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Abstract. Let 0 < p ≤ 1 and w in the Muckenhoupt class A1. Recently, by using the

weighted atomic decomposition and molecular characterization, Lee, Lin and Yang[11] es-

tablished that the Riesz transforms R j, j = 1,2, · · · ,n, are bounded on H
p
w(Rn). In this note

we extend this to the general case of weight w in the Muckenhoupt class A∞ through molec-

ular characterization. One difficulty, which has not been taken care in [11], consists in

passing from atoms to all functions in H
p
w(Rn). Furthermore, the H

p
w-boundedness of θ -

Calderón-Zygmund operators are also given through molecular characterization and atomic

decomposition.
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1 Introduction and Preliminaries

Calderón-Zygmund operators and their generalizations on Euclidean space Rn have been

extensively studied, see for example[7,14,18,15] . In particular, Yabuta[18] introduced certain θ -

Calderón-Zygmund operators to facilitate his study of certain classes of pseudo-differential op-

erator.

Definition 1.1. Let θ be a nonnegative nondecreasing function on (0,∞) satisfying

∫ 1

0

θ(t)

t
dt < ∞.

A continuous function K : Rn ×Rn \{(x,x) : x ∈ Rn} → C is said to be a θ -Calderón-Zygmund
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singular integral kernel if there exists a constant C > 0 such that

|K(x,y)| ≤ C

|x− y|n

for all x 6= y,

|K(x,y)−K(x′,y)|+ |K(y,x)−K(y,x′)| ≤C
1

|x− y|n θ
( |x− x′|
|x− y|

)

for all 2|x− x′| ≤ |x− y|.
A linear operator T : S(Rn)→ S

′(Rn) is said to be a θ -Calderón-Zygmund operator if T can

be extended to a bounded operator on L2(Rn) and there exists a θ -Calderon-Zygmund singular

integral kernel K such that for all f ∈C∞
c (Rn) and all x /∈supp f , we have

T f (x) =

∫

Rn
K(x,y) f (y)dy.

When

K j(x,y) = π−(n+1)/2Γ
(n+ 1

2

) x j − y j

|x− y|n+1
, j = 1,2, · · · ,n,

then they are the classical Riesz transforms denoted by R j.

It is well-known that the Riesz transforms R j, j = 1,2, · · · ,n, are bounded on unweighted

Hardy spaces H p(Rn). There are many different approaches to prove this classical result (see

[11, 9]). Recently, by using the weighted molecular theory (see [10]) and combined with García-

Cuerva’s atomic decomposition [5] for weighted Hardy spaces H
p
w(Rn), the authors in [11]

established that the Riesz transforms R j, j = 1,2, · · · ,n, are bounded on H
p
w(Rn). More pre-

cisely, they proved that ‖R j f‖H
p
w
≤ C for every w-(p,∞, ts − 1)-atom where s, t ∈ N satisfy

n/(n + s) < p ≤ n/(n + s− 1) and ((s− 1)rw + n)/(s(rw − 1)) with rw is the critical index of

w for the reverse Hölder condition. Remark that this leaves a gap in the proof. Similar gaps

exist in some litteratures, for instance in [10, 15] when the authors establish H
p
w-boundedness

of Calderón-Zygmund type operators. Indee d, it is now well-known that (see [1]) the argument

"the operator T is uniformly bounded in H
p
w(Rn) on w-(p,∞,r)-atoms, and hence it extends to

a bounded operator on H
p
w(Rn)" is wrong in general. However, Meda, Sjögren and Vallarino

[13] establishes that (in the setting of unweighted Hardy spaces) this is correct if one replaces

L∞-atoms by Lq-atoms with 1 < q < ∞. Later, the authors in [2] extended these results to the

weighted anisotropic Hardy spaces. More precisely, it is claimed in [2] that the operator T can

be extended to a bounded operator on H
p
w(Rn) if it is uniformly bounded on w-(p,q,r)-atoms

for qw < q < ∞,r ≥ [n(qw/p−1)] where qw is the critical index of w.
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Motivated by [11, 10, 15, 1, 2], in this paper, we extend Theorem 1 in [11] to A∞ weights (see

Theorem 1.1); Theorem 4 in [10] (see Theorem 1.2), Theorem 3 in [15] (see Theorem 3.1) to θ -

Calderón-Zygmund operators; and fill the gaps of the proofs by using the atomic decomposition

and molecular characterization of H
p
w(Rn) as in [11].

Throughout the whole paper, C denotes a positive geometric constant which is independent

of the main parameters, but may change from line to line. In Rn, we denote by B = B(x,r)

an open ball with center x and radius r > 0. For any measurable set E , we denote by |E| its

Lebesgue measure, and by Ec the set Rn \E .

Let us first recall some notations, definitions and well-known results.

Let 1 ≤ p < ∞. A nonnegative locally integrable function w belongs to the Muckenhoupt

class Ap, say w ∈ Ap, if there exists a positive constant C so that

1

|B|

∫

B
w(x)dx

(

1

|B|

∫

B
(w(x))−1/(p−1)dx

)p−1

≤C, if 1 < p < ∞,

and
1

|B|

∫

B
w(x)dx ≤C ess-inf

x∈B
w(x), if p = 1,

for all balls B in Rn. We say that w ∈ A∞ if w ∈ Ap for some p ∈ [1,∞).

It is well known that w ∈ Ap, 1 ≤ p < ∞, implies w ∈ Aq for all q > p. Also, if w ∈ Ap,

1 < p < ∞, then w ∈ Aq for some q ∈ [1, p). We thus write qw := inf{p ≥ 1 : w ∈ Ap} to denote

the critical index of w. For a measurable set E , we note w(E) =
∫

E w(x)dx its weighted measure.

The following lemma gives a characterization of the class Ap, 1 ≤ p < ∞. It can be found in

[6].

Lemma A. The function w ∈ Ap, 1 ≤ p < ∞, if and only if, for all nonnegative functions

and all balls B,
( 1

|B|

∫

B
f (x)dx

)p

≤C
1

w(B)

∫

B
f (x)pw(x)dx.

A close relation to Ap is the reverse Hölder condition. If there exist r > 1 and a fixed constant

C > 0 such that

( 1

|B|

∫

B
wr(x)dx

)1/r

≤C
( 1

|B|

∫

B
w(x)dx

)

for every ball B ⊂ Rn,

we say that w satisfies reverse Hölder condition of order r and write w ∈ RHr. It is known that if

w ∈ RHr, r > 1, then w ∈ RHr+ε for some ε > 0. We thus write rw := sup{r > 1 : w ∈ RHr} to

denote the critical index of w for the reverse Hölder condition.

The following result provides us the comparison between the Lebesgue measure of a set E

and its weighted measure w(E). It also can be found in [6].
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Lemma B. Let w ∈ Ap ∩RHr, p ≥ 1 and r > 1. Then there exist constants C1,C2 > 0 such

that

C1

( |E|
|B|

)p

≤ w(E)

w(B)
≤C2

( |E|
|B|

)(r−1)/r

,

for all balls B and measurable subsets E ⊂ B.

Given a weight function w on Rn, as usual we denote by L
q
w(Rn) the space of all functions f

satisfying

‖ f‖L
q
w

:=

(

∫

Rn
| f (x)|qw(x)dx

)1/q

< ∞.

When q = ∞, L∞
w(Rn) is L∞(Rn) and ‖ f‖L∞

w
= ‖ f‖L∞ . Analogously to the classical Hardy

spaces, the weighted Hardy spaces H
p
w(Rn), p > 0, can be defined in terms of maximal func-

tions. Namely, let φ be a function in S(Rn), the Schwartz space of rapidly decreasing smooth

functions, satisfying

∫

Rn
φ(x)dx = 1. Define

φt(x) = t−nφ(x/t), t > 0,x ∈ Rn,

and the maximal function f ∗ by

f ∗(x) = sup
t>0

| f ∗φt(x)|, x ∈ Rn.

Then H
p
w(Rn) consists of those tempered distributions f ∈ S

′(Rn) for which f ∗ ∈ L
p
w(Rn) with

the (quasi-)norm

‖ f‖H
p
w

= ‖ f ∗‖L
p
w
.

In order to show the H
p
w-boundedness of Riesz transforms, we characterize weighted Hardy

spaces in terms of atoms and molecules in the following way.

Definition of a weighted atom. Let 0 < p ≤ 1 ≤ q ≤ ∞ and p 6= q such that w ∈ Aq. Let qw

be the critical index of w. Set [·] the integer function. For s ∈ N satisfying s ≥ [n(qw/p−1)], a

function a ∈ L
q
w(Rn) is called w-(p,q,s)-atom centered at x0 if

(i) supp a ⊂ B for some ball B centered at x0,

(ii) ‖a‖L
q
w
≤ w(B)1/q−1/p,

(iii)

∫

Rn
a(x)xα dx = 0 for every multi-index α with |α | ≤ s.

Let H
p,q,s
w (Rn) denote the space consisting of tempered distributions admitting a decompo-

sition f =
∞

∑
j=1

λ ja j in S
′(Rn), where a j’s are w-(p,q,s)-atoms and

∞

∑
j=1

|λ j|p < ∞. And for every

f ∈ H
p,q,s
w (Rn), we consider the (quasi-)norm

‖ f‖H
p,q,s
w

= inf
{( ∞

∑
j=1

|a j|p
)1/p

: f
S′
=

∞

∑
j=1

λ ja j, {a j}∞
j=1 are w-(p,q,s)-atoms

}

.
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Denote by H
p,q,s
w,fin (Rn) the vector space of all finite linear combinations of w-(p,q,s)-atoms, and

the (quasi-)norm of f in H
p,q,s
w,fin (Rn) is defined by

‖ f‖H
p,q,s
w,fin

:= inf
{( k

∑
j=1

|λ j|p
)1/p

: f =
k

∑
j=1

λ ja j,k ∈ N,{a j}k
j=1 are w-(p,q,s)-atoms

}

.

We have the following atomic decomposition for H
p
w(Rn). It can be found in [5] (see also

[2, 8]).

Theorem A. If the triplet (p,q,s) satisfies the conditions of w-(p,q,s)-atoms, then H
p
w(Rn)=

H
p,q,s
w (Rn) with equivalent norms.

The molecules corresponding to the atoms mentioned above can be defined as follows.

Definition of a weighted molecule. For 0 < p ≤ 1 ≤ q ≤ ∞ and p 6= q, let w ∈ Aq with

critical index qw and critical index rw for the reverse Hölder condition. Set s ≥ [n(qw/p− 1)],

ε > max{srw(rw − 1)−1n−1 + (rw − 1)−1,1/p− 1}, a = 1− 1/p + ε , and b = 1− 1/q + ε . A

w-(p,q,s,ε)-molecule centered at x0 is a function M ∈ L
q
w(Rn) satisfying

(i) M.w(B(x0, ·− x0))
b ∈ L

q
w(Rn),

(ii) ‖M‖a/b

L
q
w
‖M.w(B(x0, ·− x0))

b‖1−a/b

L
q
w

≡ Nw(M) < ∞,

(iii)

∫

Rn
M(x)xα dx = 0 for every multi-index α with |α | ≤ s.

The above quantity Nw(M) is called the w-molecular norm of M.

In [10], Lee and Lin proved that every weighted molecule belongs to the weighted Hardy

space H
p
w(Rn), and the embedding is continuous.

Theorem B. Let 0 < p ≤ 1 ≤ q ≤ ∞ and p 6= q, w ∈ Aq, and (p,q,s,ε) be the quadruple

in the definition of molecule. Then, every w-(p,q,s,ε)-molecule M centered at any point in Rn

is in H
p
w(Rn), and ‖M‖H

p
w
≤CNw(M) where the constant C is independent of the molecule.

Although, in general, one cannot conclude that an operator T is bounded on H
p
w(Rn) by

checking that their norms have uniform bound on all of the corresponding w-(p,∞,s)-atoms (cf.

[1]). However, this is correct when dealing with w-(p,q,s)-atoms with qw < q < ∞. Indeed, we

have the following result (see [2, Theorem 7.2]).

Theorem C. Let 0 < p ≤ 1, w ∈ A∞, q ∈ (qw,∞) and s ∈ Z satisfying s ≥ [n(qw/p− 1)].

Suppose that T : H
p,q,s
w,fin (Rn) → H

p
w(Rn) is a linear operator satisfying

sup{‖Ta‖H
p
w

: a is any w−(p,q,s)−atom} < ∞.

Then T can be extended to a bounded linear operator on H
p
w(Rn).

Our first main result, which generalizes Theorem 1 in [11], is as follows:

Theorem 1.1. Let 0 < p ≤ 1 and w ∈ A∞. Then, the Riesz transforms are bounded on

H
p
w(Rn).
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For the next result, we need the notion T ∗1 = 0.

Definition 1.2. Let T be a θ -Calderón-Zygmund operator. We say that T ∗1 = 0 if
∫

Rn T f (x)dx =

0 for all f ∈ Lq(Rn),1 < q ≤ ∞, with compact support and

∫

Rn
f (x)dx = 0.

We now can give the H
p
w-boundedness of θ -Calderón-Zygmund type operators, which gen-

eralizes Theorem 4 in [10] by taking q = 1 and θ(t) = tδ , as follows:

Theorem 1.2. Given δ ∈ (0,1], n/(n + δ ) < p ≤ 1, and w ∈ Aq ∩ RHr with 1 ≤ q <

p(n+δ )/n,(n+δ )/(n+δ −nq) < r. Let θ be a nonnegative nondecreasing function on (0,∞)

with

∫ 1

0

θ(t)

t1+δ
dt < ∞, and T be a θ -Calderón-Zygmund operator satisfying T ∗1 = 0. Then T is

bounded on H
p
w(Rn).

2 Proof of Theorem 1.1

In order to prove the main theorems, we need the following lemma (see [6, page 412]).

Lemma C. Let w ∈ Ar,r > 1. Then there exists a constant C > 0 such that
∫

Bc

1

|x− x0|nr
w(x)dx ≤C

1

σ nr
w(B)

for all balls B = B(x0,σ) in Rn.

Proof of Theorem 1.1. For q = 2(qw +1)∈ (qw,∞), then s := [n(q/p−1)]≥ [n(qw/p−1)].

We now choose (and fix) a positive number ε satisfying

max{srw(rw −1)−1n−1 +(rw −1)−1,q/p−1} < ε < t(s+ 1)(nq)−1 + q−1 −1, (2.1)

for some t ∈ N, t ≥ 1 and max{srw(rw − 1)−1n−1 + (rw − 1)−1,q/p − 1} < t(s + 1)(nq)−1 +

q−1 −1.

Clearly, ℓ := t(s + 1)− 1 ≥ s ≥ [n(qw/p − 1)]. Hence, by Theorem B and Theorem C,

it is sufficient to show that for every w-(p,q, ℓ)-atom f centered at x0 and supported in ball

B = B(x0,σ), the Riesz transforms R j f = K j ∗ f , j = 1,2, · · · ,n, are w-(p,q,s,ε)-molecules

with the norm Nw(R j f ) ≤C.

Indeed, as w ∈ Aq by q = 2(qw + 1) ∈ (qw,∞). It follows from L
q
w-boundedness of Riesz

transforms that

‖R j f‖L
q
w
≤ ‖R j‖L

q
w→L

q
w
‖ f‖L

q
w
≤Cw(B)1/q−1/p. (2.2)

To estimate ‖R j f .w(B(x0, | ·−x0|))b‖L
q
w

where b = 1−1/q+ ε , we write

‖R j f .w(B(x0, ·− x0))
b‖q

L
q
w

=

∫

|x−x0|≤2
√

nσ
|R j f (x)|qw(B(x0, |x− x0|))bqw(x)dx+

+

∫

|x−x0|>2
√

nσ
|R j f (x)|qw(B(x0, |x− x0|))bqw(x)dx

= I + II.
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By Lemma B, we have the following estimate,

I =

∫

|x−x0|≤2
√

nσ
|R j f (x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ w(B(x0,2
√

nσ))bq

∫

|x−x0|≤2
√

nσ
|R j f (x)|qw(x)dx

≤ Cw(B)bq‖R j‖q

L
q
w→L

q
w
‖ f‖q

L
q
w
≤Cw(B)(b+1/q−1/p)q.

To estimate II, as f is w-(p,q, ℓ)-atom, by the Taylor’s fomular and Lemma A, we get

|K j ∗ f (x)| =
∣

∣

∣

∫

|y−x0|≤σ

(

K j(x− y)− ∑
|α |≤ℓ

1

α!
DαK j(x− x0)(x0 − y)α

)

f (y)dy

∣

∣

∣

≤ C

∫

|y−x0|≤σ

σ ℓ+1

|x− x0|n+ℓ+1
| f (y)|dy

≤ C
σ n+ℓ+1

|x− x0|n+ℓ+1
w(B)−1/q‖ f‖L

q
w
,

for all x ∈ (B(x0,2
√

nσ))c. As b = 1−1/q+ ε , it follows from (2.1) that (n+ ℓ+ 1)q−q2nb >

nq. Therefore, by combining the above inequality, Lemma B and Lemma C, we obtain

II =
∫

|x−x0 |>2
√

nσ
|R j f (x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ Cσ (n+ℓ+1)qw(B)−1‖ f‖q

L
q
w

∫

|x−x0|>2
√

nσ

1

|x− x0|(n+ℓ+1)q
w(B(x0, |x− x0|))bqw(x)dx

≤ Cσ (n+ℓ+1)q−q2nbw(B)(b−1/p)q
∫

|x−x0|>2
√

nσ

1

|x− x0|(n+ℓ+1)q−q2nb
w(x)dx

≤ Cw(B)(b+1/q−1/p)q.

Thus,

‖R j f .w(B(x0, | ·−x0|))b‖L
q
w

= (I + II)1/q ≤Cw(B)b+1/q−1/p. (2.3)

Remark that a = 1−1/p+ ε . Combining (2.2) and (2.3), we obtain

Nw(R j f ) ≤Cw(B)(1/q−1/p)a/bw(B)(b+1/q−1/p)(1−a/b) ≤C.

The proof will be concluded if we establish the vanishing moment conditions of R j f . One

first consider the following lemma.

Lemma. For every classical atom (p,2, ℓ)-atom g centered at x0, we have

∫

Rn
R jg(x)xα dx = 0 for 0 ≤ |α | ≤ s,1 ≤ j ≤ n.

Proof of the Lemma. Since b = 1 − 1/q + ε < (ℓ + 1)(nq)−1 < (ℓ + 1)n−1, we obtain

2(n + ℓ + 1)− 2nb > n. It is similar to the previous argument, we also obtain that R jg and
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R jg.| ·−x0|nb belong to L2(Rn). Now, we establish that R jg.(·− x0)
α ∈ L1(Rn) for every multi-

index α with |α | ≤ s. Indeed, since ε > q/p−1 by (2.1), implies that 2(s−nb) < (s−nb)q′ <−n

by q = 2(qw + 1) > 2, where 1/q+ 1/q′ = 1. We use Schwartz inequality to get

∫

B(x0,1)c
|R jg(x)(x− x0)

α |dx ≤
∫

B(x0,1)c
|R jg(x)||x− x0|sdx

≤
(

∫

B(x0,1)c
|R jg(x)|2|x− x0|2nbdx

)1/2(
∫

B(x0,1)c
|x− x0|2(s−nb)dx

)1/2

≤C‖R jg.| ·−x0|nb‖L2 < ∞,

and
∫

B(x0,1)
|R jg(x)(x− x0)

α |dx ≤ |B(x0,1)|1/2
(

∫

B(x0,1)
|R jg(x)|2dx

)1/2

< ∞.

Thus, R jg.(· − x0)
α ∈ L1(Rn) for any |α | ≤ s. Deduce that R jg(x)xα ∈ L1(Rn) for any

|α | ≤ s. Therefore,

(R jg(x)xα )(̂ξ ) = Cα .Dα (̂R jg)(ξ )

is continuous, with |Cα | ≤Cs (Cs depends only on s) for any |α | ≤ s, where ĥ is used to denote

the fourier transform of h. Consequently,

∫

Rn
R jg(x)xα dx = Cα .Dα (̂R jg)(0) = Cα .Dα(m jĝ)(0),

where m j(x) = −ix j/|x|. Moreover, since g is a classical (p,2, ℓ)-atom, it follows from [17,

Lemma 9.1] that ĝ is ℓth order differentiable and ĝ(ξ ) = O(|ξ |ℓ+1) as ξ → 0. We write e j to be

the jth standard basis vector of Rn, α = (α1, ...,αn) a multi-index of nonnegative integers α j,

∆he j
φ(x) = φ(x)−φ(x−he j), ∆

α j

he j
φ(x) = ∆

α j−1

he j
φ(x)−∆

α j−1

he j
φ(x−he j) for α j ≥ 2, ∆0

he j
φ(x) =

φ(x), and ∆α
h = ∆α1

he1
...∆αn

hen
. Then, the boundedness of m j, and |Cα | ≤Cs for |α | ≤ s, implies

∣

∣

∣

∫

Rn
R jg(x)xα dx

∣

∣

∣
= |Cα |

∣

∣

∣
lim
h→0

|h|−|α |∆α
h (m jĝ)(0)

∣

∣

∣

≤ C lim
h→0

|h|ℓ+1−|α | = 0,

for |α | ≤ s by s ≤ ℓ. Thus, for any j = 1,2, · · · ,n, and |α | ≤ s,

∫

Rn
R jg(x)xα dx = 0.

This complete the proof of the lemma.

Let us come back to the proof of Theorem 1.1. As q/2 = qw + 1 > qw, by Lemma A,

( 1

|B|

∫

B
| f (x)|2dx

)q/2

≤C
1

w(B)

∫

B
| f (x)|qw(x)dx.
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Therefore, g :=C−1/q|B|−1/pw(B)1/p f is a classical (p,2, ℓ)-atom since f is w-(p,q, ℓ)-atom

associated with ball B. Consequently, by the above lemma,

∫

Rn
R j f (x)xα dx = C1/q|B|1/pw(B)−1/p

∫

Rn
R jg(x)xα dx = 0

for all j = 1,2, · · · ,n and |α | ≤ s. Thus, the theorem is proved.

Following a similar but easier argument, we also have the following H
p
w-boundedness of

Hilbert transform. We leave details to readers.

Theorem 2.1. Let 0 < p ≤ 1 and w ∈ A∞. Then, the Hilbert transform is bounded on

H
p
w(R).

3 Proof of Theorem 1.2

We first consider the following lemma

Lemma 3.1. Let p ∈ (0,1],w ∈ Aq,1 < q < ∞, and T be a θ -Calderón-Zygmund operator

satisfying T ∗1 = 0. Then,

∫

Rn
T f (x)dx = 0 for all w-(p,q,0)-atoms f .

Proof of Lemma 3.1. Let f be an arbitrary w-(p,q,0)-ato m associated with ball B. It is

well-known that there exists 1 < r < q such that w ∈ Ar. Therefore, it follows from Lemma A

that
∫

B
| f (x)|q/rdx ≤C|B|w(B)1/r‖ f‖q/r

L
q
w

< ∞.

We deduce that f is a multiple of classical (p,q/r,0)-atom, and thus the condition T ∗1 = 0

implies

∫

Rn
T f (x)dx = 0.

Proof of Theorem 1.2. Because of the hypothesis, without loss of generality we can assume

q > 1. Futhermore, it is clear that [n(qw/p−1)] = 0, and there exists a positive constant ε such

that

max
{ 1

rw −1
,

1

p
−1

}

< ε <
n+ δ

nq
−1. (3.1)

Similarly to the arguments in Theorem 1.1, it is sufficient to show that, for every w-(p,q,0)-

atom f centered at x0 and supported in ball B = B(x0,σ), T f is a w-(p,q,0,ε)-molecule with

the norm Nw(T f ) ≤C. One first observe that
∫

Rn T f (x)dx = 0 by Lemma 3.1, and

∞

∑
k=0

θ(2−k)2knbq < ∞,

where b = 1−1/q+ ε , by

∫ 1

0

θ(t)

t1+δ
dt < ∞ and (3.1). We deduce that

∞

∑
k=0

(

θ(2−k)2knbq
)q

< ∞. (3.2)
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As w ⊂ Aq, 1 < q < ∞, it follows from [18, Theorem 2.4] that

‖T f‖L
q
w
≤C‖ f‖L

q
w
≤Cw(B)1/q−1/p. (3.3)

To estimate ‖T f .w(B(x0, | ·−x0|))b‖L
q
w
, we write

‖T f .w(B(x0, ·− x0))
b‖q

L
q
w

=
∫

|x−x0|≤2σ
|T f (x)|qw(B(x0, |x− x0|))bqw(x)dx+

+
∫

|x−x0|>2σ
|T f (x)|qw(B(x0, |x− x0|))bqw(x)dx = I + II.

By Lemma B, we have the following estimate,

I =
∫

|x−x0|≤2σ
|T f (x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ w(B(x0,2σ))bq

∫

|x−x0|≤2σ
|T f (x)|qw(x)dx

≤ Cw(B)bq‖ f‖q

L
q
w
≤Cw(B)(b+1/q−1/p)q.

To estimate II, since f is of mean zero, by Lemma A, we have

|T f (x)| =
∣

∣

∣

∫

|y−x0|≤σ
(K(x,y)−K(x,x0)) f (y)dy

∣

∣

∣

≤ C

∫

|y−x0|≤σ

1

|x− x0|n
θ
( |y− x0|
|x− x0|

)

| f (y)|dy

≤ C
σ n

|x− x0|n
θ
( σ

|x− x0|
)

w(B)−1/q‖ f‖L
q
w
,

for all x ∈ (B(x0,2σ))c. Therefore, by combining the above inequality, Lemma B and (3.2), we

obtain

II =

∫

|x−x0|>2σ
|T f (x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ Cw(B)−1‖ f‖q

L
q
w

∫

|x−x0 |>2σ

σ nq

|x− x0|nq

(

θ
( σ

|x− x0|
)

)q

w(B(x0, |x− x0|))bqw(x)dx

≤ Cw(B)−q/p
∞

∑
k=1

∫

2kσ<|x−x0|≤2k+1σ

σ nq

|x− x0|nq

(

θ
( σ

|x− x0|
)

)q

w(B(x0, |x− x0|))bqw(x)dx

≤ Cw(B)(b+1/q−1/p)q
∞

∑
k=0

(

θ(2−k)2knbq
)q

≤Cw(B)(b+1/q−1/p)q.

Thus,

‖T f .w(B(x0, | ·−x0|))b‖L
q
w

= (I + II)1/q ≤Cw(B)b+1/q−1/p. (3.4)

Remark that a = 1−1/p+ ε . Combining (3.3) and (3.4), we obtain

Nw(T f ) ≤Cw(B)(1/q−1/p)a/bw(B)(b+1/q−1/p)(1−a/b) ≤C.
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This finishes the proof.

It is well-known that the molecular theory of (unweighted) Hardy spaces of Taibleson and

Weiss [17] is one of useful tools to establish boundedness of operators in Hardy spaces (cf.

[17, 12]). In the setting of Muckenhoupt weight, this theory has been considered by the authors

in [10], since then, they have been well used to establish boundedness of operators in weighted

Hardy spaces (cf. [10, 11, 3]). However in some cases, the weighted molecular characterization,

which obtained in [10], does not give the best possible results. For Calderón-Zygmund type

operators in Theorem 1.2, for instance, it involves assumption on the critical index of w for the

reverse Hölder condition as the following theorem does not.

Theorem 3.1. Given δ ∈ (0,1], n/(n+ δ ) < p ≤ 1, and w ∈ Aq with 1 ≤ q < p(n+ δ )/n.

Let θ be a nonnegative nondecreasing function on (0,∞) with
∫ 1

0
θ (t)
t1+δ dt < ∞, and T be a θ -

Calderón-Zygmund operator satisfying T ∗1 = 0. Then T is bounded on H
p
w(Rn).

The following corollary give the boundedness of the classical Calderón-Zygmund type op-

erators on weighted Hardy spaces (see [15, Theorem 3]).

Corollary 3.1. Let 0 < δ ≤ 1 and T be the classical δ -Calderón-Zygmund operator, i.e.

θ(t) = tδ , satisfying T ∗1 = 0. If n/(n+ δ ) < p ≤ 1 and w ∈ Aq with 1 ≤ q < p(n+ δ )/n, then

T is bounded on H
p
w(Rn).

Proof of Corollary 3.1. By taking δ ′ ∈ (0,δ ) which is close enough δ . Then, we apply

Theorem 3.1 with δ ′ instead of δ .

Proof of Theorem 3.1. Without loss of generality we can assume 1 < q < p(n+δ )/n. Fix

φ ∈ S(Rn) with
∫

Rn φ(x)dx 6= 0. By Theorem C, it is sufficient to show that for every w-(p,q,0)-

atom f centered at x0 and supported in ball B = B(x0,σ), ‖(T f )∗‖L
p
w
≤ C. In order to do this,

one write

‖(T f )∗‖p

L
p
w

=

∫

|x−x0|≤4σ

(

(T f )∗(x)
)p

w(x)dx+

∫

|x−x0|>4σ

(

(T f )∗(x)
)p

w(x)dx

= L1 + L2.

By Hölder inequality, L
q
w-boundedness of the maximal function and Lemma B, we get

L1 ≤
(

∫

|x−x0|≤4σ

(

(T f )∗(x)
)q

w(x)dx

)p/q
(

∫

|x−x0|≤4σ
w(x)dx

)1−p/q

≤ C‖ f‖p

L
q
w
w(B(x0,4σ))1−p/q ≤C.

To estimate L2, we first estimate (T f )∗(x) for |x−x0|> 4σ . For any t > 0, since

∫

Rn
T f (x)d =



262 L. D. Ky : On H
p
w-boundedness of Riesz Transform and θ -Calderón-Zygmund Operator

0 by Lemma 3.1, we get

|T f ∗φt(x)| =

∣

∣

∣

∣

∫

Rn
T f (y)

1

tn

(

φ
(x− y

t

)

−φ
(x− x0

t

)

)

dy

∣

∣

∣

∣

≤ 1

tn

∫

|y−x0|<2σ
|T f (y)|

∣

∣

∣

∣

φ
(x− y

t

)

−φ
(x− x0

t

)

∣

∣

∣

∣

dy

+
1

tn

∫

2σ≤|y−x0|< |x−x0|
2

· · ·+ 1

tn

∫

|y−x0|≥ |x−x0|
2

· · ·

= E1(t)+ E2(t)+ E3(t).

As |x− x0| > 4σ , by the mean value theorem, Lemma A and Lemma B, we get

E1(t) =
1

tn

∫

|y−x0|<2σ
|T f (y)|

∣

∣

∣

∣

φ
(x− y

t

)

−φ
(x− x0

t

)

∣

∣

∣

∣

dy

≤ 1

tn

∫

|y−x0|<2σ
|T f (y)| |y− x0|

t
sup

λ∈(0,1)

∣

∣

∣

∣

∇φ
(x− x0 + λ (y− x0)

t

)

∣

∣

∣

∣

dy

≤ C
σ

|x− x0|n+1

∫

|y−x0|<2σ
|T f (y)|dy

≤ C
σ

|x− x0|n+1
|B(x0,2σ)|w(B(x0,2σ))−1/q‖T f‖L

q
w

≤ C
σ n+1

|x− x0|n+1
w(B)−1/q‖ f‖L

q
w
≤C

σ n+1

|x− x0|n+1
w(B)−1/p.

Similarly, we also get

E2(t) ≤ 1

tn

∫

2σ≤|y−x0|< |x−x0|
2

∣

∣

∣

∣

∫

Rn
f (z)

(

K(y,z)

−K(y,x0)
)

dz

∣

∣

∣

|y− x0|
t

× sup
λ∈(0,1)

∣

∣

∣

∣

∇φ
(x− x0 + λ (y− x0)

t

)

∣

∣

∣

∣

dy

≤ C
1

|x− x0|n+1

∫

2σ≤|y−x0|< |x−x0|
2

|y− x0|
∫

|z−x0|<σ
| f (z)| 1

|y− x0|n
θ
( |z− x0|
|y− x0|

)

dzdy

≤ C
( σ

|x− x0|
)n+1

∫ 1/2

2σ/|x−x0 |

θ(t)

t2
dtw(B)−1/p

≤ C
( σ

|x− x0|
)n+1( |x− x0|

2σ

)1−δ
∫ 1/2

2σ/|x−x0 |

θ(t)

t1+δ
dtw(B)−1/p

≤ C
( σ

|x− x0|
)n+δ

w(B)−1/p.
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Next, let us look at L3. Similarly, we also have

E3(t) ≤ 1

tn

∫

|y−x0|≥ |x−x0|
2

∣

∣

∣

∣

∫

Rn
f (z)

(

K(y,z)−K(y,x0)
)

dz

∣

∣

∣

∣

(

∣

∣

∣
φ
(y− x0

t

)
∣

∣

∣
+ 2

∣

∣

∣
φ
(x− x0

t

)
∣

∣

∣

)

dy

≤ C
1

|x− x0|n
∫

|y−x0 |≥ |x−x0|
2

∫

|z−x0|<σ
| f (z)| 1

|y− x0|n
θ
( |z− x0|
|y− x0|

)

dzdy

≤ C
( σ

|x− x0|
)n

∫ 2σ/|x−x0 |

0

θ(t)

t
dtw(B)−1/p

≤ C
( σ

|x− x0|
)n

∫ 2σ/|x−x0 |

0

θ(t)

t1+δ
dt

( 2σ

|x− x0|
)δ

w(B)−1/p

≤ C
( σ

|x− x0|
)n+δ

w(B)−1/p.

Therefore, for all |x− x0| > 4σ ,

(T f )∗(x) = sup
t>0

(E1(t)+ E2(t)+ E3(t)) ≤C
( σ

|x− x0|
)n+δ

w(B)−1/p.

Combining this, Lemma C and Lemma B, we obtain that

L2 =

∫

|x−x0 |>4σ

(

(T f )∗(x)
)p

w(x)dx ≤ C

∫

|x−x0|>4σ

σ (n+δ )p

|x− x0|(n+δ )p
w(B)−1w(x)dx

≤ Cw(B)−1w(B(x0,4σ)) ≤C,

since (n+ δ )p > nq. This finishes the proof.
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