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Abstract. This paper is devoted to problems stated by Z. Zhou and F. Li in2009. They con-

cern relations between almost periodic, weakly almost periodic, and quasi-weakly almost

periodic points of a continuous mapf and its topological entropy. The negative answer

follows by our recent paper. But for continuous maps of the interval and other more general

one-dimensional spaces we give more results; in some cases the answer is positive.
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1 Introduction

Let (X ,d) be a compact metric space,I = [0,1] the unit interval, andC(X) the set of contin-

uous mapsf : X → X . By ω( f ,x) we denote theω-limit set of x which is the set of limit points

of thetrajectory { f i(x)}i≥0 of x, wheref i denotes theith iterate off . We consider the setsW ( f )

of weakly almost periodic points of f , andQW ( f ) of quasi-weakly almost periodic points of f .

They are defined as follows, see [11]:

W ( f ) =

{
x ∈ X ;∀ε ∃N > 0 such that

nN−1

∑
i=0

χB(x,ε)( f i(x)) ≥ n,∀n > 0

}
,

QW ( f ) =

{
x ∈ X ;∀ε ∃N > 0,∃{n j} such that

n jN−1

∑
i=0

χB(x,ε)( f i(x)) ≥ n j,∀ j > 0

}
,
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whereB(x,ε) is theε-neighbourhood ofx, χA the characteristic function of a setA, and{n j} an

increasing sequence of positive integers. Forx ∈ X andt > 0, let

Ψx( f , t) = lim inf
n→∞

1
n#{0≤ j < n;d(x, f j(x)) < t}, (1)

Ψ∗
x( f , t) = limsup

n→∞

1
n#{0≤ j < n;d(x, f j(x)) < t}. (2)

Thus,Ψx( f , t) andΨ∗
x( f , t) are thelower andupper Banach density of the set{n ∈ N; f n(x) ∈

B(x, t)}, respectively. In this paper we make of use more convenient definitions ofW ( f ) and

QW ( f ) based on the following lemma.

Lemma 1. Lef f ∈ C(X). Then

(i) x ∈W ( f ) if and only if Ψx( f , t) > 0, for every t > 0,

(ii) x ∈ QW ( f ) if and only if Ψ∗
x( f , t) > 0, for every t > 0.

Proof. It is easy to see that, for everyε > 0 andN > 0,

nN−1

∑
i=0

χB(x,ε)( f i(x)) ≥ n if and only if #{0≤ j < nN; f j(x) ∈ B(x,ε)} ≥ n. (3)

(i) If x ∈ W ( f ) then, for everyε > 0 there is anN > 0 such that the condition on the left

side in (3) is satisfied for everyn. Hence, by the condition on the right,Ψx( f ,ε) ≥ 1/N > 0. If

x /∈W ( f ) then there is anε > 0 such that for everyN > 0, there is ann > 0 such that the condition

on the left side of (3) is not satisfied. Hence, by the condition on the right,Ψx( f , t) < 1/N → 0

if N → ∞. Proof of (ii) is similar.

Obviously,W ( f )⊆ QW ( f ). The properties ofW ( f ) andQW ( f ) were studied in the nineties

by Z. Zhou et al, see [11] for references. The points inIR( f ) := QW ( f )\W ( f ) areirregularly

recurrent points, i.e., the pointsx such thatΨ∗
x( f , t) > 0 for anyt > 0, andΨx( f , t0) = 0 for some

t0 > 0, see [7]. Denote byh( f ) the topological entropy of f and byR( f ), UR( f ) andAP( f )

the set ofrecurrent, uniformly recurrent andalmost periodic points of f , respectively. Thus,

x ∈ R( f ) if for every neighborhoodU of x, f j(x) ∈ U for infinitely many j ∈ N; x ∈ UR( f ) if

for every neighborhoodU of x there is aK > 0 such that every interval[n,n + K] contains a

j ∈ N with f j(x) ∈ U ; andx ∈ AP( f ) if for every neighborhoodU of x, there is ak > 0 such

that f k j(x) ∈U for every j ∈ N. Recall thatx ∈ R( f ) if and only if x ∈ ω( f ,x), andx ∈UR( f )

if and only if ω( f ,x) is aminimal set, i.e., a closed set /06= M ⊆ X such thatf (M) = M and no

proper subset ofM has this property. Denote byω( f ) the union of allω-limit sets of f . The

next relations follow by definition:

AP( f ) ⊆UR( f ) ⊆W ( f ) ⊆ QW ( f ) ⊆ R( f ) ⊆ ω( f ) (4)
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The next theorem will be used in Section 2. Its part (i) is proved in [9] but we are able to give a

simpler argument, and extend it to part (ii).

Theorem 1. If f ∈ C(X), then

(i) W ( f ) = W ( f m),

(ii) QW ( f ) = QW ( f m),

(iii) IR( f ) = IR( f m).

Proof. SinceΨx( f , t)≥ 1
m Ψx( f m, t), x∈W ( f m) impliesx∈W ( f ) and similarly,QW ( f m)⊆

QW ( f ). Since (iii) follows by (i) and (ii), it suffices to prove thatfor everyε > 0 there is aδ > 0

such that for every prime integerm,

Ψx( f m,ε) ≥ Ψx( f ,δ ) andΨ∗
x( f m,ε) ≥ Ψ∗

x( f ,δ ). (5)

For everyi ≥ 0, denoteωi := ω( f m, f i(x)) andωi j := ωi ∩ω j. Obviously,ω( f ,x) =
⋃

0≤i<m ωi,

and f (ωi) = ωi+1, wherei is taken modm. Moreover, f m(ωi) = ωi and f m(ωi j) = ωi j for every

0≤ i < j < m. Hence

ωi 6= ωi j impliesω j 6= ωi j, and f i(x), f j(x) /∈ ωi j. (6)

Let k be the least period ofω0. Sincem is prime, there are two cases.

(a) If k = m then the setsωi are pairwise distinct and, by (6), there is aδ > 0 such that

B(x,δ )∩ωi = /0, 0< i < m. It follows that if f r(x) ∈ B(x,δ ) then r is a multiple ofm, with

finitely many exceptions. Consequently, (5) is satisfied forε = δ , even with≥ replaced by the

equality.

(b) If k = 1 thenωi = ω0 for every i. Let ε > 0. For everyi, 0 ≤ i < m, there is the

minimal integerki ≥ 0 such thatf mki+i(x) ∈ B(x,ε). By the continuity, there is aδ > 0 such

that f mki+i(B(x,δ )) ⊆ B(x,ε), 0≤ i < m. If f r(x) ∈ B(x,δ ) andr ≡ i(modm), r = ml + i, then

f m(l+1+km−i)(x) = f r+mkm−i+m−i(x) ∈ f mkm−i+m−i(B(x,δ )) ⊆ B(x,ε). This proves (5).

In 2009 Z. Zhou and F. Li stated, among others, the following problems, see [10].

Problem 1. Does IR( f ) 6= /0 imply h( f ) > 0?

Problem 2. Does W ( f ) 6= AP( f ) imply h( f ) > 0?

In general, the answer to either problem is negative. In [7] we constructed a skew-product

mapF : Q× I → Q× I, (x,y) 7→ (τ(x),gx(y)), whereQ = {0,1}N is a Cantor-type set,τ the

adding machine (or, odometer) onQ and, for everyx, gx is a nondecreasing mappingI → I, with
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gx(0) = 0. Consequently,h(F) = 0 andQ0 := Q×{0} is an invariant set. On the other hand,

IR(F) 6= /0 andQ0 = AP(F) 6= W (F). This example answers in the negative both problems.

However, for mapsf ∈ C(I), h( f ) > 0 is equivalent toIR( f ) 6= /0. On the other hand, the

answer to Problem 2 remains negative even for maps inC(I). Instead, we are able to show that

such maps withW ( f ) 6= AP( f ) are Li-Yorke chaotic. These results are given in the next section,

as Theorems 2 and 3. Then, in Section 3 we show that these results can be extended to maps of

more general one-dimensional compact metric space like topological graphs, topological trees,

but not dendrites, see Theorems 4 and 5.

2 Relations with Topological Entropy for Maps in C(I)

Theorem 2. For f ∈ C(I), the conditions h( f ) > 0 and IR( f ) 6= /0 are equivalent.

Proof. If h( f ) = 0 thenUR( f ) = R( f ) (see, e.g., [2], Corollary VI.8). Hence, by (4),

W ( f ) = QW ( f ). If h( f ) > 0 thenW ( f ) 6= QW ( f ); this follows by Theorem 1 and Lemmas 2

and 3 stated below.

Let (Σ2,σ) be the shift on the setΣ2 of sequences of two symbols 0,1 equipped with a metric

ρ of pointwise convergence, say,ρ({xi}i≥1,{yi}i≥1) = 1/k wherek = min{i ≥ 1;xi 6= yi}.

Lemma 2. IR(σ) is non-empty, and contains a transitive point.

Proof. Let

k1,0,k1,1,k2,0,k2,1,k2,2,k3,0, · · · ,k3,3,k4,0, · · · ,k4,4,k5,0, · · ·

be an increasing sequence of positive integers. Let{Bn}n≥1 be a sequence of all finite blocks of

digits 0 and 1. PutA0 = 10,A1 = (A0)
k1,00k1,1B1 and in general,

An = An−1(A0)
kn,0(A1)

kn,1 · · · (An−1)
kn,n−10kn,n Bn, n ≥ 1. (7)

Denote by|A| the lenght of a finite block of 0’s and 1’s, and let

an = |An|, bn = |Bn|, cn = an −bn − kn,n, n ≥ 1, (8)

and

λn,m =
∣∣An−1(A0)

kn,0(A1)
kn,1 · · · (Am)kn,m

∣∣ , 0≤ m < n. (9)

By induction we can take the numberski, j such that

kn,m+1 = n ·λn,m, 0≤ m < n. (10)
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Let N(A) be the cylinder of allx ∈ Σ2 beginning with a finite blockA. Then{N(Bn)}n≥1 is a

base of the topology ofΣ2, and
⋂∞

n=1N(An) contains exactly one point; denote it byu.

Sinceσ an−bn(u) ∈ N(Bn), i.e., since the trajectory ofu visits everyN(Bn), u is a transitive

point of σ . Moreover,ρ(u,σ j(u)) = 1, whenevercn ≤ j < an − bn. By (10) it follows that

Ψu(σ , t) = 0 for everyt ∈ (0,1). Consequently,u /∈W (σ).

It remains to show thatu ∈ QW (σ). Let t ∈ (0,1). Fix ann0 ∈ N such that 1/an0 < t. Then,

by (7),

#
{

j < λn,n0;ρ(u,σ j(u)) < t
}
≥ kn,n0, n > n0,

hence, by (9) and (10),

lim
n→∞

#
{

j < λn,n0;ρ(u,σ j(u)) < t
}

λn,n0

≥ lim
n→∞

kn,n0

λn,n0

= lim
n→∞

kn,n0

λn,n0−1 + an0kn,n0

= lim
n→∞

n
1+ an0n

=
1

an0

.

Thus,Ψ∗
u(σ , t) ≥ 1/an0 and by Lemma 1,u ∈ QW (σ).

Lemma 3. Let f ∈ C(I) have positive topological entropy. Then IR( f ) 6= /0.

Proof. Whenh( f ) > 0, thenf m is strictly turbulent for somem. This means that there exist

disjoint compact intervalsK0, K1 such thatf m(K0)∩ f m(K1)⊃ K0∪K1, see [2], Theorem IX.28.

This condition is equivalent to the existence of a continuous mapg : X ⊂ I → Σ2, whereX is of

Cantor type, such thatg◦ f m(x) = σ ◦g(x) for everyx ∈ X , and such that each point inΣ2 is the

image of at most two points inX ([2], Proposition II.15). By Lemma 2, there is au ∈ IR(σ).

Hence, for everyt > 0, Ψ∗
u(σ , t) > 0, and there is ans > 0 such thatΨu(σ ,s) = 0. There are at

most two preimages,u0 andu1, of u. Then, by the continuity,Ψui( f m,r) = 0, for somer > 0

andi = 0,1, andΨ∗
ui
( f m,k) > 0 for at least onei ∈ {0,1} and everyk > 0. Thus,u0 ∈ IR( f m) or

u1 ∈ IR( f m) and, by Theorem 1,IR( f ) 6= /0.

Recall thatf ∈ C(X) is Li-Yorke chaotic, or LYC, if there is an uncountable setS ⊆ X such

that for everyx 6= y in S, liminfn→∞ ρ(ϕn(x),ϕn(y)) = 0 and limsupn→∞ ρ(ϕn(x),ϕn(y)) > 0.

Theorem 3. For f ∈ C(I), W ( f ) 6= AP( f ) implies that f is Li-Yorke chaotic, but does not

imply h( f ) > 0.

Proof. Every continuous map of a compact metric space with positivetopological entropy

is Li-Yorke chaotic [1]. Hence to prove the theorem it suffices to consider the classC0 ⊂ C(I) of

maps with zero topological entropy and show that

(i) for every f ∈ C0, W ( f ) 6= AP( f ) impliesLYC, and

(ii) there is anf ∈ C0 with W ( f ) 6= AP( f ).
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For f ∈ C0, R( f ) = UR( f ), see, e.g., [2], Corollary VI.8. Hence, by (4),W ( f ) 6= AP( f ) implies

that f has an infinite minimalω-limit set ω̃ possessing a point which is not inAP( f ). Recall

that for every such̃ω there is an associated system{Jn}n≥1 of compact periodic intervals such

that Jn has period 2n, andω̃ ⊆
⋂

n≥1
⋃

0≤ j<2n f j(Jn) [8]. For everyx ∈ ω̃ there is a sequence

ι(x) = { jn}n≥1 of integers, 0≤ jn < 2n, such that

x ∈
⋂

n≥1

f jn(Jn) =: Qx.

For everyx ∈ ω̃ , the setω̃ ∩Qx contains one (i.e., the pointx) or two points. In the second case

Qx = [a,b] is a compact wandering interval (i.e.,f n(Qx)∩Qx = /0 for everyn ≥ 1) such that

a,b ∈ ω̃ and eitherx = a or x = b. Moreover, if, for everyx ∈ ω̃ , ω̃ ∩Qx is a singleton thenf

restricted toω̃ is the adding machine, and̃ω ⊆ AP( f ), see [3]. Consequently,W ( f ) 6= AP( f )

implies the existence of an infiniteω-limit set ω̃ such that

ω̃ ∩Qx = {a,b}, a < b, for somex ∈ ω̃ . (11)

This condition characterizesLYC maps inC0 (see [8] or subsequent books like[11]) which proves

(i).

To prove (ii) note that there are mapsf ∈ C0 such that botha andb in (11) are non-isolated

points ofω̃ , see [3] or [6]. Thena,b∈UR( f ) are minimal points. We show that in this case either

a /∈ AP( f ) or b /∈ AP( f ) (actually, neithera nor b is in AP( f ) but we do not need this stronger

property). So assume thata,b ∈ AP( f ) andUa, Ub are their disjoint open neighborhoods. Then

there is aneven m, m = (2k+1)2n, with n ≥ 1, such thatf jm(a) ∈Ua and f jm(b) ∈Ub, for every

j ≥ 0. Let {Jn}n≥1 be the system of compact periodic intervals associated withω̃ . Without

loss of generality we may assume that, for somen, [a,b] ⊂ Jn. SinceJn has period 2n, for

arbitrary oddj, f jm(Jn)∩ Jn = /0. If f jm(Jn) is to the left ofJn, then f jm(Jn)∩Ub = /0, otherwise

f jm(Jn)∩Ua = /0. In any case,f jm(a) /∈Ua or f jm(b) /∈Ub, which is a contradiction.

3 Generalization for Maps on More General One-dimensional Spaces

Here we show that the results given in Theorems 2 and 3 concerning maps inC(I) can

be generalized to more general one-dimensional compact metric spaces like topological graphs

or trees, but not dendrites. Recall thatX is a topological graph ifX is a non-empty compact

connected metric space which is the union of finitely many arcs (i.e., continuous images of the
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interval I) such that every two arcs can have only end-points in common.A tree is a topological

graph which contains no subset homeomorphic to the circle. Adendrite is a locally connected

continuum containing no subset homeomorphic to the circle.The proof of generalized results

is based on the same ideas as that of Theorems 2 and 3. We only need some recent, nontrivial

results concerning the structure ofω-limit sets of such maps, see [4] and [5]. Therefore we give

here only outline of the proof, pointing out only main differences.

Theorem 4. Let f ∈ C(X).

(i) If X is a topological graph then h( f ) > 0 is equivalent to QW ( f ) 6= W ( f ).

(ii) There is a dendrit X such that h( f ) > 0 and QW ( f ) = W ( f ) = UR( f ).

Proof. To prove (i) note that, forf ∈ C(X) whereX is a topological graph,h( f ) > 0 if and

only if, for somen ≥ 1, f n is turbulent [4]. Hence the proof of Lemma 3 applies also to this

case andh( f ) > 0 impliesIR( f ) 6= /0. On the other hand, ifh( f ) = 0 then every infiniteω-limit

set is a solenoid (i.e., it has an associated system of compact periodic intervals{Jn}n≥1, Jn with

period 2n) and consequently,R( f ) = UR( f ) [4] which gives the other implication.

(ii) In [5] there is an example of a dendritX with a continuous mapf possessing exactly

two ω-limit sets: a minimal Cantor-type setQ such thath( f |Q)≥ 0 and a fixed pointp such that

ω( f ,x) = {p} for everyx ∈ X \Q.

Theorem 5. Let f ∈ C(X).

(i) If X is a compact tree then W ( f ) 6= AP( f ) implies LYC, but does not imply h( f ) > 0.

(ii) If X is a dendrit, or a topological graph containing a circle then W ( f ) 6= AP( f ) implies

neither LYC nor h( f ) > 0.

Proof. (i) Similarly as in the proof of Theorem 3we may assumeh( f ) = 0. Then every

infinite ω-limit set of f is a solenoid and the argument with obvious modifications applies.

(ii) If X is the circle, takef to be an irrational rotation. Then obvioulsyX =UR( f )\AP( f ) =

W ( f )\AP( f ) but f is notLYC. On the other hand, let̃ω be theω-limit set used in the proof of

part (ii) of Theorem 3. Thus,̃ω is a minimal set intersectingUR( f )\AP( f ). A modification of

the construction from [5] yields a dendrite with exactly twoω-limit sets, an infinite minimal set

Q = ω̃ and a fixed pointq (see the proof of part (ii) of the preceding theorem). It is easy to see

that f is notLYC.

Remark 1. By Theorems 4 and 5, for a mapf ∈ C(X) whereX is a compact metric space,

the propertiesh( f ) > 0 andW ( f ) 6= AP( f ) are independent. Similarly,h( f ) > 0 andIR( f ) 6= /0

are independent. Example of a mapf with h( f ) = 0 andIR( f ) 6= /0 is given in [7] (see also the
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text at the end of Section 1), and any minimal mapf with h( f ) > 0 yieldsIR( f ) = /0.
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