(C) C.M., we have f = g.

2 The proofs

Notation 2.1. As usual, given a function f ∈M(E) (resp. M(d(0,R−))), we denote by
S f (r) a function of r defined in [0,+∞] (resp. in [0,R]), such that

lim
r→+∞

S f (r)

T(r, f )
=0, resp. lim

r→R

S f (r)

T(r, f )
=0.

We must recall the classical Nevanlinna Main Theorem:

Theorem 2.1 (see [7,12]). Let a1,··· ,an∈K (resp. a1,··· ,an∈K, resp. a1,··· ,an∈C) with n≥2,
n∈N, and let f ∈M(K) (resp. let f ∈M(d(0,R−)), resp. let f ∈M(C)). Let S= {a1,··· ,an}.
Then, for r>0 we have

(n−1)T(r, f )≤
n

∑
j=1

Z(r, f −aj)+N(r, f )−logr+O(1),

resp.

(n−1)T(r, f )≤
n

∑
j=1

Z(r, f −aj)+N(r, f )+O(1),

resp.

(n−1)T(r, f )≤
n

∑
j=1

Z(r, f −aj)+N(r, f )+S f (r).

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three
small function:

Theorem 2.2. Let f ∈A(K) (resp. let f ∈A(d(0,R−)), resp. let f ∈A(C) ) and let u∈ f ∈A f (K)

(resp. let u∈A f (d(0,R−)), resp. u∈ f ∈A f (C)). Then T(r, f )≤Z(r, f )+Z(r, f −u)+S f (r).



A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81 61

In order to prove Theorem 2.3, we need additional lemmas:

Notation 2.2. Let f ∈M(d(a,R−)), and let r∈ [0,R]. By classical results [8, 10] we know
that | f (x)| has a limit when |x| tends to r, while being different from r.

We set | f |(r)= lim|x|→r,|x|6=r | f (x)|.

Lemma 2.1. For every r ∈ [0,R], the mapping |·|(r) is an ultrametric multiplicative norm on
M(d(0,R−)).

The following Lemma 2.2 is the p-adic Schwarz formula:

Lemma 2.2. Let f ∈A(K) (resp. f ∈A(d(0,R−))) and let r′,r′′∈ [0,+∞] (resp. let r′,r′′∈ [0,R])
satisfy r′< r′′. Then log(| f |(r′′))−log(| f |(r′))=Z(r′′, f )−Z(r′ , f ).

Lemma 2.3. Let f ∈M(K) (resp. f ∈M(d(0,R−))). Suppose that there exists a∈K and a se-
quence of intervals In=[un,vn] such that un<vn<un+1, limn→+∞ un=+∞ (resp. limn→+∞ un=
R) and limn→+∞ infr∈In qT(r, f )−Z(r, f −a)=+∞. Set L=

⋃+∞
n=0 In. Let b ∈K, b 6= a. Then

Z(r, f −b)=T(r, f )+O(1), ∀r∈L.

Proof. We know that the Nevanlinna functions of a meromorphic function f are the same
in K and in an algebraically closed complete extension of K whose absolute value ex-
tends that of K. Consequently, without loss of generality, we can suppose that K is
spherically complete because we know that such a field does admit a spherically com-
plete algeberaically closed extension whose absolute value expands that of K. If f be-
longs to M(K), we can obviously set it in the form g/h, where g, h belong to A(K) and
have no common zero. Next, since K is supposed to be spherically complete, if f belongs
to M(d(0,R−)) we can also set it in the form g/h where g,h belong to A(d(0,R−)) and
have no common zero [8, 10]. Consequently, we have T(r, f )=max(Z(r,g),Z(r,h)).

By hypothesis we have

lim
n→+∞

(
inf
r∈In

T(r, f )−Z(r, f −a)
)
=+∞,

i.e.,

lim
n→+∞

(
inf
r∈In

T(r, f )−Z(r, f −a)
)
=+∞,

i.e.,

lim
n→+∞

(
inf
r∈In

max(Z(r,g),Z(r,h))−Z(r,g−ah)
)
=+∞.

Set
Bn= inf

r∈In

max(Z(r,g),Z(r,h))−Z(r,g−ah)).

Since the sequence Bn tends to +∞, clearly, by Lemma 2.2, the sequence (Dn) defined as

Dn=sup
r∈In

( |g−ah|(r)

max(|g|(r),|h|(r))

)
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tends to zero. Therefore, by Lemma 2.1, we have |g|(r) = |ah|(r) in In when n is big
enough. Consequently, by Lemma 2.2, we have Z(r,g)=Z(r,ah)+O(1), ∀r∈L and hence
T(r, f )=Z(r,h)+O(1)=Z(r,g)+O(1), ∀r∈L.

Now, consider g−bh= g−ah+(a−b)h. By hypothesis we have

lim
n→+∞

(
inf
r∈In

Z(r,h)−Z(r,g−ah)
)
=+∞.

On the other hand, of course Z(r,(a−b)h)=Z(r,h)+O(1). Consequently, since Z(r,g−
bh)=Z(r,g−ah+(a−b)h), we have

lim
n→+∞

(
inf
r∈In

(Z(r,(a−b)h)−Z(r,g−ah)
)
=+∞.

Consider now the sequence (En) defined as

En =sup
r∈In

( |g−ah|(r)

|(a−b)h|(r)

)
.

By Lemma 2.2, that sequence tends to zero and hence, when r is big enough in L, by
Lemma 2.1 we have |g−bh|(r)= |a−bh|(r). Consequently, when r is big enough in L, we
have Z(r,g−bh)=Z(r,bh)=Z(r,h)+O(1). Moreover, we have seen that Z(r,g)=Z(r,h)+
O(1) in L, hence max(Z(r,g),Z(r,h)) = Z(,g−bh)O(1) = max(Z(r,g−bh),Z(r,h)+O(1),
i.e., T(r, f )=T(r, f −b)+O(1) in L.

The second Main Theorem is well known in complex and p-adic analysis and is re-
called below. But first, we can give here a new theorem of that kind which will be efficient
in Theorems 1.8-1.10.

Theorem 2.3. Let f ∈M(K) (resp. f ∈M(d(0,R−))) and let a1,··· ,aq ∈K be distinct. Then

(q−1)T(r, f )≤∑
q
j=1 Z(r, f −aj)O(1).

Proof. Suppose the theorem is wrong. There exists f ∈M(K) (resp. f ∈M(d(0,R−))) and
a1,··· ,aq such that (q−1)T(r, f )−∑

q
j=1 Z(r, f−aj) admits no superior bound in [0,+∞]. So,

there exists a sequence of intervals Js =[ws,ys] such that ws<ys <ws+1, lims→+∞ws=+∞

(resp. lims→+∞ws=R) and

lim
s→+∞

(
inf
r∈Js

(q−1)T(r, f )−
q

∑
j=1

Z(r, f −aj)
)
=+∞. (2.1)

Let M=
⋃∞

s=0 Js. For each j=1,··· ,q, we have Z(r, f −ai)≤T(r, f )+O(1) in R+ and hence
(2.4) implies that there exists an index t and a sequence of intervals In =[un,vn] included
in M, such that un<vn <un+1, limn→+∞un =+∞ (resp. limn→+∞ un=R) and

lim
n→+∞

(
inf
r∈In

(T(r, f )−Z(r, f −at))
)
=+∞. (2.2)
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Let L=
⋃∞

n=1 In. Then by Lemma 2.3, in L we have Z(r,g−akh)=T(r f )+O(1), ∀k 6=t. There-
fore ∑

q
j=1 Z(r, f −aj)≥(q−1)T(r, f )+O(1) in L, a contradiction to (2.4). Consequently, the

Theorem is not wrong.

Remark 2.1. Theorem 2.3 is trivial for analytic functions since by definition, for a function
f ∈A(K) or A(d(0,R−)) we have T(r, f )=Z(r, f ). On the other hand, the theorem does
not apply to meromorphic functions in C. Indeed, consider a meromorphic function f on
C omitting two values a and b. We have Z(r, f −a)+Z(r, f −b)=0.

In the proof of Theorems 1.7-1.11 will need the following Lemmas:

Lemma 2.4. Let Q∈K[x] (resp. Q∈K[X], resp. Q∈C[x]) be of degree n and let f ∈M(K),
(resp. f ∈M(d(0,R−)), resp. f ∈M(C)) be transcendental. Then

N(r, f ′)=N(r, f )+N(r, f ), Z(r, f ′)≤Z(r, f )+N(r, f )+O(1),

nT(r, f )≤T(r, f ′Q( f ))≤ (n+2)T(r, f )−logr+O(1),

resp.
nT(r, f )≤T(r, f ′Q( f ))≤ (n+2)T(r, f )+O(1),

resp.
nT(r, f )≤T(r, f ′Q( f ))+m(r,1/ f ′)≤ (n+2)T(r, f )+S f (r)).

Particularly, if f ∈A(K), resp.

f ∈A(d(0,R−)),

then
nT(r, f )≤T(r, f ′Q( f ))≤ (n+1)T(r, f )−logr+O(1),

resp.
nT(r, f )≤T(r, f ′Q( f ))≤ (n+1)T(r, f )+O(1).

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three
small function:

Lemma 2.5. Let Q(X)∈K[X] and let f ,g∈A(K) (resp. let f ,g∈Au(d(0,R−))) be such that
Q( f )−Q(g) is bounded. Then f = g.

Proof. The polynomial Q(X)−Q(Y) factorizes in the form (X−Y)F(X,Y) with F(X,Y)∈
K[X,Y]. Since Q( f )−Q(g) is bounded, so are both factors because the semi-norm |·
|(r) is multiplicative on A(K) (resp. on Au(d(0,R−))). Consequently, f −g is a con-
stant c (resp. is a bounded function u ∈ Ab(d(0,R−))). Therefore F( f ,g) = F( f , f +c)
(resp. F( f ,g)= F( f ; f +u)). Let n=deg(Q). Then we can check that F(X,X+c) is a poly-
nomial in X of degree n−1. Consequently, if f ∈A(K), F( f , f +c) is a non-constant entire
function and therefore is unbounded in K. Similarly, f ∈ (d(0,R−)), F(X,X+u) is a poly-
nomial in X of degree n−1 with coefficients in A(d(0,R−)) and therefore F( f , f +u) is
unbounded in d(0,R−), which ends the proof.
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Proof of Theorem 1.6. Without loss of generality, we may assume that b = 1. Put F =
f ′∏l

j=1( f −aj)
k j and G = g′∏l

j=1(g−aj)
k j . Since f ,g ∈A(K) and since F and G share α

C.M., then (F−α)/(G−α) is a meromorphic function having no zeros and no pole in
K (resp. in d(0,R−)), hence it is a constant u in K\{0} (resp. it is an invertible function
u∈A(d(0,R−))).

Suppose u 6=1. Then,

F=uG+α(1−c). (2.3)

Let r>0. Since α(1−u)∈A f (K) (resp. α(1−u)∈A f (d(0,R))), α(1−u) obviously belongs
to AF(K) (resp. to AF(d(0,R−))). So, applying Theorem 2.2 to F, we obtain

T(r,F)≤Z(r,F)+Z
(
r,F−α(1−c)

)
+SF(r)=Z(r,F)+Z(G)+SF(r)

=
l

∑
j=1

Z
(
r,( f −aj)

k
)
+Z(r, f ′)+

l

∑
j=1

Z
(
r,(g−aj)

k
)
+Z(r,g′)+S f (r)

≤l(T(r, f )+T(r,g))+Z(r, f ′)+Z(r,g′)+S f (r).

We also notice that if f ,g∈A(K) and if α∈K, we have

T(r,F)≤Z(r,F)+Z
(
r,F−α(1−c)

)
−logr+O(1)

and therefore we obtain

T(r,F)≤ l(T(r, f )+T(r,g))+Z(r, f ′)+Z(r,g′)−logr+O(1).

Now, let us go back to the general case. Since f is entire, by Lemma 2.4 we have,

T(r,F)=
( l

∑
j=1

kj

)
T(r, f )+Z(r, f ′)+O(1).

Consequently,

( l

∑
j=1

kj

)
T(r, f )≤ l(T(r, f )+T(r,g))+Z(r,g′)+S f (r).

Similarly,
( l

∑
j=1

kj

)
T(r,g)≤ l(T(r,g)+T(r,g))+Z(r, f ′)+S f (r).

Therefore

( l

∑
j=1

kj

)
(T(r, f )+T(r,g))≤2l(T(r, f )+T(r,g))+Z(r, f ′)+Z(r,g′)+S f (r)

≤(2l+1)(T(r, f )+T(r,g))+S f (r).
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So,
l

∑
j=1

kj ≤2l+1.

Thus, since ∑
l
j=1kj >2l+1, we have u=1.

And if α∈K, we obtain,

l

∑
j=1

kj(T(r, f )+T(r,g))≤2l(T(r, f )+T(r,g))+Z(r, f ′)+Z(r,g′)+S f (r)

≤(2l+1)(T(r, f )+T(r,g))−3logr+O(1),

because T(r, f ′)≤ T(r, f )−logr+O(1), hence ∑
l
j=1kj ≤2l which also contradicts the hy-

pothesis c 6=1 whenever ∑
l
j=1kj >2l.

Consequently, in the general case, whenever ∑
l
j=1kj >2l+1, we have u=1 and there-

fore f ′P′( f )=g′P′(g) hence P( f )−P(g) is a constant D. But then by Lemma 2.5, we have
P( f )=P(g). And since P is a polynomial of uniqueness for A(K) (resp. for A(d(0,R−))),
we can conclude f = g. Similarly, if f ,g∈A(K) and if α is a non-zero constant, we have
have u=1 whenever ∑

l
j=1 kj >2l and we conclude in the same way. �

On K, we have this theorem from results of [4]:

Theorem 2.4. Let P,Q∈K[x] satisfy one of the following two statements:

∑
ai∈F′

ki ≥ s−m+2 (resp. ∑
ai∈∆

ki ≥ s−m+3),

∑
bj∈F′′

qj ≥2 (resp. ∑
bi∈Λ

qj ≥3).

If two meromorphic functions f ,g∈M(K) (resp. f ,g∈M(d(a,R−)))) satisfy P( f (x))=Q(g(x)),
x∈K, (resp. x∈d(a,R−)) then both f and g are constant (resp. belong to Mb(d(a,R−)))).

And on C, we have this theorem from results of [3]:

Theorem 2.5. Let P,Q∈C[X] satisfy one of the following two conditions:

∑
ai∈F′

kj ≥ s−m+3, ∑
bj∈F′′

qi ≥3,

and if the polynomial P(X)−Q(Y) has no factor of degree 1, then there is no non-constant func-
tion f ,g∈M(C) such that P( f (x))−Q(g(x))=0, ∀x∈C.

From Theorem 2.5 we can derive the following Theorem 2.6:

Theorem 2.6. Let P,Q∈C[X] satisfy one of the following two conditions:

∑
ai∈F′

ki ≥ s−m+3, ∑
bj∈F′′

qj ≥3.

Then there is no non-constant function f ,g∈M(C) such that P( f (x))−Q(g(x))=0, ∀x∈C.
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Proof. Let F(X,Y) = P(X)−Q(Y). Since C is algebraically isomorphic to an ultrametric
field such as Cp (with p any prime integer), without loss of generality we can transfer the
problem onto the field Cp. So, the image of the polynomial F in Cp[X,Y] is a polynomial

F̃(X,Y).
Thus, the hypothesis ∑ai∈F′ ki ≥ s−m+3 still holds in Cp and similarly, for the hy-

pothesis ∑bj∈F′′ qj ≥3. Suppose for instance ∑ai∈F′ ki ≥ s−m+3. By Theorem 2.5, there is

no pair of non-constant functions f ,g∈M(Cp) such that P( f (x))−Q(g(x))=0. Particu-

larly, F̃(X,Y) admits no factor of degree 1 in Cp[X,Y]. But then, F(X,Y) does not admit
a factor of degree 1 in C[X,Y] either, because the factorization is conserved by a trans-
fer. Now, we can apply Theorem 2.5 proving that when two functions f ,g∈M(C) satisfy
P( f (x))=Q(g(x)), ∀x∈C, then they are constant.

Proof of Proposition 1.1. Suppose that two functions f ,g∈M(K) (resp. f ,g∈M(d(a,R−)))
satisfy P( f (x))=P(g(x))+C (C∈K), ∀x∈K (resp. ∀x∈d(a,R−)). We can apply Theorem
2.4 by putting Q(X) = P(X)+C. So, we have h = l and bi = ai, i = 1,··· ,l. Let Γ be the
curve of equation P(X)−P(Y)=C. By hypothesis we have n≥ 2, hence deg(P)≥ 3, so
Γ is of degree ≥3. Therefore, if Γ has no singular point, it is of genus ≥1 and hence, by
Picard-Berkovich Theorem, the conclusion is immediate. Consequently, we can assume
that Γ has a singular point (α,β). But then P′(α)=P′(β)=0 and hence (α,β) is of the form
(ah,ak). Consequently, C= P(ah)−P(ak) and since C 6= 0, we have h 6= k. We will prove
that either a1∈F′, or a1 ∈F′′.

Suppose first that a1 /∈ F′∪F′′. Since a1 /∈ F′, there exists i∈{2,··· ,l} such that P(a1)=
P(ai)+C. Now since 1 /∈F′′, there exists j∈{2,··· ,l} such that P(a1)+C=P(ai). But since
C=−P(ai), we have P(aj)=−P(ai), therefore P(ai)+P(aj)=0. Since P satisfies (G), we
have i = j, hence P(ai) = 0. But then C= 0, a contradiction. Therefore, we have proven
that a1 ∈ F′∪F′′. Now, by Theorem 2.4, f and g are constant (resp. f and g belong to
Mb(d(a,R−))). �

Proof of Proposition 1.2. Suppose that two functions f ,g∈M(C) satisfy P( f (x))=P(g(x))+
C (C∈C), ∀x∈C. We will apply Theorem 2.6 by putting Q(X)=P(X)+C. Since n≥3, we
have deg(P)≥4 and hence Γ is of degree ≥4. Consequently, if Γ has no singular point, it
has genus ≥2 and hence, by Picard’s Theorem, there exist no functions f ,g∈M(C) such
that P( f (x))=P(g(x))+C,x∈C. Consequently, we can assume that Γ admits a singular
point (ah,ak). The proof is then similar to that of Proposition 1.1. �

Notation 2.3. Let f ∈M(C) be such that f (0) 6=0,∞. We denote by Z[2](r, f ) the counting
function of the zeros of f each being counted with multiplicity when it is at most 2 and
with multiplicity 2 when it is bigger.

The following basic lemma applies to both complex and meromorphic functions. A
proof is given in [5] for p-adic meromorphic functions and in [6] for complex meromor-
phic functions.

The following Theorem 2.7 is indispensable in the proof of theorems:
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Theorem 2.7. Let P(x) = (x−a1)
n ∏

l
i=2(x−ai)

ki ∈ E[x] (ai 6= aj, ∀i 6= j) with l ≥ 2 and

n ≥ max{k2,··· ,kl} and let k = ∑
l
i=2ki. Let f ,g ∈M(E) be transcendental (resp. let f ,g ∈

M(d(a,R−))) and let θ = P( f ) f ′P(g)g′. If θ belongs to M f (E)∩Mg(E), (resp. if θ belongs
to M f (d(a,R−))∩Mg(d(a,R−))) then we have the following:

(a) if l=2 then n belongs to {k,k+1,2k,2k+1,3k+1},

(b) if l=3 then n belongs to {k/2,k+1,2k+1,3k2−k,3k3−k},

(c) if l≥4 then n= k+1.

Moreover, if f ,g belong to M(K) and if θ is a constant, then n= k+1. Further, if f ,g belong to
A(E), then θ does not belong to A f (E).

Lemma 2.6. Let f ∈M(K), (resp. f ∈M(d′0,R−)), resp. f ∈M(C)). Then

T(r, f )−Z(r, f )≤T(r, f ′)−Z(r, f ′)+O(1).

Now, we can extract the following Lemma 2.7 from a result that is proven in several
papers and particularly in Lemma 3 [14] when E = C and, with precisions in Lemma
11 [5] when E=K. We put

ΨF,G =
F′′

F′
−

2F′

F−1
−

G′′

G′
+

2G′

G−1
.

Lemma 2.7. Let f ,g∈M(C) (resp. f ,g∈M(K)) share the value 1 CM. If Ψ f ,g is not identically
zero, then,

max(T(r, f ),T(r,g))≤N[2](r, f )+Z[2](r, f )+N[2](r,g)+Z[2](r,g)+S f (r)+Sg(r),

resp.

max(T(r, f ),T(r,g))≤N[2](r, f )+Z[2](r, f )+N[2](r,g)+Z[2](r,g)−6logr.

We will need the following Lemma 2.8:

Lemma 2.8. Let f ,g∈M(K) be transcendental (resp. f ,g∈Mu(d(0,R−)), resp. f ,g∈M(C)).
Let P(x)= xn+1Q(x) be a polynomial such that n≥deg(Q)+2 (resp. n≥deg(Q)+3, resp. n≥
deg(Q)+3). If P′( f ) f ′=P′(g)g′ then P( f )=P(g).

For simplicity, we can assume a1 =0. Set F= f ′P′( f )/α and G= g′P′(g)/α. Clearly F
and G share the value 1 C.M..

Since f ,g are transcendental, we notice that so are F and G. We will prove that under
the hypotheses of Theorems, ΨF,G is identically zero.

The following lemma holds in the same way in p-adic analysis and in complex anal-
ysis. It is proven in [5] for the p-adic version and in [21] for the complex version.
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Lemma 2.9. Let f ,g∈M(E) (resp. let f ,g∈M(d(0,R−)) be non-constant and sharing the value
1 C.M.. Suppose that Ψ f ,g=0 and that

limsup
r→+∞

(Z(r, f )+Z(r,g)+N(r, f )+N(r,g)

max(T(r, f ),T(r,g))

)
<1,

resp.

limsup
r→R−

(Z(r, f )+Z(r,g)+N(r, f )+N(r,g)

max(T(r, f ),T(r,g))

)
<1.

Then either f = g or f g=1.

Proofs of Theorems 1.7-1.11. For simplicity, now we set n= k1. Set F= f ′P′( f )/α, G=
g′P′(g)/α and F̂ = P( f ), Ĝ = P(g). Suppose F 6= G. We notice that P(x) is of the form
xn+1Q(x) with Q∈K[x] of degree k. Now, with help of Lemma 2.6, we can check that we
have

T(r, F̂)−Z(r, F̂)≤T(r, F̂′)−Z(r, F̂′)+O(1).

Consequently, since (F̂)′=αF, we have

T(r, F̂)≤T(r,F)+Z(r, F̂)−Z(r,F)+T(r,α)+O(1), (2.4)

hence, by (2.4), we obtain

T(r, F̂)≤T(r,F)+(n+1)Z(r, f )+Z
(
r,Q( f )

)
−nZ(r, f )

−
l

∑
i=2

kiZ(r, f −ai)−Z(r, f ′)+T(r,α)+O(1),

i.e.,

T(r, F̂)≤T(r,F)+Z(r, f )+Z
(
r,Q( f )

)
−

l

∑
i=2

kiZ(r, f −ai)−Z(r, f ′)+T(r,α)+O(1), (2.5)

and similarly,

T(r,Ĝ)≤T(r,G)+Z(r,g)+Z
(
r,Q(g)

)
−

l

∑
i=2

kiZ(r,g−ai)−Z(r,g′)+T(r,α)+O(1). (2.6)

Now, it follows from the definition of F and G that

Z[2](r,F)+N[2](r,F)≤2Z(r, f )+2
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+2N(r, f )+T(r,α)+O(1), (2.7)

and similarly

Z[2](r,G)+N[2](r,G)≤2Z(r,g)+2
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+2N(r,g)+T(r,α)+O(1). (2.8)
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And particularly, if ki =1, ∀i∈{2,··· ,l}, then

Z[2](r,F)+N[2](r,F)≤2Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+2N(r, f )+T(r,α)+O(1), (2.9)

and similarly

Z[2](r,G)+N[2](r,G)≤2Z(r,g)+
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+2N(r,g)+T(r,α)+O(1). (2.10)

Suppose now that ΨF,G is not identically zero. Let us place us in the p-adic context: E=K.
By Lemma 2.7, we have

T(r,F)≤Z[2](r,F)+N[2](r,F)+Z[2](r,G)+N[2](r,G)−3logr,

hence by (2.5), we obtain

T(r, F̂)≤Z[2](r,F)+N[2](r,F)+Z[2](r,G)+N[2](r,G)+Z(r, f )+Z(r,Q( f ))

−
l

∑
i=2

kiZ(r, f −ai)−Z(r, f ′)+T(r,α)−3logr+O(1),

and hence by (2.7) and (2.8)

T(r, F̂)≤2Z(r, f )+2
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+2N(r, f )+2Z(r,g)

+2
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+2N(r,g)+Z(r, f )+Z(r,Q( f ))

−
l

∑
i=2

kiZ(r, f −ai)−Z(r, f ′)+2T(r,α)−3logr+O(1), (2.11)

and similarly,

T(r,Ĝ)≤2Z(r,g)+2
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+2N(r,g)+2Z(r, f )

+2
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+2N(r, f )+Z(r,g)+Z(r,Q(g))

−
l

∑
i=2

kiZ(r,g−ai)−Z(r,g′)+2T(r,α)−3logr+O(1). (2.12)



70 A. Escassut, K. Boussaf and J. Ojeda / Anal. Theory Appl., 30 (2014), pp. 51-81

Consequently,

T(r, F̂)+T(r,Ĝ)≤5(Z(r, f )+Z(r,g))+
l

∑
i=2

(4−ki)(Z(r, f −ai)+Z(r,g−ai))

+(Z(r, f ′)+Z(r,g′))+4(N(r, f )+N(r,g))+(Z(r,Q( f ))+Z(r,Q(g)))

+4T(r,α)−6logr+O(1). (2.13)

Moreover, if ki =1, ∀i∈{2,··· ,l}, then by (2.9) and (2.10) we have

T(r, F̂)≤2Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+2N(r, f )+2Z(r,g)

+
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+2N(r,g)+Z(r, f )+Z(r,Q( f ))

−
l

∑
i=2

Z(r, f −ai)−Z(r, f ′)+2T(r,α)−3logr+O(1),

and similarly,

T(r,Ĝ)≤2Z(r,g)+
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+2N(r,g)+2Z(r, f )

+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+2N(r, f )+Z(r,g)+Z(r,Q(g)))

−
l

∑
i=2

Z(r,g−ai)−Z(r,g′)+2T(r,α)−3logr+O(1).

Consequently,

T(r, F̂)+T(r,Ĝ)≤5(Z(r, f )+Z(r,g))+
l

∑
i=2

(Z(r, f −ai)+Z(r,g−ai))

+Z(r,Q( f ))+Z(r,Q(g))+(Z(r, f ′)+Z(r,g′))

+4(N(r, f )+N(r,g))+4T(r,α)−6logr+O(1). (2.14)

Now, let us go back to the general case. By Lemma 2.4, we can write Z(r, f ′)+Z(r,g′)≤
Z(r, f −a2)+Z(r,g−a2)+N(r, f )+N(r,g)−2logr. Hence, in general, by (2.13) we obtain

T(r, F̂)+T(r,Ĝ)≤5(Z(r, f )+Z(r,g))+
l

∑
i=3

(4−ki)
(
(Z(r, f −ai)+Z(r,g−ai))

)

+(5−k2)
(
(Z(r, f −a2)+Z(r,g−a2))+5(N(r, f )+N(r,g))

+(Z(r,Q( f ))+Z(r,Q(g)))+4T(r,α)−8logr+O(1),
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and hence, since T(r,Q( f ))= kT(r, f )+O(1) and T(r,Q(g))= kT(r,g)+O(1),

T(r, F̂)+T(r,Ĝ)≤5(T(r, f )+T(r,g))+
l

∑
i=3

(4−ki)
(
(Z(r, f −ai)+Z(r,g−ai))

)

+(5−k2)
(
(Z(r, f −a2)+Z(r,g−a2))+5(N(r, f )+N(r,g))

+k(T(r, f )+T(r,g))+4T(r,α)−8logr+O(1). (2.15)

Since F̂ is a polynomial in f of degree n+k+1, we have T(r, F̂)=(n+k+1)T(r, f )+O(1)
and similarly, T(r,Ĝ)=(n+k+1)T(r,g)+O(1), hence by (2.15) we can derive

(n+k+1)(T(r, f )+T(r,g))≤5(T(r, f )+T(r,g))+(5−k2)(Z(r, f −a2)+Z(r,g−a2))

+
l

∑
i=3

(4−ki)
(
(Z(r, f −ai)+Z(r,g−ai))

)
+5(N(r, f )+N(r,g))

+k(T(r, f )+T(r,g))+4T(r,α)−8logr+O(1), (2.16)

hence

(n+k+1)(Tr, f )+T(r,g))≤10(T(r, f )+T(r,g))+
l

∑
i=3

(4−ki)
(
(Z(r, f −ai)+Z(r,g−ai))

)

+(5−k2)
(
(Z(r, f −a2)+Z(r,g−a2))+k(T(r, f )+T(r,g))

+4T(r,α)−8logr+O(1)),

hence

n(Tr, f )+T(r,g))≤9(T(r, f )+T(r,g))+(5−k2)
(
(Z(r, f −a2)+Z(r,g−a2))

+
l

∑
i=3

(4−ki)
(
(Z(r, f −ai)+Z(r,g−ai))

)

+4T(r,α)−8logr+O(1)). (2.17)

Then (5−k2)(Z(r, f−a2)+Z(r,g−a2))≤max(0,5−k2)(T(r, f )+T(r,g))+O(1) and at least,
for each i=3,··· ,l, we have

(4−ki)(Z(r, f −ai)+Z(r,g−ai))≤max(0,4−ki)(T(r, f )+T(r,g))+O(1).

Now suppose s5 > 0. That means that ki ≥ 5, ∀i= 3,··· ,u5 with l ≥ 5. We notice that the
number of indicies i superior or equal to 2 such that ki ≥ 5 is u5−2. Similarly, for each
m>5, the number of indicies superior or equal to 1 such that ki ≥m is um−1.

Suppose first E=K. then we can apply Theorem 2.3 and then we obtain ∑
u5
i=3 Z(r, f −

ai)≥ (u5−3)T(r, f )−logr+O(1) and for each m ≥ 6, ∑
um
i=3 Z(r,g−ai)≥ (um−2)T(r,g)−

logr+O(1), i.e., ∑
u5

i=3 Z(r, f −ai)≥ s5T(r, f )−logr+O(1), i.e., ∑
um
i=3 Z(r,g−ai)≥ smT(r,g)−

logr+O(1) in Theorems 1.7, 1.9, 1.10.
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Consequently, by (2.17), we obtain

n(Tr, f )+T(r,g))≤9(T(r, f )+T(r,g))+max(0,5−k2)(Z(r, f −a2)+Z(r,g−a2))

+
l

∑
i=3

max(0,4−ki)
(
Z(r, f −ai)+Z(r,g−ai)

)
−

∞

∑
m=5

sm(T(r, f )+T(r,g))

+4T(r,α)−8logr+O(1)), (2.18)

therefore

n≤9+max(5−k2)+
l

∑
i=3

max(0,4−ki)−
∞

∑
j=5

sj,

a contradiction to the hypotheses of Theorem 1.7.
Consider now the situation in Theorems 1.9 and 1.10. In Theorem 1.9, we have

T(r,α)≤ logr+O(1) and in Theorem 1.10, T(r,α)=0. Consequently, Relation (2.18) now
implies

n(Tr, f )+T(r,g))≤9(T(r, f )+T(r,g))+max(0,5−k2)(Z(r, f −a2)+Z(r,g−a2))

+
l

∑
i=3

max(0,4−ki)
(
Z(r, f −ai)+Z(r,g−ai)

)
−

∞

∑
m=5

sm(T(r, f )+T(r,g))

−4logr+O(1)),

therefore

n<9+max(0,5−k2)+
l

∑
i=3

max(0,4−ki)−
∞

∑
m=5

sm,

but this is incompatible with the hypothesis

n≥9+max(5−k2)+
l

∑
i=3

max(0,4−ki)−min
(

2l,
∞

∑
j=5

sj

)
.

Now, let us consider the complex context: E = C. All inequalities above hold just by
replacing each expression −qlogr by S f (r)+Sg(r). However, we cannot apply Theorem
2.3 here but only Theorem 2.1. Therefore we obtain

u5

∑
i=3

(Z(r, f −ai)+Z(r,g−ai)≥ (u5−4)(T(r, f )+T(r,g))= t5(T(r, f )+T(r,g)),

Um

∑
i=3

(Z(r, f −ai)+Z(r,g−ai)≥ (um−3)(T(r, f )+T(r,g))= tm(T(r, f )+T(r,g)).

Therefore we obtain

n≤9+max(5−k2)+
l

∑
i=3

max(0,4−ki)−
∞

∑
m=5

tm
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a contradiction to the hypothesis of Theorem 1.8.
Finally, consider the situation in Theorem 1.11. Since N(r, f ) = N(r,g) = 0, Relation

(2.16) gets

(n+k+1)(T(r, f )+T(r,g))≤5(T(r, f )+T(r,g))+(5−k2)(Z(r, f −a2)+Z(r,g−a2))

+
l

∑
i=3

(4−ki)
(
(Z(r, f −ai)+Z(r,g−ai))

)

+k(T(r, f )+T(r,g))+4T(r,α)+S f (r)+Sg(r)).

On the other hand, by applying Theorem 2.1 to f and g, which now are entire functions,
we have

u5

∑
i=3

Z(r, f −ai)≥ (u5−3)T(r, f )= s5T(r, f ),
u5

∑
i=3

Z(r,g−ai)≥ (u5−3)T(r,g)= s5T(r,g),

um

∑
i=3

Z(r, f −ai)≥ (um−2)T(r, f )= smT(r, f ),
um

∑
i=3

Z(r,g−ai)≥ (um−2)T(r,g)= smT(r,g).

Consequently,

n+k+1≤5+k+max(0,5−k2)+
l

∑
i=3

max(0,4−ki)−
∞

∑
m=1

sm,

and therefore

n≤4+max(0,5−k2)+
l

∑
i=3

max(0,4−ki)−
∞

∑
m=1

sm,

a contradiction to the hypotheses of Theorem 1.11.

Thus, in the hypotheses of Theorems 1.7-1.11 we have proven that ΨF,G is identically
zero. Henceforth, we can assume that ΨF,G =0 in each theorem.

Note that we can write

ΨF,G =
φ′

φ
with φ=

( F′

(F−1)2

)( (G−1)2

G′

)
.

Since ΨF,G =0, there exist A,B∈E such that

1

G−1
=

A

F−1
+B, (2.19)

and A 6=0.

We notice that Z(r, f )≤T(r, f ),

N(r, f )≤T(r, f )Z(r, f −ai)≤T(r, f −ai)≤T(r, f )+O(1), i=2,··· ,l,
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and Z(r, f ′)≤ T(r, f ′)≤ 2T(r, f )+O(1). Similarly for g and g′. Moreover, if E = K by
Lemma 2.4 we have

T(r,F)≥ (n+k)T(r, f ), (2.20)

and if E=C, we have

T(r,F)≥ (n+k)T(r, f )−m
(

r,
1

f ′

)
+S f (r). (2.21)

We will show that F=G in each therorem. We first notice that according to all hypotheses
in Theorems 1.7-1.10 we have

n+k≥2l+7 (2.22)

and in Theorem 1.11, we have

n+k≥2l+5. (2.23)

We will consider the following two cases: B=0 and B 6=0.

Case 1: B=0.

Suppose A 6= 1. Then, by (2.19), we have F = AG+(1−A). Suppose first E = K.
Applying Theorem 2.1 to F, we obtain

T(r,F)≤Z(r,F)+Z(r,F−(1−A))+N(r,F)−logr+O(1)

≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+Z(r,g)+
l

∑
i=2

Z(r,g−ai)+Z(r,g′)

+N(r, f )−logr+O(1). (2.24)

By (2.20) and (2.24), we obtain

(n+k)T(r, f )≤Z(r,F)+Z
(
r,F−(1−A)

)
+N(r,F)+−logr+O(1)

≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+Z(r,g)+
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+N(r, f )

−logr+O(1). (2.25)

By (2.25), we have

(n+k)T(r, f )≤Z(r,F)+Z
(
r,F−(1−A)

)
+N(r,F)−logr+O(1)

≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+Z(r,g)+
l

∑
i=2

Z(r,g−ai)

+Z(r,g′)+N(r, f )−logr+O(1)),
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hence

(n+k)T(r, f )≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r,g)+
l

∑
i=2

Z(r,g−ai)

+N(r, f )+Z(r,g′)+Z(r, f ′)−logr+O(1). (2.26)

Then, considering all the previous inequalities, by Lemma 2.4 we can derive the following
from (2.26)

(n+k)T(r, f )≤ (l+3)T(r, f )+(l+2)T(r,g)−3logr+O(1). (2.27)

Since f and g satisfy the same hypothesis, we also have

(n+k)T(r,g)≤ (l+3)T(r,g)+(l+2)T(r, f )−3logr+O(1). (2.28)

Hence, adding (2.27) and (2.28), we have

(n+k)
[
T(r, f )+T(r,g)

]
≤ (2l+5)

[
T(r, f )+T(r,g)

]
−6logr+O(1),

therefore

n+k<2l+5. (2.29)

A contradiction to (2.23) proving that A 6= 1 is impossible whenever B= 0, in Theorems
1.7, 1.9 and 1.10.

Suppose now E=C. By (2.21), we have

(n+k)T(r, f )≤Z(r,F)+Z(r,F−(1−A))+N(r,F)+m
(

r,
1

f ′

)
+SF(r)

≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+m
(

r,
1

f ′

)
+Z(r,g)+

l

∑
i=2

Z(r,g−ai)

+Z(r,g′)+N(r, f )+S f (r)+Sg(r).

Here we notice that Z(r, f ′)+m(r,1/ f ′)≤T(r,1/ f ′)=T(r, f ′)+O(1), hence

(n+k)T(r, f )≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r,g)+
l

∑
i=2

Z(r,g−ai)

+N(r, f )+Z(r,g′)+T(r, f ′)+S f (r)+Sg(r). (2.30)

Then, considering all the previous inequalities in (2.30), similarly we can derive

(n+k)T(r, f )≤ (l+3)T(r, f )+(l+2)T(r,g)+S f (r)+Sg(r). (2.31)
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Since f and g satisfy the same hypothesis, we also have

(n+k)T(r,g)≤ (l+3)T(r,g)+(l+2)T(r, f )+S f (r)+Sg(r). (2.32)

Hence, adding (2.31) and (2.32), we have

(n+k)
[
T(r, f )+T(r,g)

]
≤ (2l+5)

[
T(r, f )+T(r,g)

]
+S f (r)+Sg(r),

therefore n+k≤2l+5, a contradiction to (2.23) proving that A 6=1 is impossible whenever
B=0, in Theorem 1.8.

Consider now the situation in Theorem 1.11. By hypothesis we have

k1≥5+max(0,5−k2)+
l

∑
i=3

max(0,4−ki)−min
(

2l,
∞

∑
m=5

sm

)
,

hence

n+k≥10+4(l−2)−
∞

∑
m=5

sm =4l+2−
∞

∑
m=5

sm.

Since N(r, f )=N(r,g)=0, we can use Theorem 2.1, for entire functions and we obtain

u5

∑
i=3

Z(r, f −ai)≥ (u5−3)T(r, f )+S f (r)+Sg(r),

and for each m≥6,

um

∑
i=3

Z(r,g−ai)≥ (um−2)T(r,g)+S f (r))+Sg(r),

i.e.,
u5

∑
i=3

Z(r, f −ai)≥ s5T(r, f )+S f (r)+Sg(r)

and
um

∑
i=3

Z(r,g−ai)≥ smT(r,g)+S f (r)+Sg(r).

Now, Relation (2.16) now gets

(n+k+1)(T(r, f )+T(r,g))

≤5(T(r, f )+T(r,g))+(5−k2)(Z(r, f −a2)+Z(r,g−a2))

+
l

∑
i=3

(4−ki)
(
(Z(r, f −ai)+Z(r,g−ai))

)
+k(T(r, f )+T(r,g))+S f (r)+Sg(r),
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therefore

n+k≤9+4(l−2)−
∞

∑
j=5

sj =2l+1−
∞

∑
m=5

sm

a contradiction to the hypothesis n+k≥2l+5 of Theorem 1.11. Consequently, the hypoth-
esis A 6=1 does not hold when B=0. Henceforth we suppose B 6=0.

Case 2: B 6=0.

Consider first the situation when E=K, i.e., in Theorems 1.7 and in Theorems 1.9 and
1.10. By (2.20) we have Immediately,

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)

≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+Z(r,g)+
l

∑
i=2

Z(r,g−ai)

+Z(r,g′)+N(r, f )+N(r,g)+4T(r,α)+O(1)

≤(l+1)
[
T(r, f )+T(r,g)

]
+T(r, f ′)+T(r,g′)+4T(r,α)+O(1)

≤(l+3)(T(r, f )+T(r,g))+4T(r,α)−2logr,

hence by Lemma 2.4,

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)≤ (l+3)(T(r, f )+4T(r,α)−2logr+O(1)). (2.33)

Moreover, by (2.19), T(r,F)=T(r,G)+O(1) and by Lemma 2.4, we have

T(r, f )≤
1

n+k
(T(r,F)+T(r,α))+O(1) and T(r,g)≤

1

n+k
(T(r,G)+T(r,α))+O(1).

Consequently,

T(r, f )+T(r,g)≤2
[ 1

n+k
(T(r,F)+T(r,α))

]
+O(1), (2.34a)

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)

≤
2l+6

n+k
T(r,F)+

(2l+6

n+k
+4

)
T(r,α)−2logr+O(1). (2.34b)

Now, by Hypotheses, in Theorems 1.7, 1.9, 1.10 by (2.22), we have n+k≥ 2l+7. Conse-
quently, by relation (2.34b) we obtain

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)≤
2l+6

2l+7
T(r,F)+

(2l+6

2l+7
+4

)
T(r,α)+O(1), (2.35)

and similarly,

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)≤
2l+6

2l+7
T(r,G)+

(2l+6

2l+7
+4

)
T(r,α)+O(1), (2.36)
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hence

limsup
r→+∞

(Z(r,F)+Z(r,G)+N(r,F)+N(r,G)

max(T(r,F),T(r,G))

)
<1.

Therefore, by Lemma 2.9, and Theorems 1.7, 1.9, 1.10, we have either F=G, or FG=1.

Suppose FG = 1. Then f ′P′( f )g′P′(g) = α2. But in Theorems 1.7, 1.9, 1.10, we have
assumed that n 6= k+1 and if l = 2, then n 6= 2k,2k+1,3k+1 and if l = 3 then n 6= k,3k2−
k,3k3−k. Consequently, we have a contradiction to Theorem 2.7. Thus, the hypothesis
FG=1 is impossible and therefore we have F=G.

Consider now the situation when E=C, i.e., in Theorems 1.8 and 1.11. The proof is
very similar to that in the case when E=K. We have

Z(r,F)≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+S f (r),

N(r,F)≤N(r, f )+S f (r),

and similarly for G, so we can derive

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)

≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+Z(r,g)+
l

∑
i=2

Z(r,g−ai)

+Z(r,g′)+N(r, f )+N(r,g)+S f (r)+Sg(r)

≤(l+2)
[
T(r, f )+T(r,g)

]
+S f (r)+Sg(r). (2.37)

Moreover, by (2.19), T(r,F)=T(r,G)+O(1) and, by Lemma 2.4, we have

T(r, f )≤
1

n+k
T(r,F)+S f (r) and T(r,g)≤

1

n+k
T(r,G)+Sg(r).

Consequently,

T(r, f )+T(r,g)≤
2

n+k
T(r,F)+S f (r)+Sg(r).

Thus, (2.37) implies

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)≤
2l+6

n+k
T(r,F)+S f (r)+Sg(r).

Now, as in Theorems 1.7, 1.9, 1.10, we can check that n+k≥2l+7 in Theorem 1.8. Conse-
quently, the previous inequality implies

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)≤
2l+6

2l+7
T(r,F)+S f (r)+Sg(r)
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and similarly,

Z(r,F)+Z(r,G)+N(r,F)+N(r,G)≤
2l+6

2l+7
T(r,G)+S f (r)+Sg(r),

hence by Lemma 2.9 again, we have F=G or FG=1. Then, by Theorem 2.7 as in Theorems
1.7, 1.9, 1.10, the hypotheses of Theorem 1.8 prevent the case FG=1 and therefore F=G.

Consider now the situation in Theorem 1.11. Relation (2.37) implies

Z(r,F)+Z(r,G)≤ (l+2)
[
T(r, f )+T(r,g)

]
+S f (r)+Sg(r). (2.38)

Moreover, by (16), T(r,F)=T(r,G)+O(1) and, by Lemma 2.4, we have

T(r, f )≤
1

n+k
T(r,F)+S f (r) and T(r,g)≤

1

n+k
T(r,G)+Sg(r).

Consequently,

T(r, f )+T(r,g)≤
2

n+k
T(r,F)+S f (r)+Sg(r).

Thus, (2.37) implies

Z(r,F)+Z(r,G)≤Z(r, f )+
l

∑
i=2

Z(r, f −ai)+Z(r, f ′)+Z(r,g)

+
l

∑
i=2

Z(r,g−ai)+Z(r,g′)+S f (r)+Sg(r)

≤4
[
T(r, f )+T(r,g)

]
+S f (r)+Sg(r).

Therefore,

Z(r,F)+Z(r,G)≤
2l+4

n+k
T(r,F)+S f (r)+Sg(r),

hence by (2.23) we have

Z(r,F)+Z(r,G)≤
2l+4

2l+5
T(r,F)+S f (r)+Sg(r).

In the same way, this proves that either F=G of FG= 1. But by Theorem 2.7, FG= 1 is
impossible. Hence F=G.

Thus, in Theorems 1.7-1.11, we have proven that F=G, i.e., f ′P′( f )= g′P′(g). Conse-
quently, P( f )−P(g) is a constant C. Then, by Lemma 2.8 and Proposition 1.1, in Theo-
rems 1.7, 1.9, 1.10, we have P( f )=P(g) and by Lemma 2.8 and Proposition 1.2, we have
P( f ) = P(g) in Theorems 1.8 and 1.11. Finally, in each theorem, P is a polynomial of
uniqueness for the family of functions we consider. Consequently, f = g. �
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