LIOUVILLE PROPERTY FOR A CLASS OF QUASI-HARMONIC SPHERE

Yongyang Jin and Yanmei Di
(Zhejiang University of Technology, China)

Received May 15, 2009
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

In this paper we obtain a Liouville type result for a class of quasi-harmonic spheres with rotational symmetry.

Key words: Liouville property, quasi-harmonic sphere, rotational symmetry
AMS (2010) subject classification: 26D10, 22E30, 43A80

1 Introduction

In [1] Lin and Wang introduced the concept of quasi-harmonic sphere in their study of the heat flow of harmonic maps, and asked whether one can show the existence of such quasiharmonic spheres. Fan ${ }^{[2]}$ provided the first examples of quasi-harmonic spheres for $N=S^{n}(3 \leq$ $n \leq 6$), and Gastel ${ }^{[3]}$ gave more examples with $N=S^{n}$, for all $n \geq 3$. In a recent paper [4] Ding and Zhao consider the problem on the continuity of quasi-harmonic sphere at ∞, and they show that the non-constant equivariant quasi-harmonic sphere must be discontinuous at infinity. In the present paper we will prove a similar Liouville property for a class of quasi-harmonic spheres with rotational symmetry.

We say u a quasi-harmonic sphere from \mathbf{R}^{n} to a Riemannian manifold N if it satisfies the following equations

$$
\begin{equation*}
\triangle u-\frac{1}{2} x \cdot \nabla u+A(u)(d u, d u)=0 \tag{1.1}
\end{equation*}
$$

Note that u is also a harmonic map from $\left(\mathbf{R}^{n}, g\right)$ to N where $g=e^{-\frac{\mid x x^{2}}{2(n-2)}} d s_{0}^{2}$ and $d s_{0}^{2}$ is the standard Euclidean metric.

[^0]By Nash embedding theorem we can assume N is a Riemannian submanifold of the Euclidean space \mathbf{R}^{k}. We say u is rotational symmetry if it can be represented as

$$
\begin{equation*}
u(r, \theta)=(h(r), f(r, h(r)) \omega(\theta)) \tag{1.2}
\end{equation*}
$$

where $\omega: S^{n-1} \rightarrow S^{m-1}$ is a harmonic map and m is the dimension of N. For simplicity we denote $f(r, h(r))$ by $F(r)$ below.

Our aim in this paper is to prove the following Liouville theorem.
Theorem 1. If u is rotational symmetry and continuous at the point ∞, i. e.

$$
\lim _{|x| \rightarrow \infty} u(x)=y \in N
$$

then u must be a constant map.

2 Proof of the Main Theorem

To prove the theorem we need a simple lemma.
Lemma 1. Let u be any quasi harmonic sphere from \mathbf{R}^{n} to N. Then the following equality holds

$$
\begin{equation*}
r^{2} \frac{\partial}{\partial r}\left|u_{r}\right|^{2}+r\left(2(n-1)-r^{2}\right)\left|u_{r}\right|^{2}=\frac{\partial}{\partial r}\left|u_{\theta}\right|^{2} \tag{2.3}
\end{equation*}
$$

Proof. As $A(u)(d u, d u)$ is a norm vector on \mathbf{N}, we have

$$
<\triangle u, u_{r}>=\frac{r}{2}\left|u_{r}\right|^{2}
$$

Using the polar coordinate and the fact $<u_{r}, u_{\theta}>=0$ we can obtain

$$
\begin{aligned}
\frac{r}{2}\left|u_{r}\right|^{2} & =<\triangle u, u_{r}> \\
& =<u_{r r}+\frac{n-1}{r} u_{r}+\frac{\triangle_{\theta} u}{r^{2}}, u_{r}> \\
& =\frac{1}{2} \frac{\partial}{\partial r}\left|u_{r}\right|^{2}+\frac{n-1}{r}\left|u_{r}\right|^{2}-\frac{1}{2 r^{2}} \frac{\partial}{\partial r}\left|u_{\theta}\right|^{2}
\end{aligned}
$$

which implies (2.3).
Now we begin to prove Theorem 1.
The assumption u is rotational symmetry and continuous at ∞ means that in (1.2) there must be

$$
\lim _{r \rightarrow \infty} F(r)=0
$$

Noting that $\omega: S^{n-1} \rightarrow S^{m-1}$ is harmonic, there exists a constant λ such that

$$
\begin{equation*}
\left|\nabla_{\theta} \omega\right|=\lambda \tag{2.4}
\end{equation*}
$$

By Lemma 1 we can get

$$
\begin{aligned}
\frac{\partial}{\partial r}\left(r^{2 n-2} e^{-\frac{r^{2}}{2}}\left|u_{r}\right|^{2}\right) & =r^{2 n-2} e^{-\frac{r^{2}}{2}}\left(\frac{\partial}{\partial r}\left|u_{r}\right|^{2}+\left(\frac{2 n-2}{r}-r\right)\left|u_{r}\right|^{2}\right) \\
& =r^{2 n-4} e^{-\frac{r^{2}}{2}} \frac{\partial}{\partial r}\left|u_{\theta}\right|^{2}
\end{aligned}
$$

Note that $\lim _{r \rightarrow \infty} r^{2 n-2} e^{-\frac{r^{2}}{2}}\left|u_{r}\right|^{2}=0$, we have

$$
\begin{equation*}
\left|u_{r}\right|^{2}=-r^{2-2 n} e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2 n-4} e^{-\frac{s^{2}}{2}} \frac{\partial}{\partial s}\left|u_{\theta}\right|^{2} \mathrm{~d} s \tag{2.5}
\end{equation*}
$$

From (1.2) and (2.4) it is easy to check that

$$
\begin{equation*}
\left|u_{r}\right|^{2}=\left(h^{\prime}\right)^{2}+\left(F^{\prime}\right)^{2} ;\left|u_{\theta}\right|^{2}=\lambda^{2} F^{2} \tag{2.6}
\end{equation*}
$$

Using (2.5) and (2.6) we can obtain that for any $r>\sqrt{2 n-4}$, there holds

$$
\begin{align*}
\left(F^{\prime}(r)\right)^{2} & \leq\left|u_{r}\right|^{2} \\
& =-r^{2-2 n} e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2 n-4} e^{-\frac{s^{2}}{2}} \frac{\partial}{\partial s}\left|u_{\theta}\right|^{2} \mathrm{~d} s \\
& =-\lambda^{2} r^{2-2 n} e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2 n-4} e^{-\frac{s^{2}}{2}}\left(F^{2}\right)^{\prime}(s) \mathrm{d} s \tag{2.7}\\
& =\lambda^{2} r^{2-2 n} e^{\frac{r^{2}}{2}}\left(r^{2 n-4} e^{-\frac{r^{2}}{2}} F^{2}(r)+\int_{r}^{\infty}\left(\frac{2 n-4}{s}-s\right) s^{2 n-4} e^{-\frac{s^{2}}{2}} F^{2}(s) \mathrm{d} s\right) \\
& \leq \lambda^{2} r^{2-2 n} e^{\frac{r^{2}}{2}} r^{2 n-4} e^{-\frac{r^{2}}{2}} F^{2}(r) \\
& =\lambda^{2} r^{-2} F^{2}(r) .
\end{align*}
$$

Then we get

$$
\begin{equation*}
\left|F^{\prime}(r)\right| \leq \lambda \frac{F(r)}{r} \tag{2.8}
\end{equation*}
$$

Now for any $\sqrt{2 n-4}<r<s$, it can be derived from (2.8) that

$$
\begin{equation*}
\frac{F(s)}{F(r)}=e^{\int_{r}^{s} \frac{F^{\prime}(t)}{F(t)} \mathrm{d} t} \leq e^{\int_{r}^{s} \frac{\left|F^{\prime}(t)\right|}{F(t)} \mathrm{d} t} \leq e^{\lambda \int_{r}^{s} \frac{1}{t} \mathrm{~d} t}=\left(\frac{s}{r}\right)^{\lambda} \tag{2.9}
\end{equation*}
$$

In the proof of (2.7) we have obtained

$$
\left(F^{\prime}(r)\right)^{2} \leq-\lambda^{2} r^{2-2 n} e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2 n-4} e^{-\frac{s^{2}}{2}}\left(F^{2}\right)^{\prime}(s) \mathrm{d} s
$$

By using (2.8) and (2.9) we obtain

$$
\begin{align*}
\left(F^{\prime}(r)\right)^{2} & \leq-2 \lambda^{2} r^{2-2 n} e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2 n-4} e^{-\frac{s^{2}}{2}} F(s) F^{\prime}(s) \mathrm{d} s \\
& \leq 2 \lambda^{3} r^{2-2 n} e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2 n-5} e^{-\frac{s^{2}}{2}} F^{2}(s) \mathrm{d} s \\
& \leq 2 \lambda^{3} r^{2-2 n} e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2 n-5} e^{-\frac{s^{2}}{2}}\left(\frac{s}{r}\right)^{2 \lambda} F^{2}(r) \mathrm{d} s \tag{2.10}\\
& \leq C_{\lambda} r^{2-2 n} e^{\frac{r^{2}}{2}} r^{2 n-6+2 \lambda} e^{-\frac{r^{2}}{2}} r^{-2 \lambda} F^{2}(r) \\
& \leq C_{\lambda} r^{-4} F^{2}(r) .
\end{align*}
$$

This inequality implies that there exists a positive constant $c\left(=\sqrt{C_{\lambda}}\right)$ such that for any r big enough,

$$
F^{\prime}(r)+c \frac{F(r)}{r^{2}} \geq 0
$$

which is equivalent to

$$
\begin{equation*}
\left(e^{-\frac{c}{r}} F(r)\right)^{\prime} \geq 0 \tag{2.11}
\end{equation*}
$$

The fact $\lim _{r \rightarrow \infty} F(r)=0$ and (2.11) imply that $F \equiv 0$, so we complete the proof of Theorem 1.

References

[1] Lin, F. H. and Wang, C. Y., Harmonic and Quasi-harmonic Spheres, Comm. Anal. Geom., 7:2(1999), 397-429.
[2] Fan, H. J., Existence of the Self-similar Solutions in the Heat Flow of Harmonic Maps, Sci. China Ser. A, 42:2(1999), 113-132.
[3] Andreas Gastel, Singularities of First Kind in the Harmonic Map and Yang-Mills Heat Flown, Math. Z., 242:1(2002), 47-62.
[4] Ding, W. Y. and Zhao, Y. Q., Elliptic Equations Strongly Degenerate at a Point, Nonlinear Anal., 65:8(2006), 1624-1632.

Department of Applied Mathematics
Zhejiang University of Technology
Hangzhou, 310032
P. R. China
Y. Y. Jin

E-mail: yongyang@zjut.edu.cn
Y. M. Di

E-mail: Diyanmei@163.com

[^0]: Supported by ZJNSF (Y6090359, Y6090383), Department of Education of Zhejiang Province (Z200803357).

