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Abstract. In this paper, we address the problem of exact computation of the Hausdorff

measure of a class of Sierpinski carpets E− the self-similar sets generating in a unit regular

pentagon on the plane. Under some conditions, we show the natural covering is the best

one, and the Hausdorff measures of those sets are euqal to |E|s, where s = dimHE .
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1 Introduction

The Hausdorff measure and dimension are the most important concepts in fractal geometry,

and their computation is very difficult. Recently, in order to study deeply the Hausdorff measure,

the reference [1] gave the notions “best covering" and “natural covering", and posed eight open

problems and six conjectures on Hausdorff measure. Using the notion upper convex density of a

class of self-similar sets, the reference [2] studied a class of self-similar sets-generating in a unit

square on the plane, proved that the natural covering is the best one and the Hausdorff measures

of those sets are euqal to
√

2
s
. In this paper, we address the problem of the exact computation
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of the Hausdorff measure of a class self similar sets-generating in a unit regular pentagon on the

plane.

For convenience, we first present some notions that will be used in the rest part of the paper.

Definition 1. Suppose E ⊂ R2, s ∈ R, s ≥ 0 and δ > 0, the Hausdorff measure of the set E

is defined as

Hs(E) = lim
δ→0

inf

{

∞

∑
i=1

|Ui|s : |Ui| 6 δ ,E ⊂
⋃

Ui

}

where {Ui}∞
i=1 is arbitrary covering of the set E; and the Hausdorff dimension of E (denoted by

dimHE) is defined as

dimHE = sup{s : Hs(E) = ∞} = inf{s : Hs(E) = 0} .

Definition 2. Let δ > 0, s ≥ 0, E ⊂ R2, x ∈ E . Moreover, for a convex set Ux containing x,

the upper convex density of E at x is defined as

D̄s
C(E,x) = lim

δ→0
sup

0<|Ux|<δ

{

Hs(E ∩Ux)

|Ux|s
}

.

The properties of the upper convex density are discussed in the reference [5].

Definition 3. (See Fig. 1) Let E0 be an unit regular pentagon A1A2A3A4A5 on the plane R2,

E be the attractor generated by the iterated function system (IFS) { fi|i = 1,2,3,4,5}, where

fi(x) = λix+ bi,0 < λi < 1, i = 1,2,3,4,5,x = (x1,x2) ∈ E0

b1 = ((1−λ1)sin 18◦,0)

b2 = ((1−λ2)(sin 18◦ + 1),0)

b3 = ((1−λ3)(2sin 18◦ + 1),(1−λ3)cos18◦)

b4 = ((1−λ4)cos 18◦,(1−λ4)(sin 18◦ + cos18◦))

b5 = (0,(1−λ5)cos 18◦)

Then the self-similar set E is called a Sierpinski carpet generating in a unit regular pentagon,

where s =dimHE satisfies
5

∑
i=1

λ s
i = 1.

2 Two Lemmas

In this section, we present two lemmas which will be used in the proof of the main result of

this paper.
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Fig. 1

From the definition 3, it is easy to see that

5
⋃

i=1

fi(E0) ⊂ E0 and

5
⋃

i=1

fi(E) = E.

Let µ be the unique probability measure satisfying the self-similar relation and

µ =
5

∑
i=1

λ s
i µ f−1

i ,

then E is the support of µ and µ is a mass distribution on E .

For i = 1,2,3,4,5, let EiFi be parallel to the opposite side of vertex Ai in an unit regular

pentagon and intersect fi(E), let di = dist(Ai,EiFi) be the distance between point Ai and line

EiFi. Denote

ti =
di

cos18◦
,

if

0 < λi <
7−2

√
5

9

and 0 < di < (
√

5 + 1)λi, then the line EiFi doesn’t intersect f j(E) for i, j ∈ {1,2,3,4,5} and

i 6= j. Assume that µ(ti) is the measure of the triangle ∆AiEiFi. Moreover, we use the notations:

d(µ , ti) =
µ(ti)

ts
i

,d
(i)
min = inf

0<ti≤2sin54◦
{d(µ , ti)}, i = 1,2,3,4,5

M1 = {(i, j)|AiA j is the diagonal of E0, i, j = 1,2,3,4,5}
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and

M2 =

{

(i, j)|AiA j is the side of E0, i, j = 1,2,3,4,5

}

.

That is

M1 = {(1,3),(3,1),(1,4),(4,1),(2,4),(4,2),(2,5),(5,2),(3,5),(5,3)}

and

M2 =

{

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(1,5),(5,1)

}

.

Lemma 4. Let

0 < λi <
7−2

√
5

9
, 0 < s < 1, i = 1,2,3,4,5.

Assume that K is a nonnegative integer. Then d(µ , ti) attains its infimum d
(i)
min only at the follow-

ing values of ti:

(1) ti = λ K
i

1−λp

2sin18◦
,(i, p) ∈ M1, or

(2) ti = λ K
i · min

i6=q,p6=q
{2sin 18◦(1−λq)},(i,q) ∈ M2.

Proof. Since E is self-similar, then we need only prove that the result is true when 2λ1 sin54◦ <

t1 ≤ 2sin 54◦ for i = 1. Denote

r1 = λ1 sin54◦,r2 = min{2(1−λ2)sin 18◦,2(1−λ5)sin 18◦},
r3 = 2sin 54◦−min{2(1−λ2)sin 18◦,2(1−λ5)sin18◦},
r3 = 2sin 54◦−max{2λ3 sin54◦,2λ4 sin54◦}.

Case 1. d(µ , t1) attains its infimum d
(1)
min at the interval (r2,r3]. In this case, the line E1F1

intersects f2(E) or f5(E). Therefore

d(µ , t1) =
µ(t1)

ts
1

=
λ s

1 + µ(t1 −2(1−λ2)sin18◦)+ µ(t1 −2(1−λ5)sin18◦)
(r2 + t1 − r2)s

≥ λ s
1 + max{µ(t1 −2(1−λ2)sin18◦),µ(t1 −2(1−λ5)sin 18◦)}

(r2 + t1 − r2)s

≥ λ s
1 + max{µ(t1 − (1−λ2)2sin 18◦),µ(t1 − (1−λ5)2sin 18◦)}

rs
2 +(t1 − r2)s

≥ min

{

λ s
1

rs
2

,
τ

(t1 − r2)s

}

,

where

τ = max{µ(t1 − (1−λ2)2sin 18◦),µ(t1 − (1−λ5)2sin 18◦)}.
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This contradicts the assumption that d(µ , t1) attains its infimum d
(1)
min at the interval (r2,r3].

Case 2. d(µ , t1) attains its infimum d
(1)
min at (r4,2sin 54◦]. In this case, the line E1F1 inter-

sects f3(E) or f4(E), then

d(µ , t1) =
µ(t1)

ts
1

=
λ s

1 + λ s
2 + λ s

3 + max{µ(t1 −2λ3 sin54◦),µ(t1 −2λ4 sin 54◦)

(r4 + t1 − r4)s

≥ λ s
1 + λ s

2 + λ s
3 + max{µ(t1 −2λ3 sin18◦),µ(t1 −2λ4 sin 18◦)

(r4 + t1 − r4)s

≥ λ s
1 + λ s

2 + λ s
3 + max{µ(t1 −2λ3 sin18◦),µ(t1 −2λ4 sin 18◦)

rs
4 +(t1 − r4)s

≥ min

{

λ s
1

rs
4

,
λ s

2

rs
4

,
λ s

3

rs
4

,
τ

(t1 − r4)s

}

,

where τ = max{µ(t1 −2λ3 sin54◦),µ(t1 −2λ4 sin 18◦)}.

Case 3. d(µ , t1) attains its infimum d
(1)
min at (2λ1 sin54◦,r2]. In this case, we have

d(µ , t1) =
λ s

1

ts
1

≥ λ s
1

rs
2

.

This means that t1 = 2(1−λ2)sin 18◦ or t1 = 2(1−λ5)sin18◦, and K = 0.

Case 4. d(µ , t1) attains its infimum d
(1)
min at the interval(r3,r4]. We have

d(µ , t1) =
λ s

1 + λ s
2 + λ s

3

ts
1

≥ λ s
1 + λ s

2 + λ s
3

rs
4

.

Therefore,

d(µ , t1) =
λ s

1 + λ s
2 + λ s

3

rs
4

.

This means that t1 =
1−λ3

2sin 18◦
or t1 =

1−λ4

2sin 18◦
, and K = 0.

Similarly, if K > 0 and 2λ k+1
1 sin54◦ < t1 < λ k

1 sin 54◦ , we can prove that d(µ , t1) attains its

infimum d
(1)
min only at t1 = λ k

1

1−λ3

2sin18◦
, λ k

1

1−λ4

2sin 18◦
, 2λ k

1 (1−λ2)sin 18◦ and 2λ k
1 (1−λ5)sin 18◦.

Lemma 5[3]. Let 0 < α < 1, p ≤ p0, a ≥ a0, y ≥ λxα . If

0 < x ≤
(

a0λ

p0

)
1

1−α

,

then
p− y

(a− x)α
<

p

aα
.
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3 The Main Result

Theorem 6. Let E be a self-similar set defined by Definition 3, 0 < λi <
7−2

√
5

9
(i =

1,2,3,4,5), s =dimH(E) and 0 < s < 1. Moreover, assume the following two conditions

(1)
λ s

i + λ s
j

(1−λi −λ j)s
≤

(

1

2sin 54◦

)s

, for (i, j) ∈ M2;

(2) 2(λi + λ j)sin 54◦ ≤ min{2d
(i)
min sin54◦,2d

( j)
min sin 54◦} 1

1−s ,

for (i, j) ∈ M1

are satisfied. Then for any x ∈ E, if the closed convex set Ux containing x is the closure Ē0 of E0,

then

D̄s
C(E,x) = sup

0<|Ux|

{

Hs(E ∩Ux)

|Ux|s
}

=
Hs(E ∩ Ē0)

(2sin 54◦)s
= 1.

Proof. Let V ⊂ R2, V
⋂

E 6= ∅ and V ⊂ Ē0(if not, replacing V by V
⋂

Ē0). Denote

d(V ) =
µ(V )

|V |s ,dmax = sup
0<|v|

{d(V ),V ⊂ Ē0},

where µ is the mass distribution of E defined as above. We now prove that if V = Ē0 then

dmax =
µ(V )

|V |s =
µ(Ē0)

|Ē0|s
.

Case 1. V
⋂

fi(E) 6= ∅ for all i (See Fig. 2). In this case, we can select fine tangent

Fig. 2

lines of V , denoted by EiFi, such that EiFi is parallel to the opposite side of the vertex Ai for

i = 1,2,3,4,5. Moreover, denote

ti =
di

cos18◦
,
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where di is the distance between the vertex Ai and EiFi, then

|V | ≥ 2sin 54◦− ti − t j, for (i, j) ∈ M1;

µ(V ) ≤
5

∑
i=1

(λ s
i −µ(ti)) = 1−

5

∑
i=1

µ(ti)

Therefore

µ(V )

|V |s ≤
1−

5

∑
i=1

µ(ti)

(2sin 54◦− ti − t j)s
≤ 1− (µ(ti)+ µ(t j))

(2sin 54◦− ti − t j)s
.

Replacing α by s, a and a0 by 2sin 54◦, p and p0 by 1, respectively, in Lemma 5, employing

Lemma 4, we have

µ(ti)+ µ(t j)

(ti + t j)s
≥ µ(ti)+ µ(t j)

ts
i + ts

j

≥ min

{

µ(ti)

ts
i

,
µ(t j)

ts
j

}

≥ min
{

d
(i)
min,d

( j)
min

}

. , λ

Notice the condition (2), we have

0 < λi + λ j ≤
min

{

2d
(i)
min sin54◦,2d

( j)
min sin54◦

}
1

1−s

2sin54◦

= [(2sin 54◦)s]
1

1−s min
{

d
(i)
min,d

( j)
min

}
1

1−s

≤ [(2sin 54◦)]
1

1−s min
{

d
(i)
min,d

( j)
min

}
1

1−s

=

(

a0λ

p0

)
1

1−s

.

This means that the conditions of Lemma 5 are satisfied. Denote w = λi + λ j, then

y = µ(ti)+ µ(t j) ≥ λ (ts
i + ts

j) ≥ λ (ti + t j)
s = λw.

Therefore,
µ(V )

|V |s ≤ p− y

(a−w)α
≤ 1

(2sin 54◦)s
.

That is

dmax =
µ(V )

|V |s =
µ(Ē0)

|Ē0|s
.

Case 2. There exist only four of five sets fi(E) such that V
⋂

fi(E) 6= ∅. For convenience,

let f1(E), f2(E), f3(E) and f4(E) be these four sets. Then

|V | ≥ 2sin54◦− t1 − t3,

|V | ≥ 2sin54◦− t1 − t4,

|V | ≥ 2sin54◦− t2 − t4, ;



34 C. Y. Zeng et al : Hausdorff Measure of Sierpinski Carpets Basing on Regular Pentagon

and

µ(V ) ≤ 1−µ(t1)−µ(t3),

µ(V ) ≤ 1−µ(t1)−µ(t4),

µ(V ) ≤ 1−µ(t2)−µ(t4).

So,

|V | ≥ 2sin 54◦− ti − t j

µ(V ) ≤ 1−µ(ti)−µ(t j)
, for (i, j) ∈ M3,

where M3 , M1\{(2,5),(5,2),(3,5), (5,3)}.

Therefore,
µ(V )

|V |s ≤ 1− (µ(ti)+ µ(t j))

(2sin 54◦− ti − t j)s
,(i, j) ∈ M3.

Employing Lemma 5, we get
µ(V )

|V |s ≤ 1

(2sin 54◦)s
.

That means that the result is still true.

Case 3. There exist only three of five sets fi(E) such that V
⋂

fi(E) 6= ∅. In this case, there

exists (i0, j0) ∈ M1 such that

V
⋂

fi0(E) 6= ∅ and V
⋂

f j0(E) 6= ∅.

Similar to the proof of Case 2, we deduce that

µ(V )

|V |s ≤ 1− (µ(ti0)+ µ(t j0))

(2sin 54◦− ti0 − t j0)
s
.

This combining with Lemma follows that

µ(V )

|V |s ≤ 1

(2sin 54◦)s
.

Case 4. There exist only two of five sets fi(E) such that V
⋂

fi(E) 6= ∅. Therefore, we

can assume that there exists (i, j) such that

V
⋂

fi(E) 6= ∅ and V
⋂

f j(E) 6= ∅.

If (i, j) ∈ M1, then we get the required result by Case 3. If (i, j) ∈ M2, and assume (i, j) = (1,2),

then

µ(V ) ≤ λ s
1 + λ s

2 −µ(t1)−µ(t2) ≤ λ s
1 + λ s

2
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and

|V | ≥ 1− d1

cos 54◦
− d2

cos54◦
≥ 1−λ1 −λ2.

From the condition (1), we have

µ(V )

|V |s ≤ λ s
1 + λ s

2

(1−λ1 −λ2)s
≤ 1

(2sin 54◦)s
.

Case 5. There exists only one of five sets fi(E) such that V
⋂

fi(E) 6= ∅, for example,

V
⋂

f1(E) 6= ∅. Notice the function of amplification of f−1
1 , and

µ(V
⋂

f1(E))

|V ⋂

f1(E)|s =
µ( f−1

1 ((V
⋂

f1(E)))

λ−1
1 |V ⋂

f1(E)|s
.

Denote V ′ = f−1
1 (V

⋂

f1(E)), we can assume

V ′⋂ fi(E) 6= ∅, V ′⋂ f j(E) 6= ∅

for some (i, j) and the density is invariant, if not, then take f−1
1 (V ′) as V ′. Similar to the proof

of above case, we get the required result.

Therefore,

dmax =
µ(V )

|V |s =
µ(Ē0)

|Ē0|s
,

we finish the proof.

By the definition of probability measure, we know that there exists a constant C such that

µ = CHs. So

D̄s
C(E,x) = sup

0<|ux|

{

Hs(E ∩Ux)

|Ux|s
}

attains the supremum at the set Ē0.

Combining Theorem 2.3 in reference [3] and Proposition 2 in reference [4], we get

D̄s
C(E,x) = sup

0<|ux|

{

Hs(E ∩Ux)

|Ux|s
}

=
Hs(E ∩ Ē0)

(2sin 54◦)s
= 1.

Employing Theorem 6, we have the following corollary.

Corollary 7. If the assumptions in Theorem 6 are satisfied, then Ē0 is the “best covering"

of E. That is

Hs(E) = |Ē0|s = (2sin 54◦)s
,

where s =dimH(E) satisfies
5

∑
i=1

λ s
i = 1.
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4 Examples

Example 8. Let λ1 = λ2 = λ3 = λ4 = λ5 =
1

25
, then s =

1

2
. Moreover, we have

(1)
λ s

i + λ s
j

(1−λi −λ j)s
=

2

23
≈ 0.0870 ≤

(

1

2sin 54◦

)s

= 0.7862, for (i, j) ∈ M2;

(2) for(i, j) ∈ M1,2sin 54◦(λi + λ j) ≈ 0.1294,

d
(i)
min =

(

2sin 54◦

24

)s

≈ 0.2596,

min
{

2sin 54◦ ·d(i)
min,2sin 54◦ ·d( j)

min

}
1

1−s

=

(

(2sin 54◦)s+1

24s

)

1
1−s

= 0.1765.

Hence, the assumptions of Theorem 6 are satisfied. Therefore,

Hs(E) = (2sin 54◦)s ≈ 1.272.

Example 9. Let λ1 = λ3 = λ5 =
1

625
, λ2 = λ4 =

1

25
. Since

5

∑
i=1

λi = 1, then 2
(

1
25

)s
+

3
(

1
625

)s
= 1. Denote x =

(

1

25

)s

, then 3x2 + 2x−1 = and s =
1

2
log5 3. Then,

(1)

(

1

2sin54◦

)s

=

(

1

2sin 54◦

)
1
2

log5 3

= 0.7862, and for (i, j) ∈ M2,

λ s
i + λ s

j

(1−λi −λ j)s
=

(

1
25

)s
+

(

1
25

)s

(1− 1
25
− 1

25
)s

≈ 0.6859,

or
λ s

i + λ s
j

(1−λi −λ j)s
=

(

1
25

)s
+

(

1
625

)s

(1− 1
25
− 1

625
)s

≈ 0.4768,

or
λ s

i + λ s
j

(1−λi −λ j)s
=

(

1
625

)s
+

(

1
625

)s

(1− 1
625

− 1
625

)s
≈ 0.2225.

(2) for (i, j) ∈ M1,2sin 54◦(λi + λ j) ≈ 0.0337 or 0.0052,

d
(1)
min = d

(3)
min = d

(5)
min =

(

2sin 54◦

624

)
1
2

log 3
5

≈ 0.1309,

d
(2)
min = d

(4)
min =

(

2sin54◦

24

)
1
2

log 3
5

≈ 0.3982,

min
{

2d
(i)
min sin 54◦,2d

( j)
min sin54◦

}
1

1−s

= ((2sin 54◦) ·0.1309)
1

1−s = 0.0944.
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So the assumptions of Theorem 6 are satisfied. Therefore,

Hs(E) = (2sin 54◦)s = (2sin 54◦)log
√

3
5 ≈ 1.183.
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