ON THE ZEROS OF A CLASS OF POLYNOMIALS AND RELATED ANALYTIC FUNCTIONS

A. Aziz
and
B. A. Zargar
(University of Kashmir, Srinagar)

Received Mar. 24, 2012; Revised Apr. 10, 2012

Abstract

In this paper we prove some interesting extensions and generalizations of EnestromKakeya Theorem concerning the location of the zeros of a polynomial in a complex plane. We also obtain some zero-free regions for a class of related analytic functions. Our results not only contain some known results as a special case but also a variety of interesting results can be deduced in a unified way by various choices of the parameters.

Key words: zeros of a polynomial, bounds, analytic functions, moduli of zeros
AMS (2010) subject classification: 30C10, 30C15

1 Introduction and Statement of Results

The following well-known result is due to Enestrom and Kakeya ${ }^{[7]}$.
Theorem A. If $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}$ is a polynomial of degree n, such that $a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0}>0$, then $P(z)$ has no zeros in $|z|<1$.

With the help of Theorem A, one gets the following equivalent form of Enestrom-Kakeya Theorem by considering the polynomial $z^{n} P(1 / z)$.

Theorem B. If

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}
$$

is a polynomial of degree n, such that

$$
a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0} ; \quad a_{0}>0
$$

then $P(z)$ has no zeros in $|z|<1$.
In the literature ${ }^{[1,4-10]}$, there already exist some extensions and generalizations of EnestromKakeya Theorem. Aziz and Zarger ${ }^{[3]}$ relaxed the hypothesis of Theorem A in several ways and
have proved some extensions and generalizations of this result. As a generalization of EnestromKakeya Theorem, they proved:

Theorem C. If $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}$ is a polynomial of degree n, such that for some $k \geq 1$

$$
\begin{equation*}
k a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0}>0 \tag{1}
\end{equation*}
$$

then $P(z)$ has all its zeros in the disk $|z+k-1| \leq k$.
Remark 1. Since the circle $|z+k-1| \leq k$ is contained in the circle $|z| \leq 2 k-1$, it follows from Theorem C that all the zeros of $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, satisfying (I) lie in the circle.

$$
\begin{equation*}
|z| \leq 2 k-1 . \tag{2}
\end{equation*}
$$

Aziz and Mohammad ${ }^{[2]}$ have studied the zeros of a class of related analytic functions and among other things have obtained.

Theorem D. Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \neq 0$ be analytic in $|z| \leq t$. If $\left|\arg a_{j}\right| \leq \alpha \leq \pi / 2, j=$ $0,1,2, \cdots$ and for some finite non-negative integer k,

$$
\left|a_{0}\right| \leq t\left|a_{1}\right| \leq \cdots \leq t^{k}\left|a_{k}\right| \geq t^{k+1}\left|a_{k+1}\right| \geq \cdots,
$$

then $f(z)$ does not vanish in

$$
|z| \leq \frac{t}{\left.\left(2 t^{k}\left|\frac{a_{k}}{a_{0}}\right|-1\right) \cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{0}\right|}\left|\sum_{j=0}^{\infty} t^{j}\right| a_{j} \right\rvert\,}
$$

The aim of this paper is to present some more extensions and generalizations of EnestromKakeya Theorem. We also study the zeros of a class of related analytic functions. We start by presenting the following interesting generalization of Theorem C.

Theorem 1. If $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}$ is a polynomial of degree n. If for some real number $\rho \geq 0$, such that

$$
\begin{equation*}
\rho+a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0}>0 \tag{3}
\end{equation*}
$$

then $P(z)$ has all its zeros in

$$
\begin{equation*}
\left|z+\frac{\rho}{a_{n}}\right| \leq 1+\frac{\rho}{a_{n}} . \tag{4}
\end{equation*}
$$

Remark 2. Theorem C is a special case of Theorem 1 for the choice of $\rho=(k-1) a_{n}$, where $k \geq 1$. Applying Theorem 1 to polynomial $P(t z)$ we obtain the following result :

182 A. Aziz et al : On the Zeros of a Class of Polynomials and Related Analytic Functions

Corollary 1. Let $P(z)=\sum_{j=0}^{\infty} a^{j}\left|z^{j}\right| \neq 0$ be a polynomial of degree n. If for some real numbers $\rho \geq 0$ and $t>0$, such that

$$
\rho=t^{n} a_{n} \geq t^{n-1} a_{n-1} \geq \cdots \geq t a_{1} \geq a_{0} \geq 0
$$

then all zeros of $P(z)$ lie in

$$
\left|z+\frac{\rho}{t^{n-1} a_{n-1}}\right| \leq t+\frac{\rho}{t^{n-1} a_{n}}
$$

Taking $\rho=a_{n-1}-a_{n} \geq 0$ in Theorem 1 , we immediately get the following result:
Corollary 2. Let $P(z) \sum_{j=0}^{\infty} a^{j}\left|z^{j}\right| \neq 0$ be a polynomial of degree n such that $a_{n} \leq a_{n-1} \geq$ $\cdots \geq a_{1} \geq a_{0}>0$, then $P(z)$ has all its zeros in

$$
\left|z-1+\frac{a_{n-1}}{a_{n}}\right| \leq \frac{a_{n-1}}{a_{n}}
$$

Next, we prove the following results:
Theorem 2. If

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}
$$

is a polynomial of degree n such that

$$
a_{n} \leq a_{n-1} \geq \cdots \geq a_{1} \geq a_{\lambda+1} \geq a_{\lambda} ; \quad a_{\lambda} \leq a_{\lambda-1} \leq \cdots \leq a_{0} ; \quad a_{0}>0
$$

then all zeros of $P(z)$ lie in the disk

$$
\begin{equation*}
|z| \leq 1+\frac{2\left(a_{0}-a_{\lambda}\right)}{a_{n}} \tag{6}
\end{equation*}
$$

For $\lambda=0$, Theorem 2 reduces to Theorem 1 .
The following result immediately follows by applying Theorem 2 to the polynomial $P(t z)$ where t is some positive real number.

Corollary 3. Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}
$$

be a polynomial of degree n such that

$$
t^{n} a_{n} \geq t^{n-1} a_{n-1} \geq \cdots \geq t^{\lambda+1} a_{\lambda+1} \geq t^{\lambda} a_{\lambda} \geq a_{\lambda} ; \quad t^{\lambda} a_{\lambda} \leq \cdots \leq a_{0}
$$

then all zeros of $P(z)$ lie in the disk

$$
|z| \leq t\left\{1+\frac{2\left(a_{0}-t^{\lambda} a_{\lambda}\right)}{t^{n} a_{n}}\right\}
$$

Corollary 3 for $\lambda=n$ with the help of Theorem B applied to polynomial $P(t z)$ yields the following interesting result:

Corollary 4. Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}
$$

be a polynomial of degree n such that

$$
t^{n} a_{n} \leq t^{n-1} a_{n-1} \leq \cdots \leq t a_{1} \leq a_{0} ; \quad a_{0} \geq 0
$$

then all the zeros of $P(z)$ lie in the ring shaped region

$$
t \leq|z| \leq t\left\{\frac{2 a_{0}}{t^{n} a_{n}}-1\right\}
$$

Now we shall present the following interesting generalization of Theorem A analogous to (2).

Theorem 3. Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}
$$

be a polynomial of degree n, if for some $k \geq 1$,

$$
\begin{equation*}
k a_{\lambda} \leq a_{\lambda+1} \geq \cdots \geq a_{1} \geq a_{0} \geq 0, \text { and } a_{n} \geq a_{n-1} \geq \cdots \geq a_{\lambda} \tag{7}
\end{equation*}
$$

then all the zeros of $P(z)$ lie in the region

$$
\begin{equation*}
|z| \leq 1+2(k-1) \frac{a_{\lambda}}{a_{n}} \tag{8}
\end{equation*}
$$

For $\lambda=n$, we get Theorem C and for $k=1$, it reduces to Enestrom - Kakeya Theorem.
Remark 3. Theorem 3 is applicable to situations where Enestrom-Kakeya Theorem provides no information. To see this consider the polynomial

$$
P(z)=3 z^{5}+3 z^{4}+z^{3}+2 z^{2}+2 z+2
$$

Here Enestrom-Kakeya Theorem is not applicable, but according to Theorem 3 all the zeros of $P(z)$ lie in the disk

$$
|z| \leq 1+\frac{2(2-1)}{3}=\frac{5}{3}
$$

which is much better than the bound obtained by the Cauchy's classical Theorem [7,Theorem 27.2].

Finally, we shall present the following result for analytic functions which is a generalization of Theorem D, analogous to Theorem 3:

Theorem 4. Let

$$
f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \neq 0
$$

be analytic in $|z| \leq t$. If $\left|\arg a_{j}\right| \leq \alpha \leq \pi / 2, j=0,1,2, \cdots$ and for some finite non-negative integer λ and some $k, 0<k \leq 1$,

$$
\left|a_{0}\right| \leq t\left|a_{1}\right| \leq \cdots \leq t^{\lambda}\left|a_{\lambda}\right| \geq t^{\lambda+1}\left|a_{\lambda+1}\right| \geq \cdots
$$

then $f(z)$ does not vanish in

$$
|z| \leq \frac{t}{(1-2 k)+\left\{\left|\frac{a_{\lambda}}{a_{0}}\right| t^{\lambda}\right\} \cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{0}\right|} \sum_{j=0}^{\infty} t^{j}\left|a_{j}\right|}
$$

For $k=1$, it reduces to Theorem D.

2 Proofs of the Theorems

Proof of Theorem 1. Consider

$$
\begin{aligned}
F(z) & =(1-z) P(z)=(1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}\right) \\
& =-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0} .
\end{aligned}
$$

Therefore, for $|z|>1$, we have

$$
\begin{aligned}
|F(z)|= & \left|-a_{1} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0}\right| \\
= & \left|-a_{n} z^{n+1}-\rho z^{n}+a_{n} z^{n}+\left(\rho-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0}\right| \\
\geq & \left|a_{n} z+\rho \| z^{n}\right|-\left\{\left|\rho+a_{n}-a_{n-1} \| z^{n}\right|+\left|a_{n-1}-a_{n-2}\right| z^{n-1} \mid\right. \\
& \left.+\cdots+\left|a_{1}-a_{0}\right||z|+\left|a_{0}\right|\right\} \\
= & \left|z^{n}\right|\left[\left|a_{n} z+\rho\right|-\left\{\left|\rho+a_{n}-a_{n-1}+\right| a_{n-1}-a_{n-2} \| \frac{1}{|z|}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\cdots+\left|a_{1}-a_{0}\right| \frac{1}{\left|z^{n-1}\right|}+\left|a_{0}\right| \frac{1}{\left|z^{n}\right|}\right\}\right] \\
> & \left|z^{n}\right|\left[\left|a_{n} z+\rho\right|\right. \\
& \left.-\left\{\left(\rho+a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{1}-a_{0}\right)+a_{0}\right\}\right] \\
= & \left|z^{n}\right|\left[\left|a_{n} z+\rho\right|-\left(\rho+a_{n}\right)\right] \\
> & 0, \text { if }\left|a_{n} z+\rho\right|>\left(\rho+a_{n}\right) .
\end{aligned}
$$

Therefore all the zeros of $F(z)$ whose modulus is greater than 1 lie in

$$
\left|z+\frac{\rho}{a_{n}}\right| \leq 1+\frac{\rho}{a_{n}}
$$

But those zeros of $F(z)$ whose modulus is less than or equal to 1 already satisfy the inequality (4). Since the zeros of $P(z)$ are also the zeros of $F(z)$, it follows that all the zeros of $P(z)$ lie in the region.

$$
\left|z+\frac{\rho}{a_{n}}\right| \leq 1+\frac{\rho}{a_{n}}
$$

which proves the desired result.
Proof of Theorem 2. Consider

$$
\begin{aligned}
F(z) & =(1-z) P(z)=(1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}\right) \\
& =-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0}
\end{aligned}
$$

Therefore, for $|z|>1$, using the hypothesis we have

$$
\begin{aligned}
|F(z)| \geq & \left|a_{n}\right|\left|z^{n+1}\right|-\left|z^{n}\right|\left\{\left\lvert\,\left(a_{n}-a_{n-1}\right)+\left(\frac{a_{n-1}-a_{n-2}}{z}\right)\right.\right. \\
& +\cdots+\left(\frac{a_{\lambda+1}-a_{\lambda}}{z^{n-\lambda-1}}\right)+\left(\frac{a_{\lambda}-a_{\lambda-1}}{z^{n-\lambda}}\right)+\cdots+\left(\frac{a_{1}-a_{0}}{z^{n-1}}\right)+\left(\frac{a_{0}}{z^{n}}\right) \\
\geq & \left|a_{n}\right||z|^{n+1}+|z|^{n}-\left\{\left.\left|a_{n}-a_{n-1}\right|+\left|\frac{a_{n-1}-a_{n-2}}{z}\right| \right\rvert\,\right. \\
& \left.+\cdots+\left|\frac{a_{\lambda+1}-a_{\lambda}}{z^{n-\lambda-1}}\right|+\left|\frac{a_{\lambda}-a_{\lambda-1}}{z^{n-\lambda}}\right|+\cdots+\left|\frac{a_{1}-a_{0}}{z^{n-1}}\right|+\left|\frac{a_{0}}{z^{n}}\right|\right\} \\
\geq & \left|z^{n}\right|\left\{|z|\left|a_{n}\right|-\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\right. \\
& \left.+\cdots+\left(a_{\lambda+1}-a_{\lambda}\right)+\left(a_{\lambda}-a_{\lambda-1}\right)+\cdots+\left(a_{1}-a_{0}\right)+\left(a_{0}\right)\right\} \\
\geq & \left|z^{n}\right|\left\{|z|\left|a_{n}\right|-\left(a_{n}+2 a_{0}-2 a_{\lambda}\right)\right\} \\
= & \left|a_{n}\right| \left\lvert\, z^{n}\left\{|z|-\frac{a_{n}+2 a_{0}-2 a_{\lambda}}{\left|a_{n}\right|}\right\}\right. \\
> & 0 \text { if }|z|>\frac{a_{n}+2 a_{0}-2 a_{\lambda}}{\left|a_{n}\right|}=1-\frac{2\left(a_{\lambda}-a_{0}\right)}{\left|a_{n}\right|} .
\end{aligned}
$$

Therefore, all the zeros of $F(z)$, whose modulus is greater than 1 lie in

$$
|z| \leq 1-\frac{2\left(a_{\lambda}-a_{0}\right)}{\left|a_{n}\right|}
$$

But those zeros of $F(z)$ whose modulus is less than or equal to 1 already satisfy the inequality (6). Since all the zeros of $P(z)$ are also the zeros of $F(z)$, so it follows that all the zeros of $P(z)$ lie in

$$
|z| \leq 1-\frac{2\left(a_{\lambda}-a_{0}\right)}{\left|a_{n}\right|}
$$

which completes the proof of the desired result.

Proof of Theorem 3. Consider

$$
\begin{aligned}
F(z) & =(1-z) P(z)=(1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}\right) \\
& =-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0}
\end{aligned}
$$

Therefore, for $|z|>1$, using the hypothesis we have

$$
\begin{aligned}
|F(z)| \geq & \left|a_{n}\right|\left|z^{n+1}\right|-\left\{\left|\left(a_{n}-a_{n-1}\right) z^{n}+\cdots+\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0}\right|\right\} \\
\geq & \left|a_{n}\right|\left|z^{n+1}\right|-\left|z^{n}\right|\left\{\left|a_{n}-a_{n-1}\right|+\left|\frac{a_{n-1}-a_{n-2}}{z}\right| \cdots+\left|\frac{a_{\lambda+1}-a_{\lambda}}{z^{n-\lambda-1}}\right|+\right. \\
& \cdots+\left|\frac{k a_{\lambda}-a_{\lambda}}{z^{n-\lambda}}\right|+\left|\frac{k a_{\lambda}-a_{\lambda-1}}{z^{n-\lambda}}\right|+\cdots+\left|\frac{a_{1}-a_{0}}{z^{n-1}}\right|+\left|\frac{a_{0}}{z^{n}}\right| \\
\geq & \left|a_{n}\right|\left|z^{n+1}\right|+\left|z^{n}\right|-\left\{\left|a_{n}-a_{n-1}\right|+\left|\frac{a_{n-1}-a_{n-2}}{z}\right|\right. \\
& \left.+\cdots+\left|\frac{a_{\lambda+1}-a_{\lambda}}{z^{n-\lambda-1}}\right|+\left|\frac{a_{\lambda}-a_{\lambda-1}}{z^{n-\lambda}}\right|+\cdots+\left|\frac{a_{1}-a_{0}}{z^{n-1}}\right|+\left|\frac{a_{0}}{z^{n}}\right|\right\} \\
\geq & \left|z^{n}\right|\left|a_{n}\right|\left[|z|-\left\{\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{\lambda+1}-a_{\lambda}\right)\right.\right. \\
& \left.\left.\left(k a_{\lambda}-a_{\lambda-1}\right)+\left(k a_{\lambda}-a_{\lambda}\right)+\left(a_{1}-a_{0}\right)+\left(a_{0}\right)\right\}\right] \\
\geq & \left|z^{n}\right|\left|a_{n}\right|\left\{|z|-\frac{\left(a_{n}+2(k-1) a_{\lambda}\right)}{\left|a_{n}\right|}\right\} \\
> & 0 \text { if }|z|>\frac{\left(a_{n}+2(k-1) a_{\lambda}\right)}{a_{n}} .
\end{aligned}
$$

therefore all the zeros of $F(z)$ whose modulus is greater than 1, lie in the region

$$
|z|>1+\frac{2(k-1) a_{\lambda}}{a_{n}}
$$

But all those zeros of $F(z)$ whose modulus is less than or equal to 1 already satisfy the inequality (8). Since all the zeros of $P(z)$ are also the zeros of $F(z)$. Hence all the zeros of $P(z)$ lie in

$$
|z| \leq 1+\frac{2(k-1) a_{\lambda}}{a_{n}}
$$

which completes the Proof of Theorem 3
Proof of Theorem 4. It is obvious that $\lim t^{j} a_{j}=0$. Consider

$$
F(z)=(z-t) f(z)=-t a_{0}+\sum_{j=0}^{\infty}\left(a_{j-1} t a_{j}\right) z^{j-1}-t a_{0}+z G(z)
$$

Since $\left|\arg a_{j}\right| \leq \alpha \leq \frac{\pi}{2}, \quad j=0,1,2, \cdots$.
It can be easily verified that

$$
\left|t a_{j}-a_{j-1}\right| \leq\left|t a_{j}-a_{j-1}\right| \cos \alpha+\left(\left|a_{j}\right|+\left|a_{j-1}\right|\right) \sin \alpha
$$

Hence for $|z|=t$, we have

$$
\begin{aligned}
|G(z)|= & \left|\sum_{j=0}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}\right| \leq \sum_{j=0}^{\infty}\left|\left(a_{j-1}-t a_{j}\right) z^{j-1}\right| \\
= & \sum_{j=0}^{\infty}|t| a_{j}\left|-\left|a_{j-1}\right|\right| t^{j-1} \cos \alpha+\sum_{j=0}^{\infty}\left(t\left|a_{j}\right|+\left|a_{j-1}\right|\right) t^{j-1} \sin \alpha \\
\leq & {\left[\left(|t| a_{1}\left|-\left|a_{0}\right|\right|+\sum_{j=2}^{\infty}|t| a_{j}\left|-\left|a_{j-1}\right|\right| t^{j-1}\right) \cos \alpha\right.} \\
& \left.+\sum_{j=1}^{\infty}\left(t\left|a_{j}\right|+\left|a_{j-1}\right|\right) t^{j-1} \sin \alpha\right] \\
\leq & {\left[\left(|t| a_{1}|-k| a_{0}|-(1-k)| a_{0}| |\right.\right.} \\
& \left.\left.+\sum_{j=2}^{\infty}|t| a_{j}\left|-\left|a_{j-1}\right|\right| t^{j-1}\right) \cos \alpha+\sum_{j=1}^{\infty}\left(t\left|a_{j}\right|+\left|a_{j-1}\right|\right) t^{j-1} \sin \alpha\right] \\
\leq & {\left[\left\{(1-2 k)\left|a_{0}\right|+t\left|a_{1}\right|+t^{2}\left|a_{2}\right|+\cdots+t^{\lambda}\left|a_{\lambda}\right|\right.\right.} \\
& \left.\left.-t^{\lambda-1}\left|a_{\lambda-1}\right|-t^{\lambda+1}\left|a_{\lambda+1}\right|+\cdots\right\} \cos \alpha+\sin \alpha+2 \sin \alpha \sum_{j=1}^{\infty}\left|a_{j}\right| t^{j}\right] \\
= & \left\{(1-2 k)\left|a_{0}\right|+2 t^{\lambda}\left|a_{\lambda}\right|\right\} \cos \alpha+2 \sin \alpha \sum_{j=1}^{\infty}\left|a_{j}\right| t^{j} \\
= & \left|a_{0}\right|\left\{(1-2 k)\left|a_{0}\right|+2 t^{\lambda}\left|\frac{a_{\lambda}}{a_{0}}\right|\right\} \cos \alpha+2 \sin \alpha \sum_{j=1}^{\infty}\left|a_{j}\right| t^{j}=\left|a_{0}\right| H \text { say }
\end{aligned}
$$

Since $G(0)=0$, using Schwarz Lemma that $|G(z)| \leq\left|a_{0}\right| M$ for $|z| \leq t$.
From equation (11), it follows that

$$
|F(z)| \leq t\left|a_{0}\right|-|z|\left|a_{0}\right| M \geq\left|a_{0}\right|(t-M|z|), \text { for }|z| \leq t
$$

therefore, $|F(z)|>0$, if

$$
|z|>\frac{1}{M}
$$

Consequently $F(z)$, and therefore $f(z)$ does not vanish in $|z| \leq \frac{1}{M}$, which is equivalent to the desired result.

References

[1] Aziz, A. and Mohammad, Q G., Zero-free Regions for Polynomials and Some Generalizations of EnestromKakeya Theorem, Canad. Math. Bull, 27(1984), 265-272.
[2] Aziz, A. and Mohammad, Q G., On the Zeros of Certain Class of Polynomials and Related Analytic Functions, J.Math. Anal and Appl., 75(1980), 495-501.
[3] Aziz, Z. and Zargar, B. A., Some Extension of Enestrom - Kakeya Theorem, Glasnik Matematicki, 31:51(1996), 239-244.
[4] Dewan, K. K. and Govil, N. K., On the Enestrom - Kakeya Theorem, J. Approx Theory, 42(1984) 239-244.
[5] Govil, N. K. and Jain, V. K., On the Enestrom Kakeya - Theorem II, Journal of Approx. Theory, 22,(1978) $1-10$.
[6] Govil, N. K. and Rahman, Q. I., On the Enestrom-Kakeya Theorem, Tohoku Math. J., 20 (1968), 126 - 136.
[7] Joyal, A., Labelle, G. and Rahman, Q. I., On the Location of the zeros of polynomials, canad, Math. Bull, 10(1967), 53-63.
[8] Marden, M., Geometry of Polynomials, Math surveys No 3. Amer Math. Soc. (R.I. Providence) 1966.
[9] Milovanoic, G. V. and Mitrinovic, D. S., Th.M Rassias. Topics in polynomials, Extremal problems, Inequalities, zeros (World Scientific, Singapore,(1994).
[10] Rahman, Q. I. and Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford 2002.

Department of Mathematics

University of Kashmir
Srinagar
B. A. Zargar

E-mail: bazargar@gmail.com

