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1 Introduction

In 1981 Stancu proposed a kind of generalized Bernstein polynomials, namely Stancu poly-
nomials, which was defined as:
Definition 11", Let s be an integer and 0 < s < g for f € C[0,1],

L) = Y £ (&) b9 Ly

k=0
where
(1 _x)Pnfs,k(x), 0<k<s,
bujs(X) = 9 (1 =) pusi(x) +xpp_sis(x), s<k<n—s,
xpn—ch—s(x)’ n—s<k<n,

and p;«(x) are the base functions of Bernstein polynomials.

Itis not difficult to see that for s =0, 1 the Stancu polynomials are just the classical Bernstein
polynomials. For s > 2, these polynomials possess many remarkable properties, which have
made them an area of intensive research (see [2, 3, 4, 5]).

Throughout this paper we employ the following notations of g-Calculus. Let ¢ > 0. For each
nonnegative integer k, the g-integer [k] and the g-factorial [k]! are defined by

1—qk

;o q#1
k, qg=1,
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Ke—1]-[1],  k>1
k=0.

! =

For n, k, n > k > 0, g-binomial coefficients are defined naturally as

Now let’s introduce a new generalization of Stancu polynomials as below.
Definition 2. Let s be an integer and 0 < s < g, g>0,n>0,for feC[0,1],

1 k
Ln,s(faq;x) = Z f (U> bn,k,s(q;x)a (L.2)
k=0 [n]
where
(1= ¢" %) pusi(g;x), 0<k<s,
buis(q:x) =14 (1— q”_k_sx)pn,sak(q;x) +q”_kxpn,s’k,s(q;x), s<k<n-—s,
qn_kxpnfs,kfs (CI;X), n—s<k< n,
and
n—s n—s—k—1
Pn—sk(q:x) = ) XX (1—qlx), k=0, 1, ,n—s
=0

(agree on ﬁ =1).

Itis wlo:r(t)h mentioning that the g-Stancu polynomials defined as (1.2) differ essentially from
the g-Stancu polynomials in [6]. To get their g-Stancu polynomials in [6] the authors just gen-
eralized the control points of the Stancu polynomials based on the g-integers leaving alone the
basis functions. While in our g-Stancu polynomials both the control points and the basis func-
tions are the g-analogue of those in Stancu polynomials. As a result, it is not a strange thing that
these two g-Stancu polynomials behave quite differently properties, especially in the approxi-
mation problem.

It can be easily verified that in case ¢ = 1, L, 5( f,¢;x) reduce to the Stancu polynomials and
in case s =0, 1, L,(f,¢;x) coincide with the g-Bernstein polynomials which are defined by
Phillips in [7] and have been intensively investigated during these years (see [8-12]).

By some direct calculations, one can get the following two representations: for f € C[0, 1],

. n
an integers and 0 < s < >

Lus(f,q:%) = Hi {(1 —q" ) f (E> +q" xS ( k] ) }Pns,k(q;x); (1.3)

k=0 [n] [n]
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. _n—s-H [n—s+1—k] @ qn—s—i-l—k[k] [s—l+k] .
Ln,s(f)Qa )_ k:ZO { [I’l—S—I—l] f<[l’l]> + [n—s—l—l] f( [I’l] >}pns+1,k(q’(1)'4)

Except the above two representations, Stancu polynomials based on g-integers possess the

following essential properties.
Proposition 1. For 0 < g < 1, L, 4(-,q) is a positive linear operator, while for g > 1 it is
not true, as the positiveness fails.

Proposition 2. Letg > 0. Fore;=x', i=0, 1, 2, hold Ly s(e0,q;x) =1, L, s(e1,q:x) = ey,

] g s —q""ls]
L 3 X) = — 1—x).
n,S(EZ) q x) 62 + < [n] + [n]z x( x)
Proposition 3.  For any function f(x) and parameter g >0, hold L, s(f,q;0) = £(0), L,(f,q;1) =
f().
Proposition 4. Let 0 < g < 1. For a concave function f(x) on [0,1], holds L, s(f,q;x) >
B s (qu;x)'

The following are our main results on shape-preserving properties.

2 Shape-Preserving Properties

To begin with, we should recall the conception of g-derivative. Let ¢ > 0 and g # 1. For a
function f(x), its q-derivative denoted by D,(f)(x), is defined as

fla) =1
D(f) ) =4 (a=Dx ~ ’
imD,(f)(1),  x=0;

and the higher g-derivatives are defined recursively by
Dif =Dy(Di ' f), n=1,2 - D)f=f.

Under the above definition, one can see for x # 0 the existence of Dy (f)(x) is sure and if f(x) is
continuous the continuity of D}(f)(x) can also be guaranteed. The usual derivative f’(x) is just
equal to the limit of D,(f)(x) as ¢ trends to 1. Moreover, the following lemma holds.

Lemma 1. Ler f(x) be a continuous function on [0, 1] satisfying f(0) = f(1). Then there
exists & € (0,1) such that

Dq(f)(é) =0

holds for all g € (0,1)J(1,4oo).
This lemma improves the g-Rolle theorem (see [13, Th.2.1] ) with respect to the range of q.
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Proof.  As f(x) is continuous on [0, 1] and f(0) = f(1), there exist either the maximum or
the minimum points in the inner of [0, 1]. In the following we discuss the sign of D,(f)(1) under
the condition ¢ € (0,1).

Case1l D,(f)(1) <O0. In this case, we have f(g) > f(1) as g € (0,1). Then without loss
of generality, we can assume that there exists xo € (0, 1) such that f(xo) = Jnax f(x). Evidently,
Dy(f)(x0) > 0. From the continuity of D,(f)(x), x € (0,1], we can conclude that there exists
€ € (x0,1) & (0,1) such that D,(f)(&) = 0.

Case 2 D,(f)(1) > 0. Using the similar method of Case 1, we get that there exists & €
(0,1) such that D,(f)(&) = 0.

Case3 D,(f)(1) =0. In this case, we have f(g) = f(1) = f(0). Repeat the above discus-
sion for D, (f)(q), then we get: for D,(f)(gq) # 0, there exists & € (0,g) such that D,(f)(§) =0;
otherwise the result of the lemma holds naturally as £ = g.

As a conclusion, the result holds for all 1 > g > 0.

For g € (1,+e), discussing Dq(f)(é) instead of D,(f)(1), we can prove the result of the
lemma by the similar way.
Furthermore, based on Lemma 1, we get a more explicit result of Theorem 2.3 in [13].

Lemma 2. Let x and xo, x1, -+, X, be any distinct points in the interval [0,1]. Let f(x) be
a continuous function on [0,1]. Then there exists &, € (0,1) such that for all g € (0,1)J(1,+e0)
holds

D (f)(&)
— 9 MY
f[xv X0, X1, B xl’l] [I’l+ 1]' 3
where f[x, xo, x1, -+, X,| denotes the divided difference of f(x) at points {x, xo, X1, -+, Xu}.

Proof. Because of the continuity of f(x) and the definition of D’;( f), k=0,1, -,
D (f)(x) exists in (0,1). Using Lemma 1 to replace the g-Rolle theorem in the proof of
Theorem 2.3 in [13], we can get the result of Lemma 2.

In this section, we use A, f to denote the g-differences of function f(x). Especially, Ag fi=fi
fori=0,1, ---, nand

A fi = AL fin — 4 A £,

for k=0, 1, '--,n—i—l,wheref,-denotesf(%)_

Theorem 1. Let0< g <1, abd s an integer satisfying 0 < s < g, and f(x) be a continuous,
increasing function on [0,1], then L, (f,q;x) is increasing on [0, 1].
Proof. As for s = 0,1, g-Stancu polynomials coincide with the g-Berntein polynomials,

which possess the shape preserving properties[8], we just focus on the case 2 < s < g By
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directly computing, we get

Dy(Lus(f.4) i{ n—s— kAL fi+ 4" Mk 1AL fi 1o
n—s—k [S_ 1 +k]) - (E)] } pn—xk(q;qx)
el () o P
As f(x) is an increasing function, fork =0, 1, ---, n—s, hold A}]fk > () and Aéfs_prk >0,
f <%) —f (%) > 0. Then Dy(L, s(f,q;x)) > 01in (0, 1].

By Lemma 2, we have: for any x;, x5 € [0, 1], there exists & € (0,1) such that

Lms(qu)[xl’ XZ] - Dq(Lms(qu))(é)'

Thus, for any x; < x; € [0,1], hold L, s(f,q)[x1, x2] > 0. Up to now, the monotonic increas-
ing property of L, (f,¢;x) can be got directly.

For the convex function f(x) which is the linear spline joining up the points (0,0), (0.2,0.6),
(0.6,0.8), (0.9,0.7) and (1,0), it is illustrated by Figure 1 that L, ((f,q¢;x) is also convex on
[0,1] with ¢ = 0.7, 0.5 and s = 3, 5. In fact, we will show that it possesses more than this.

Theorem 2. Let 0 < g < 1, and s an integer satisfying 0 < s < g and f(x) be a contin-
uous convex function on [0, 1], then L, (f,q:x) is also convex on [0,1] and L, s(f,q:x) < f(x).
Moreover, for any x € [0,1], L, s(f,q;x) is monotonic decreasing in the parameter n.

Proof. Firstly, we have

n—s—1
(Ls(£:0)0) = In=3] Y, {In—s—k=1a% i+ k=200 i1t
k=0
@Rl =1 sk k1) 5= 15k K] pocsralg:a®®)
e e e et | -
As f(x) is convex on [0, 1], forany k=0, 1, ---, n—s— 1, holds
2, _ (k21N [k+1] [K]
st (B ) - wear (B ar (5) =0
In the same way, we get for k=0, 1, ---, n—s—1, Af]]ﬁ_1+k>0.Andf0rk:0, 1, -, n—
s — 1, the differences f[[ [:]k], [k[:]l]] —f[%,%] > 0 are also guaranteed by the in-

creasing property of the convex function in the slope of chord. Therefore,

Dy(Lns(f:9))(x) >0,  x€(0,1]. 2.1)

Combining (2.1) with Lemma 2, we obtain that L, ;(f,¢;x) is convex on [0, 1].
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Secondly, using the Jessen inequality for the convex function and the proposition 2, we get

Lutran) = X {=¢ar () +ear (K5 bt

k=0

Zf( ”'”)%+”’” k+s>nskq,

ol (SR RPRSNES] P

)

Y

Y

Thirdly, before the proof of the monotonic property of L, ,(f,¢;x) in the parameter n, it is
necessary to recommend some notations. We denote

—5s+2 n—s+1
(Pn,k(x): e xk H (l_qlx)_la xn,k:E, k:O, 1, LR (R
k I=n=s+2—k [n]

It follows from the convex inequality of f(x) that fors > 1,0 < g < 1 and x € [0,1],

n—s+1
Lol Fo20) — Los(fgi)} T (01— )"
=0
n—s+1 n—s _ n—s+2—k
= P {ﬁf(xn—&-l,k)‘i‘Hf(xn+1’s_l+k)
n—s+2—k] ([n—s+1—K| gk k]
e Ui s+ G S
qn7s+27k [k] [n s+ k] qn7s+27k[k_ 1]
mora (o T+ S s ) fonatd
n—s+1 —g n—s—+2—k
< Ig {%z]k](ﬂxn%k)_f(nl))JFH(f(xn+17s—1+k)—f(712))

¢ Mk n—s+2—k|(1—q)

* [l’l — s+ 1] [n — s+ 2] (f(xn,k) - f(xn,s2+k))} On i (x),
where ¢ K] [k—1] 2R [A]
m= s 1] . o (l_m).ﬁ’
,h:jn—s+2—ﬂ b—1+kL+u_jn—s+2—kh.p—2+ﬂ.

n—s+1lg [

For the sake of convenience, we denote

gln—s+1] [n]

¢kl —s+2—k{q"+[s— 1]}
m—s+1]n—s+2)n|n+1]

A =
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¢ Kn—s+2-k{¢ 2 +q"[s— 1]}

Ao = n—s+ 1[n—s+2)[n]n+1] ’
then we have
n—s+1
{LnJrl,s(f’q;x) _Ln,s(faq;x)} H (1 _qlx)71
=0

n—s+1

< Y AM I X1 k] = Floge Xas—244]) + 22 (F Pk Xns—244) — FPons 15— 1940 M2]) } @i ().
=1

As

Xnk—1 <M <Xpt1h <Xngk < Xps—24k < Xn+1,s—1+k < 12 < Xps—1+k>

A; > 0,i=1,2, and f(x) is convex on [0, 1], we have for n sufficiently large that

LYH—LS(f’q;x) - Ln,s(qu;x) S 07 (22)

holds for all x € [0, 1]. For s = 0, (2.2) is clear. The proof of Theorem 2 is complete.

3 Approximation Theorem

For0 < g < 1, f € C[0,1], it is not difficult to get for x € [0, 1],

n—s[ 2

L (fgi) — F()] <2 0 f,\/<%+q S][n]‘zq"_s[s]>x(1_x) RRERY

where @(f,t) is the usual modulus of continuity of the function f/(x).

As for a fixed ¢ satisfying 0 < ¢ < 1, lim [n] ' = 0 does not hold, we can conclude that
the generalization of Stancu operator L, ( fn ’—C}o; does not converge to the mother function f(x)
any more, whatever the parameter s is. While for ¢ = ¢(n) € (0,1] and lim g, = 1, L, s(f,qn:x)
converges to the continuous function f(x) uniformly for x € [0, 1]. Hov&;lgvoér, the approximation
rate can not be better than the Stancu polynomials. Actually, under some necessary condition of
integer s, for f € C[0, 1], L, (f,¢;x) converges to a limit operator which is defined as:

Definition 37", For any nonnegative integer n, f(x) € C[0,1],

Y f(1=q ) pes(q:x), 0<x<1,
k=0

f(), x=1,

B.o(f,q:x) = (3.2)

k =
X
where poj(:x) = ~— [ [(1 - ¢'%).
| (l—qV%Nll
In detail, we have the following theorem.
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Theorem 3. Let f(x) € C[0,1], abd s an integer with 0 < s < g, and 0 < g < 1, then holds

41n(1-q)

n—s+1
=g U™, (3.3)

|Lns(f5q:%) = Beo(f5q5%)[lc < (4=

It can be seen from this theorem that for fixed integer s or s = s(n),n — s(n) — oo,

lim [|Ly s(f,65%) = Boo(f,5%)llc = 0

holds for 0 < g < 1. This result has some slightly difference with the corresponding result
of Stancu operator in [2]. To Stancu operator, when s = s(n) it should satisfy s = o(n) as
n — oo to make sure the convergence of the relevant Stancu polynomial. While to g-Stancu
operator it only needs n — s(n) — oo. Hereby for s = s(n) = n;l’ E, 2, -+, we still have

lim ||L, s(f,¢;x) — B (f,4;x)||c = 0, but for Stancu operator it doesn’t hold any longer.
n—o0

Proof of Theorem 3. Based on the proposition 2 and the linear preserving properties of the

limit operator Bw(-,q) [7], we can assume f(0) = f(1) = 0 without loss of generality.

Then we have

|Lns(f::x) = Beo(f ,43)
= Infl {%}rl]k]f (%) + q{;i:gﬁ]f(b —[,11]+k]) }Pns+1,k(q;x)

—Zfl— ) Pes ()|
n s+1 —s+1— k] @ B g qn—s-i-l—k[k] [S—l—l—k]
: ‘Z{ v () oo e ()

n—s+1

—f- qk))}Pnfm,k(q;X)l + l;) (f(1=¢") = F())(Pa-s+16(@:%) = Poi(:)))|

+ Y (fO=¢) = fFD))pes(g:x)| :=h + L+ L.

k=n—s+2
From the proof of Theorem 1 in [11], we know

~41n(1—q)

b q(1—q)

IN

o(f,q"~**), L<o(f.q"").
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Since for 0 < 6 < 1 < 1, holds 00(];’777) < za)(];,é) , then we have
n—s+1 [n—s—l—l—k] E ; qn—s+1—k[k] [s—l] ' E ; .
nos "B (PRI et e+ G o0 S o ) st
[s—1] 4
n—s+1 E ; . n—s+1 qll—s+1[k] [S— 1] w(fqu ) .
< kgo w(fa [l’l]q )pnferl,k(q’ )+ k;o [n—s+1] [l’l] [S[_]l]qk pnferl,k(q, )
[S_ 1] n—s+1
; n—s+1 qll—s+1[k] [S— 1] 2(0(f, [l’l] q )
< , n—s+1,k\g>X
< o(f,.d')+ k;) R—— [s[;]l]qn—s-i-l Prn—s+14k(q%)

< o(f,q")+20(f Mq”‘“‘“)nflip 1x(g5 %)
= ) ) [n] = [l’l—S—i— 1] n—s+1, )
stWHhMﬂ%%f“W

Combining the results of /1, I, Iz we complete the proof of Theorem 3.

Figure 1 The function f(x) is the segment by segment linear function combining (0,0), (0.2,0.6),
(0.6,0.8), (0.9,0.7) and (1,0). The others are Li53(f,0.7;x), L115(f,0.7;x), L73(f,0.7;x) and
L0 3(f,0.5;x) from up to down.
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