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Abstract. This paper concerns with the fractional integrals, which are also known as the

Riesz potentials. A characterization for the boundedness of the fractional integral operators

on generalized Morrey spaces will be presented. Our results can be viewed as a refinement

of Nakai’s[7].
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1 Introduction

For 0 < α < d, we define the fractional integral (also known as the Riesz potential) Iα f by

Iα f (x) :=

∫

Rd

f (y)

|x− y|d−α
dy, x ∈ Rd,

for any suitable function f on Rd. Clearly Iα f is well-defined for any locally bounded, com-

pactly supported function f on Rd. It is well-known that Iα is bounded from Lp(Rd) to Lq(Rd),

that is,

‖Iα f : Lq‖ ≤C‖ f : Lp‖

if and only if

1

q
=

1

p
−

α

d
,
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with 1 < p <
d

α
. This result was proved by Hardy and Littlewood[5,6] and Sobolev[10] around

the 1930’s. Further development on the subject can be found in [11, 12].

Next, let R+ := (0,∞). For 1 ≤ p < ∞ and a suitable function φ : R+ → R+, we define the

generalized Morrey space Lp,φ = Lp,φ (Rd) to be the set of all functions f ∈ L
p
loc(R

d) for which

‖ f : Lp,φ‖ := sup
B

1

φ(B)

(

1

|B|

∫

B
| f (y)|pdy

)1/p

< ∞.

Here the supremum are taken over all open balls B = B(a,r) in Rd and φ(B) = φ(r), where

r ∈ R+. For certain functions φ , the spaces Lp,φ reduce to some classical spaces. For instance,

if φ(r) = r(λ−d)/p, where 0 ≤ λ ≤ d, then Lp,φ is the classical Morrey space Lp,λ . For a brief

history of the Morrey space and related spaces, see [8]. For more recent results, see [9, 13] and

the references therein.

In this short paper, we shall revisit Nakai’s theorems on the fractional integrals on the gen-

eralized Morrey spaces[7] . In particular, we find that the sufficient condition imposed by Nakai

for the boundedness of the operator turns out to be necessary. In other words, we obtain a

characterization for which the fractional integral operators are bounded from Lp,φ to Lq,ψ .

2 Main Results

Let us begin with some assumptions and relevant facts that follow. As customary, the letters

C, Ci, Cp and Cp,q denote positive constants, which may depend on the parameters such as α ,

p,q and the dimension d of the ambient space, but not on the function f or the variable x. These

constants may vary from line to line.

In the definition of Lp,φ , the function φ is assumed to satisfy the following conditions:

φ is almost decreasing : t ≤ r ⇒ φ(r) ≤C1 φ(t);

rdφ(r)p is almost increasing : t ≤ r ⇒ tdφ(t)p ≤C2 rdφ(r)p,

with C1, C2 > 0 being independent of r and t. These two conditions imply that

φ satisfies the doubling condition : 1 ≤
t

r
≤ 2 ⇒

1

C3

≤
φ(t)

φ(r)
≤C3,

for some C3 > 0 (which is also independent of r and t). Throughout this paper, we shall always

assume that φ satisfies these conditions.
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In [7], Nakai showed that Iα is bounded from Lp,φ to Lq,ψ for

1

q
=

1

p
−

α

d

if φ satisfies an additional condition, namely

∫ ∞

r
tα−1φ(t)dt ≤C4 rα φ(r), (1)

and

rα φ(r) ≤C5ψ(r), (2)

for every r ∈ R+. By taking φ(r) = r(λ−d)/p with 0 ≤ λ < d −α p and ψ(r) = rα φ(r) with
1

q
=

1

p
−

α

d
, Nakai’s result contains Spanne’s, which states that Iα is bounded form Lp,λ to Lq,µ

for
1

q
=

1

p
−

α

d
, 0 ≤ λ < d −α p and µ =

q

p
λ [8]. See also [3] for related results.

In the following, we shall show that the condition (2) is necessary for the fractional integral

operator Iα to be bounded from Lp,φ to Lq,ψ . To do so, we need some lemmas. The first lemma

shows particularly that the space Lp,φ is not trivial.

Lemma 2.1. If B0 := B(a0,r0), then χB0
∈ Lp,φ where χB0

is the characteristic function of

the ball B0. Moreover, there exists C > 0 such that

1

φ(r0)
≤ ‖χB0

: Lp,φ‖ ≤
C

φ(r0)
.

Proof. Let B := B(a,r) denote an arbitrary ball in Rd . It is easy to see that

‖χB0
: Lp,φ‖ = sup

B

1

φ(r)

(

|B∩B0|

|B|

)1/p

≥
1

φ(r0)

(

|B0 ∩B0|

|B0|

)1/p

=
1

φ(r0)
.

Now, if r ≤ r0, then φ(r0) ≤C φ(r) and

1

φ(r)

(

|B∩B0|

|B|

)1/p

≤
1

φ(r)
≤

C

φ(r0)
.

On the other hand, if r0 ≤ r, we have rd
0φ(r0)

p ≤C rdφ(r)p and

1

φ(r)

(

|B∩B0|

|B|

)1/p

=
C|B∩B0|

1/p

rd/pφ(r)
≤

C|B0|
1/p

rd/pφ(r)
≤

Cr
1/p

0

r
d/p

0 φ(r0)
≤

C

φ(r0)
.

This completes the proof.

Lemma 2.2. If B0 := B(a0,r0), then rα
0 ≤C Iα χB0

(x) for every x ∈ B0.
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Proof. If x,y ∈ B0 := B(a0,r0), then |x− y| ≤ |x−a0|+ |a0 − y|< 2r0. If we integrate both

sides of the following inequality rα−d
0 ≤C |x− y|α−d over B0, then we get the desired estimate.

The following theorem gives a characterization of the functions φ and ψ for which Iα is

bounded from Lp,φ to Lq,ψ .

Theorem 2.3. Suppose that

1

q
=

1

p
−

α

d
,

where 1 < p <
d

α
. Suppose further that rα φ(r) satisfies the integral condition (1). Then, Iα is

bounded from Lp,φ to Lq,ψ if and only if rα φ(r) ≤C ψ(r) for every r ∈ R+.

Proof. The sufficient part is proved in [7]. We shall now prove the necessary part. Assume

that Iα is bounded from Lp,φ to Lq,ψ , and let B0 := B(a0,r0). If x ∈ B0, then rα
0 ≤ C Iα χB0

(x).

Integrating over B0, we get

rα
0 ≤C

(

1

|B0|

∫

B0

|Iα χB0
(x)|q dx

)1/q

≤C ψ(r0)‖Iα χB0
: L

q
ψ‖

≤C ψ(r0)‖χB0
: L

p
φ‖ ≤C ψ(r0)φ(r0)

−1.

Note that the first inequality follows from Lemma 2.2, while the last one follows from Lemma

2.1. Since this is true for every r0 ∈ R+, we are done.

3 Additional Results

In [4], there is the following theorem that serves as an extension of Adams and Chiarenza–

Frasca’s result on the fractional integral operator Iα [1, 2].

Theorem 3.1. (Gunawan-Eridani). Suppose that 1 < p <
d

α
and φ p satisfies the integral

condition, namely
∫ ∞

r

φ p(t)

t
dt ≤C6φ p(r), (3)

for every r ∈ R+. If φ(r) ≤C rβ for −
d

p
≤ β < −α , then, for q =

β p

α + β
, there exists Cp,β > 0

such that

‖Iα f : Lq,φ p/q

‖ ≤Cp,β ‖ f : Lp,φ‖.

As in the previous part, we also have the characterization of φ for which Iα is bounded from

Lp,φ to Lq,φ p/q

.
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Theorem 3.2. Suppose that 1 < p <
d

α
and φ p satisfies the integral condition (3). If

−
d

p
≤ β < −α and q =

β p

α + β
, then Iα is bounded from L

p
φ to L

q

φ p/q if and only if φ(r) ≤C rβ

for every r ∈ R+.

Proof. The proof of the sufficient part can be found in [4]. As for the necessary part, we

have the following observation: if B0 := B(a0,r0), then

rα
0 ≤C

(

1

|B0|

∫

B0

|Iα χB0
(x)|qdx

)1/q

≤C φ(r0)
p/q‖Iα χB0

: Lq,φ p/q

‖

≤C φ(r0)
p/q‖χB0

: Lp,φ‖ ≤C φ(r0)
p/q φ(r0)

−1,

which may be rewritten as φ(r0) ≤ Cr
β
0 . Since this inequality is valid for every r0 ∈ R+, the

theorem is proved.
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