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Abstract. This paper is devoted to problems stated by Z. Zhou and F.2089. They con-

cern relations between almost periodic, weakly almostogkécj and quasi-weakly almost

periodic points of a continuous mdpand its topological entropy. The negative answer

follows by our recent paper. But for continuous maps of theriral and other more general

one-dimensional spaces we give more results; in some dasesswer is positive.
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1 Introduction

Let (X,d) be a compact metric spades= [0, 1] the unit interval, an€(X) the set of contin-
uous mapd : X — X. By w(f,x) we denote theo-limit set of x which is the set of limit points
of thetrajectory { f'(x)}i>o of x, wheref' denotes théth iterate off. We consider the set( f)
of weakly almost periodic points of f, andQW( f) of quasi-weakly almost periodic points of f.

They are defined as follows, see [11]:

nN—-1 )
W(f)= {xe X;Ve 3N > 0 such that Zj Xee) (f'(X) >n,vn> O} :
i=

njN—1 )
QW(f) = {xe X;Ve AN > 0,3{n;} such that % Xee) (F'(X) >nj,Vj > O},
i=
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whereB(x, €) is thee-neighbourhood o, xa the characteristic function of a s&fand{n; } an

increasing sequence of positive integers. ¥arX andt > 0, let

W, (ft) = Iinm_jorgf%#{ogj<n;d(x,fj(x))<t}, (1)
Wi(f,t) = limsupl#{0<j<nd(x fl(x) <t}. 2)

Nn—oo

Thus,Wy(f,t) andW(f,t) are thelower andupper Banach density of the set{n € N; f"(x)
B(x,t)}, respectively. In this paper we make of use more conveniefibilons ofW(f) and
QW(f) based on the following lemma.

Lemmal. Lef f € C(X). Then

(i) xeW(f)ifandonlyifWy(f,t) >0, for everyt > 0,

(i) xe QW(f)ifandonlyif Wy (f,t) >0, for everyt > 0.

Proof. ltis easy to see that, for evegy> 0 andN > 0O,

nN—1

% Xaxe) (f'(x)) >n ifand onlyif #0< j<nN;fi(x)eB(xe)} >n. (3)
i=

() If xe W(f) then, for everye > 0 there is arN > 0 such that the condition on the left
side in (3) is satisfied for eveny. Hence, by the condition on the righx(f,&) > 1/N > 0. If
x ¢ W(f) then there is am > 0 such that for everil > 0, there is am > 0 such that the condition
on the left side of (3) is not satisfied. Hence, by the conditia the rightW,(f,t) <1/N — 0
if N — oo, Proof of (ii) is similar.

Obviously,W(f) C QW(f). The properties oV (f) andQW(f) were studied in the nineties
by Z. Zhou et al, see [11] for references. The pointsROf) := QW(f)\W(f) areirregularly
recurrent points, i.e., the point such thatV;(f,t) > 0 for anyt > 0, andWx(f,ty) = O for some
to > 0, see [7]. Denote bia(f) the topological entropy of f and byR(f), UR(f) and AP(f)
the set ofrecurrent, uniformly recurrent andalmost periodic points of f, respectively. Thus,
x € R(f) if for every neighborhoodJ of x, fi(x) € U for infinitely many j € N; x € UR(f) if
for every neighborhood) of x there is aK > 0 such that every intervdh,n+ K] contains a
j € Nwith fi(x) € U; andx € AP(f) if for every neighborhoodJ of x, there is & > 0 such
that £kl (x) € U for everyj € N. Recall thaix € R(f) if and only if x € w(f,x), andx € UR(f)
if and only if cw(f,x) is aminimal set, i.e., a closed set# M C X such thatf (M) =M and no
proper subset oM has this property. Denote lpy(f) the union of allw-limit sets of f. The

next relations follow by definition:

AP(f) CUR(F) CW(f) € QW(f) C R(f) C w(f) ()
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The next theorem will be used in Section 2. Its part (i) is poebin [9] but we are able to give a
simpler argument, and extend it to part (ii).

Theorem 1. If f € €(X), then

() W(F) =W(fm),

(i) QW(f)=Qw(f™),

(i) IR(f) =IR(f™).

Proof. SinceWy(f,t) > W, (fMt),xe W(f™)impliesxeW(f)and similarly,QW(f™) C
QW( ). Since (iii) follows by (i) and (ii), it suffices to prove thé&ir everye > 0 there is @ >0

such that for every prime integen,
Wi (fM e) > Wy (f,0) andW;(f™ g) > Wi(f,d). (5)

For everyi > 0, denotey := w(f™, f'(x)) andw; := w N wj. Obviously,w(f,X) = Up<iom@®,
andf(w) = w1, wherei is taken modn. Moreover,f™(w) = w andf™(w;) = wj for every

0<i< j<m Hence
@ # w; impliesw; # aj, andf'(x), f1(X) ¢ ;. (6)

Letk be the least period afy. Sincemis prime, there are two cases.

(a) If k= mthen the setgy are pairwise distinct and, by (6), there i®a> 0 such that
B(x,0)Nw =0, 0<i<m. It follows that if f'(x) € B(x,d) thenr is a multiple ofm, with
finitely many exceptions. Consequently, (5) is satisfiedefer &, even with> replaced by the
equality.

(b) If k=1 thenw = ap for everyi. Lete > 0. For everyi, 0 <i < m, there is the
minimal integerk; > 0 such thatf™i*(x) € B(x,£). By the continuity, there is & > 0 such
that f™i+1(B(x,5)) C B(x,£), 0<i < m. If f'(x) € B(x,6) andr =i(modm), r = ml +i, then
fmll+Ltkni) (x) = frmkn-itm=i(x) ¢ fMka-i+M-I(B(x &)) C B(x, ). This proves (5).

In 2009 Z. Zhou and F. Li stated, among others, the followirapfems, see [10].

Problem 1. DoesIR(f) # 0imply h(f) > 0?

Problem 2. DoesW(f) # AP(f) imply h(f) > 0?

In general, the answer to either problem is negative. In [@Joanstructed a skew-product
mapF : Qx| — Qx1, (x,y) — (1(x),9(y)), whereQ = {0,1}N is a Cantor-type set; the

adding machine (or, odometer) @wand, for every, gy is a nondecreasing mappihg- |, with
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ox(0) = 0. Consequentlyh(F) =0 andQp := Q x {0} is an invariant set. On the other hand,
IR(F) # 0 andQp = AP(F) # W(F). This example answers in the negative both problems.
However, for mapd € C(1), h(f) > 0 is equivalent tdR(f) # 0. On the other hand, the
answer to Problem 2 remains negative even for majgXlin Instead, we are able to show that
such maps withV( f) £ AP(f) are Li-Yorke chaotic. These results are given in the nexiaec
as Theorems 2 and 3. Then, in Section 3 we show that thesésreanlbe extended to maps of
more general one-dimensional compact metric space likeldgjzal graphs, topological trees,

but not dendrites, see Theorems 4 and 5.

2 Relations with Topological Entropy for Maps in C(I)

Theorem 2. For f € €(l), the conditions h(f) > 0and IR(f) # 0 are equivalent.

Proof. If h(f) =0 thenUR(f) = R(f) (see, e.g., [2], Corollary VI.8). Hence, by (4),
W(f) =QW(f). If h(f) > 0 thenW(f) # QW(f); this follows by Theorem 1 and Lemmas 2
and 3 stated below.

Let (2, 0) be the shift on the sét, of sequences of two symbolsDequipped with a metric
p of pointwise convergence, say({x }i>1,{Vi}i>1) = 1/kwherek = min{i > 1;x # vi}.

Lemma 2. |IR(0) isnon-empty, and contains a transitive point.

Proof. Let

K1,0,K1,1,K20,k2,1, K22, K30, -+ K33, Ka0, - ,Kaa,Ks 0,

be an increasing sequence of positive integers{Bg},>1 be a sequence of all finite blocks of
digits 0 and 1. Pulg = 10, A; = (Ag)*t00%1B; and in general,

An = An-1(A0)*° (A7) - (A1) 201" By, n> 1, )
Denote by|A| the lenght of a finite block of 0's and 1's, and let
an = |Anl, bn:‘Bn‘7Cn:an_bn_kn7n7 n>1, (8)

and
Anm = [An-1(A0) 0 (Ap)! - (Ag)m|, 0<m<n. 9)

By induction we can take the numbégg such that

Komi1=n-Anm, 0<m<n. (10)
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Let N(A) be the cylinder of alk € X, beginning with a finite blockA. Then{N(Bp)}n>1 is a
base of the topology df,, and);,_; N(A,) contains exactly one point; denote it by

Sincea®(u) € N(By), i.e., since the trajectory af visits everyN(By), u is a transitive
point of a. Moreover,p(u,gl(u)) = 1, wheneverc, < j < a, —b,. By (10) it follows that
Wu(o,t) = 0 for everyt € (0,1). Consequentiyl ¢ W(0o).

It remains to show that € QW(0o). Lett € (0,1). Fix anng € N such that Ya,, <t. Then,
by (7),

#{j < Anng; P(U, 0 (1)) <t} > kg, N> Mo,

hence, by (9) and (10),

- #{ <A p(u, 0l (u)) <t : i i n !
lim {J < Annoi P (W) <t} > lim Koo _ lim Kuno = lim =—.
N0 )\n,no n—oo An.ﬂo N—oo )\H,HO*l + anokn.no N—eo 1+ anon ano

Thus,¥;(o,t) > 1/a,, and by Lemma 1u € QW(o).

Lemma 3. Let f € C(l) have positive topological entropy. Then IR(f) # 0.

Proof. Whenh(f) > 0, thenf™ is strictly turbulent for somen. This means that there exist
disjoint compact intervalky, K1 such thatf ™(Ko) N f™(K1) D KoUK3, see [2], Theorem 1X.28.
This condition is equivalent to the existence of a contimumapg : X C | — 2, whereX is of
Cantor type, such thato f™(x) = g og(x) for everyx € X, and such that each point 1 is the
image of at most two points iX ([2], Proposition 11.15). By Lemma 2, there isuac IR(0).
Hence, for every > 0, W;(o,t) > 0, and there is as > 0 such thatV,(o,s) = 0. There are at
most two preimages)o anduy, of u. Then, by the continuityV, (f™,r) = 0, for somer > 0
andi = 0,1, and¥}, (f™ k) > 0 for at least oné< {0,1} and everyk > 0. Thus,up € IR(f™) or
ur € IR(f™) and, by Theorem 1R(f) # 0.

Recall thatf € C(X) is Li-Yorke chaotic, or LYC, if there is an uncountable s8iC X such
that for everyx 2y in S liminf,_. p(¢"(x),¢"(y)) = 0 and limsup_,., p(¢"(x),$"(y)) > 0.

Theorem 3. For f € (1), W(f) # AP(f) impliesthat f is Li-Yorke chaotic, but does not
imply h(f) > 0.

Proof. Every continuous map of a compact metric space with poditigelogical entropy
is Li-Yorke chaotic [1]. Hence to prove the theorem it suffite consider the clas® C C(I) of
maps with zero topological entropy and show that

(i) for every f € Co, W(f) # AP(f) impliesLYC, and

(ii) there is anf € Co with W(f) = AP(f).
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For f € Co, R(f) =UR(f), see, e.g., [2], Corollary VI.8. Hence, by (¥, f) # AP(f) implies
that f has an infinite minimato-limit set w possessing a point which is not AP(f). Recall
that for every suctw there is an associated systdh }n~1 of compact periodic intervals such
that J, has period 2 and @ € Ny>1Uo<jon fi(J,) [8]. For everyx € @ there is a sequence
1(X) = {jn}n>1 Of integers, < j, < 2", such that

xe () Fin(dn) =: Q.

n>1

For everyx € w, the setw N Qy contains one (i.e., the poir} or two points. In the second case
Qx = [a,b] is a compact wandering interval (i.€f.7(Qx) N Qx = O for everyn > 1) such that
a,b € w and eitherx = a or x = b. Moreover, if, for everyx ¢ @, wN Qy is a singleton therf
restricted tow is the adding machine, arid C AP(f), see [3]. ConsequentlyV(f) # AP(f)

implies the existence of an infinite-limit set c such that
wNQx={ab}, a<b, for somex € w. (11)

This condition characterizesYC maps inCq (see [8] or subsequent books I8 which proves
@i).

To prove (ii) note that there are maps Cp such that botla andb in (11) are non-isolated
points ofw, see [3] or [6]. Them, b € UR(f) are minimal points. We show that in this case either
a¢ AP(f) orb ¢ AP(f) (actually, neithema norb is in AP(f) but we do not need this stronger
property). So assume thatb € AP(f) andU,, Uy, are their disjoint open neighborhoods. Then
there is areven m, m= (2k+1)2", with n > 1, such thaf I™(a) € U, and f I™(b) € Uy, for every
j > 0. Let{J,}n>1 be the system of compact periodic intervals associated aithVithout
loss of generality we may assume that, for sameéa,b] C J,. SinceJ, has period 2, for
arbitrary oddj, fI™(J,) N J, = 0. If fIM(J,) is to the left ofJ,, thenfiM(J,) NUp = 0, otherwise

fiM(J,)NU,; = 0. In any casef™(a) ¢ U, or fI™(b) ¢ Uy, which is a contradiction.

3 Generalization for Maps on More General One-dimensional faces

Here we show that the results given in Theorems 2 and 3 cangemaps inC(l) can
be generalized to more general one-dimensional compacicrsptices like topological graphs
or trees, but not dendrites. Recall théatis a topological graph iX is a non-empty compact

connected metric space which is the union of finitely many &ére., continuous images of the
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intervall) such that every two arcs can have only end-points in commdree is a topological
graph which contains no subset homeomorphic to the circlderdrite is a locally connected
continuum containing no subset homeomorphic to the cir€lee proof of generalized results
is based on the same ideas as that of Theorems 2 and 3. We ed\some recent, nontrivial
results concerning the structure @flimit sets of such maps, see [4] and [5]. Therefore we give
here only outline of the proof, pointing out only main diffeces.

Theorem 4. Let f € C(X).

(i) If Xisatopological graph thenh(f) > 0isequivalent to QW(f) £ W(f).

(i) Thereisadendrit X such that h(f) > 0and QW(f)=W(f)=UR(f).

Proof. To prove (i) note that, fof € C(X) whereX is a topological grapt(f) > 0 if and
only if, for somen > 1, f" is turbulent [4]. Hence the proof of Lemma 3 applies also ts th
case andh(f) > 0 impliesIR(f) # 0. On the other hand, H(f) = 0 then every infiniteo-limit
set is a solenoid (i.e., it has an associated system of cdrppdodic intervals{J, }n>1, Jn with
period 2) and consequently(f) = UR(f) [4] which gives the other implication.

(ii) In [5] there is an example of a dendit with a continuous mag possessing exactly
two w-limit sets: a minimal Cantor-type s€such thah(f|q) > 0 and a fixed poinp such that
w(f,x) ={p} for everyx € X\ Q.

Theorem 5. Let f € C(X).

(i) If X isacompact tree then W(f) £ AP(f) implies LYC, but does not imply h(f) > 0.

(i) If X isadendrit, or atopological graph containing a circlethen W(f) # AP(f) implies
neither LYC nor h(f) > 0.

Proof. (i) Similarly as in the proof of Theorem 3we may assuhié) = 0. Then every
infinite c-limit set of f is a solenoid and the argument with obvious modificationdiesp

(i) If Xisthe circle, take to be an irrational rotation. Then obvioulXy=UR(f)\ AP(f) =
W(f)\ AP(f) but f is notLYC. On the other hand, leb be thew-limit set used in the proof of
part (ii) of Theorem 3. Thusp is a minimal set intersecting R(f) \ AP(f). A modification of
the construction from [5] yields a dendrite with exactly teelimit sets, an infinite minimal set
Q = w and a fixed poing (see the proof of part (ii) of the preceding theorem). It isye® see
that f is notLYC.

Remark 1. By Theorems 4 and 5, for a mdpe C(X) whereX is a compact metric space,
the propertieh(f) > 0 andW(f) # AP(f) are independent. Similarliy(f) > 0 andIR(f) # 0
are independent. Example of a mawvith h(f) = 0 andIR(f) # 0 is given in [7] (see also the
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text at the end of Section 1), and any minimal nfapwith h(f) > 0 yieldsIR(f) = 0.
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