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Abstract. In this paper, we introduce a condition weaker than the Lp differentiability,
which we call Cp condition. We prove that if a function satisfies this condition at a
point, then there exists the best local approximation at that point. We also give a nec-
essary and sufficient condition for that a function be Lp differentiable. In addition, we
study the convexity of the set of cluster points of the net of best appoximations of f ,
{Pǫ( f )} as ǫ→0.

Key Words: Best Lp approximation, local approximation, Lp differentiability.

AMS Subject Classifications: 41A50, 41A10

1 Introduction

Let x1, a∈R, a> 0, and let L be the space of equivalence class of Lebesgue measurable
real functions defined on Ia :=(x1−a,x1+a). For each Lebesgue measurable set A⊂ Ia,
with |A|>0, we consider the semi-norm on L,

‖h‖p,A :=
(

|A|−1
∫

A
|h(x)|pdx

)1/p
, 1< p<∞,

where |A| denotes the measure of the set A. As usual, we denote by Lp(Ia) the space of
functions h∈L with ‖h‖p,Ia <∞. If 0< ǫ≤ a, I−ǫ :=(x1−ǫ,x1), I+ǫ :=(x1,x1+ǫ), we write
‖h‖p,±ǫ =‖h‖p,I±ǫ

, and ‖h‖p,ǫ =‖h‖p,Iǫ
. For a non negative integer s, we denote by Πs the

linear space of polynomials of degree at most s. Henceforward, we consider n∈N∪{0}.
If h ∈ Lp(Ia), it is well known that there exists a unique best ‖·‖p,ǫ-approximation of h
from Πn, say Pǫ(h), i.e., Pǫ(h)∈Πn satisfies

‖h−Pǫ(h)‖p,ǫ ≤‖h−P‖p,ǫ for all P∈Πn.
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Pǫ(h) is the unique polynomial in Πn, which verifies

∫

Iǫ

|(h−Pǫ(h))(x)|p−1sgn((h−Pǫ(h))(x))(x−x1)
jdx=0, 0≤ j≤n, (1.1)

see [2].
If limǫ→0 Pǫ(h) exists, say P0(h), it is called the best local approximation of h at x1 from

Πn (b.l.a.). In general, we shall also denote by P0(h) the set

{

P∈Πn : P= lim
k→∞

Pǫk
(h) for some ǫk ↓0

}

.

The problem of best local approximation was formally introduced and studied in a paper
by Chui, Shisha and Smith [3]. However, the initiation of this could be dated back to
results of J. L. Walsh [10], who proved that the Taylor polynomial of an analytic function
h over a domain is the limit of the net of polynomial best approximations of a given
degree, by shrinking the domain to a single point. Later, several authors studied the
existence of the b.l.a. assuming a certain order of differentiability. In [8] and [12], this
problem was considered when h is Lp differentiable. Recently, in [7] and [5] the authors
proved the existence of the b.l.a. under weaker conditions, more precisely they assumed
existence of lateral Lp derivatives of order n and Lp differentiability of order n−1. In [4]
it was proved that if p = 2 and h is differentiable up to order n−1, then P0(h) is either
empty or convex. Later, in [11] using interpolation properties of the best approximation,
the author extended this result for 1< p<∞. The main purpose of this paper is to give
more general conditions on a function h so that there exists the b.l.a., and to study its
connection with the Lp differentiability. Further, we study the convexity of P0(h). The
following definition is motivated by the characterization (1.1).

Definition 1.1. We shall say that f ∈ Lp(Ia) satisfies the Cp condition of order n at x1, if
there exists Q∈Πn such that

∫

Iǫ

|( f −Q)(x)|p−1sgn(( f −Q)(x))(x−x1)
jdx= o(ǫn(p−1)+j+1), (1.2)

0≤ j≤n, as ǫ→0.
Analogously, we shall say that f satisfies the left (right) Cp condition of order n at x1,

if there exists Q∈Πn verifying (1.2) with I−ǫ(I+ǫ) instead of Iǫ.

We denote with c
p
n(x1) the class of functions in Lp(Ia) which satisfy the Cp condition

of order n at x1. We recall that a function f ∈ Lp(Ia) is Lp differentiable of order n at x1 (i.e.,
f ∈t

p
n(x1)) if there exists Q∈Πn such that ‖ f−Q‖p,ǫ=o(ǫn). This concept was introduced

by Calderón and Zygmund in [1]. Using the Hölder inequality, it is easy to see that
t

p
n(x1)⊂ c

p
n(x1), moreover the inclusion is strict. In fact, if h(x) = sin(1/x), x 6= 0, then

h ∈ c2
0(0), however a straightforward computation shows that h /∈ t2

0(0). It immediately
follows from Definition 1.1 that c

p
n(x1) satisfies: a) If f ∈ c

p
n(x1), then f +P ∈ c

p
n(x1) for
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all P∈Πn, and b) If f ∈ c
p
n(x1), then λ f ∈ c

p
n(x1), for all λ∈R. In the second section of

this paper, we prove that if f ∈ c
p
n(x1), 2≤ p<∞, then there exists the b.l.a., and it is the

unique Q ∈ Πn satisfying (1.2). We also prove that f ∈ t
p
n(x1) if and only if f ∈ c

p
n(x1)

and ‖ f −Pǫ( f )‖p,ǫ = o(ǫn). In the case p = 2, we show that Definition (1.1) allows us to
introduce a new concept of differentiation. In the third section of this paper we prove
that if f ∈ c

p
n−1(x1), then P0( f ) is either empty or convex. It extends, for p ≥ 2 and a

broader class of functions, a similar result established in [11]. Henceforward, without
loss of generality, we shall establish our results at the point x1 =0. We shall write K for a
positive constant not necessarily the same in each occurrence.

2 The main results

In this section we shall prove a theorem of existence of the best local approximation for
p≥2. Given a function f ∈Lp(Ia), Q∈Πn, and 0<ǫ≤ a, we define the following sets.

Aǫ={ f ≥Pǫ( f )>Q}∩ Iǫ, Bǫ={Q< f <Pǫ( f )}∩ Iǫ, (2.1a)

Cǫ={ f ≤Q<Pǫ( f )}∩ Iǫ, Dǫ={Pǫ( f )< f <Q}∩ Iǫ, (2.1b)

Eǫ ={ f ≥Q>Pǫ( f )}∩ Iǫ , Fǫ ={ f ≤Pǫ( f )<Q}∩ Iǫ . (2.1c)

Suppose that Pǫ( f )−Q has m zeros in Iǫ, according to their multiplicity counting, for a

net ǫ↓0, say xi = xi(ǫ). We write (Pǫ( f )−Q)(x)=∏
s(ǫ)
i=1 (x−xi)

ri(ǫ)Hǫ(x), with Hǫ(x) 6=0,

x∈ Iǫ, and ∑
s(ǫ)
i=1 ri(ǫ)=m.

Let Rǫ(x) :=η(ǫ)∏
s(ǫ)
i=1 (x−xi)

ri(ǫ) be with η(ǫ)=±1 such that Rǫ(x)(Pǫ( f )−Q)(x)≥0,
x∈ Iǫ. We put Rǫ(x)=∑

m
j=0 bjx

j, bj = bj(ǫ). With this notation we establish the following
lemma.

Lemma 2.1. Suppose that f ∈ c
p
l (0), 0≤ l≤n. If Q∈Πl verifies (1.2) and m≤ l, then

1.
∫

Mǫ

|(|( f −Pǫ( f ))(x)|p−1−|( f −Q)(x)|p−1)Rǫ(x)|
dx

ǫ
= o(ǫl(p−1))

m

∑
j=0

|bj|ǫ
j,

where Mǫ is equal to Aǫ, Cǫ, Eǫ or Fǫ.

2.
∫

Nǫ

|(|( f −Pǫ( f ))(x)|p−1+|( f −Q)(x)|p−1)Rǫ(x)|
dx

ǫ
= o(ǫl(p−1))

m

∑
j=0

|bj|ǫ
j,

where Nǫ is equal to Bǫ or Dǫ.

Proof. Clearly, the sets defined in (2.1) are pairwise disjoint and

Aǫ∪Bǫ∪Cǫ∪Dǫ∪Eǫ∪Fǫ = Iǫ, (2.2)
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except by the set of zeros of Rǫ.

By hypothesis we have

∫

Iǫ

|( f −Q)(x)|p−1sgn(( f −Q)(x))xjdx

=o(ǫl(p−1)+j+1)= oj(ǫ
l(p−1)+1)ǫj, 0≤ j≤ l, as ǫ→0. (2.3)

From (1.1) we have

∫

Iǫ

|( f −Pǫ( f ))(x)|p−1sgn(( f −Pǫ( f ))(x))xjdx=0, 0≤ j≤ l. (2.4)

Multiplying (2.3) member to member by bj and adding on j from 0 to m, we obtain

∫

Aǫ

|( f −Q)(x)|p−1|Rǫ(x)|dx+
∫

Bǫ

|( f −Q)(x)|p−1|Rǫ(x)|dx

−
∫

Cǫ

|( f −Q)(x)|p−1|Rǫ(x)|dx+
∫

Dǫ

|( f −Q)(x)|p−1|Rǫ(x)|dx

−
∫

Eǫ

|( f −Q)(x)|p−1|Rǫ(x)|dx+
∫

Fǫ

|( f −Q)(x)|p−1|Rǫ(x)|dx

=
m

∑
j=0

oj(ǫ
l(p−1)+1)bjǫ

j = o(ǫl(p−1)+1)
m

∑
j=0

|bj|ǫ
j. (2.5)

In fact, if

w=w(ǫ) :=
m

∑
j=0

|bj|ǫ
j 6=0,

the last equality is a consequence of

∣

∣

∣
w−1

m

∑
j=0

oj(ǫ
l(p−1)+1)bjǫ

j
∣

∣

∣
≤

m

∑
j=0

|oj(ǫ
l(p−1)+1)|= o(ǫl(p−1)+1).

In a similar way, from (2.4) we get

∫

Aǫ

|( f −Pǫ( f ))(x)|p−1|Rǫ(x)|dx−
∫

Bǫ

|( f −Pǫ( f ))(x)|p−1|Rǫ(x)|dx

−
∫

Cǫ

|( f −Pǫ( f ))(x)|p−1|Rǫ(x)|dx−
∫

Dǫ

|( f −Pǫ( f ))(x)|p−1|Rǫ(x)|dx

−
∫

Eǫ

|( f −Pǫ( f ))(x)|p−1|Rǫ(x)|dx+
∫

Fǫ

|( f −Pǫ( f ))(x)|p−1|Rǫ(x)|dx=0. (2.6)
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Subtracting the Eq. (2.5) from (2.6), we get

−
∫

Aǫ

(|( f −Q)(x)|p−1−|( f −Pǫ( f ))(x)|p−1)|Rǫ(x)|dx

−
∫

Bǫ

(|( f −Pǫ( f ))(x)|p−1+|( f −Q)(x)|p−1)|Rǫ(x)|dx

−
∫

Cǫ

(|( f −Pǫ( f ))(x)|p−1−|( f −Q)(x)|p−1)|Rǫ(x)|dx

−
∫

Dǫ

(|( f −Pǫ( f ))(x)|p−1+|( f −Q)(x)|p−1)|Rǫ(x)|dx

−
∫

Eǫ

(|( f −Pǫ( f ))(x)|p−1−|( f −Q)(x)|p−1)|Rǫ(x)|dx

−
∫

Fǫ

(|( f −Q)(x)|p−1−|( f −Pǫ( f ))(x)|p−1)|Rǫ(x)|dx

=o(ǫl(p−1)+1)
m

∑
j=0

|bj|ǫ
j. (2.7)

Now, we observe that the six integrals in (2.7) are nonnegative. Thus, each term in (2.7)
is equal to o(ǫl(p−1)+1)∑

m
j=0 |bj|ǫ

j. This proves the lemma.

Next, we prove one of our main results.

Theorem 2.1. Let p≥ 2, 0≤ l ≤ n, and f ∈ c
p
l (0). If Q∈Πl verifies (1.2) then P0( f ) is either

empty or for each j, 0≤ j≤ l, and for each P∈P0( f ),

P(j)(0)=Q(j)(0). (2.8)

Proof. We suppose P0( f ) 6=∅. Let P∈ P0( f ) and let ǫk ↓0 be such that limk→∞ Pǫk
( f )= P.

Without loss of generality, we can assume that Pǫk
( f ) 6= Q for all k. Suppose that there

exists a sequence (which we do not relabel) such that Pǫk
( f )−Q has m zeros, according

to their multiplicity counting, in Iǫk
, say xi,k, 0≤ i ≤m−1. As above of Lemma 2.1, we

consider Rǫk
(x)=∑

m
j=0 bjx

j such that Rǫk
(x)(Pǫk

( f )−Q)(x)≥0, x∈ Iǫk
. The proof is divided

in two parts: (a) m≥ l+1 and (b) m≤ l.

We assume (a). Clearly, the divided differences Pǫk
[x0,k,··· ,xj,k] and Q[x0,k,··· ,xj,k], 0≤

j≤ l, are equals. On the other hand, Pǫk
[x0,k,··· ,xj,k]=(j!)−1P

(j)
ǫk
(ηj,k) and Q[x0,k,··· ,xj,k]=

(j!)−1Q(j)(νj,k), where ηj,k,νj,k ∈ Iǫk
. Thus, P(j)(0)=Q(j)(0), 0≤ j≤ l.

Now, we assume (b). Let Mǫk
and Nǫk

be the sets introduced in Lemma 2.1. For a≥0
and b ≥ 0 there exists a constant K > 0 such that (a+b)p−1 ≤ K(ap−1+bp−1). If x ∈ Nǫk

,
a= |( f −Pǫk

( f ))(x)|, and b= |( f −Q)(x)|, we have

|(Pǫk
( f )−Q)(x)|p−1≤K(|( f −Pǫk

( f ))(x)|p−1+|( f −Q)(x)|p−1).
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Therefore
∫

Nǫk

|Rǫk
(x)||(Pǫk

( f )−Q)(x)|p−1dx

≤K
∫

Nǫk

|( f −Pǫk
( f ))(x)|p−1|Rǫk

(x)|dx+K
∫

Nǫk

|( f −Q)(x)|p−1)|Rǫk
(x)|dx

≤o(ǫ
l(p−1)+1
k )

m

∑
j=0

|bj|ǫ
j
k. (2.9)

Since p−1≥ 1, for a≥ 0 and b≥ 0 it verifies ap−1+bp−1 ≤ (a+b)p−1. If x∈ Mǫk
, a= |( f −

Pǫk
( f ))(x)|, and b= |(Pǫk

( f )−Q)(x)| we get, a+b= |( f −Q)(x)|, therefore

|(Pǫk
( f )−Q)(x)|p−1≤|( f −Q)(x)|p−1−|( f −Pǫk

( f ))(x)|p−1. (2.10)

From (2.10) we obtain
∫

Mǫk

|Rǫk
(x)||(Pǫk

( f )−Q)(x)|p−1dx

≤
∫

Mǫk

∣

∣|( f −Q)(x)|p−1−|( f −Pǫk
( f ))(x)|p−1

∣

∣|Rǫk
(x)|dx

≤o(ǫ
l(p−1)+1
k )

m

∑
j=0

|bj|ǫ
j
k. (2.11)

Adding the two inequalities of type (2.9) for the sets Bǫk
and Dǫk

, and the four inequalities
of type (2.11) for the sets Aǫk

, Cǫk
, Eǫk

and Fǫk
, we have

∫

Iǫk

|Rǫk
(x)||(Pǫk

( f )−Q)(x)|p−1 dx

2ǫk
≤ o(ǫk

l(p−1))
m

∑
j=0

|bj|ǫk
j. (2.12)

Now, we consider the norm ρ on Πn defined by ρ(T)=∑
n
j=0 |cj| if T(x)=∑

n
j=0cjx

j, and we

define Tǫ(x) :=T(ǫx). By means of the change of variable x=ǫkt, (2.12) can be written

∫

I1

|Rǫk
ǫk
(x)||(Pǫk

( f )−Q)ǫk(x)|p−1 dx

2
ρ−1(Rǫk

ǫk
)≤ o(ǫk

l(p−1)). (2.13)

Let

Wǫk
=

Rǫk
ǫk

ρ(Rǫk
ǫk
)

.

Since ρ(Wǫk
)=1, there exists a subsequence, which we denote in the same way, such that

and Wǫk
→W0∈Πm. Let S⊂I1 be a compact set of positive measure, which does not contain

any zero of W0, and let β=mint∈S |W0(t)|>0. There exists k0 such that |Wǫk
(t)|> β/2 for

all k≥ k0 and for all t∈S. As a consequence, we have

β

2

∫

S
|(Pǫk

( f )−Q)ǫk(x)|p−1dx≤
∫

I1

|(Pǫk
( f )−Q)ǫk(x)|p−1|Wǫk

(t)|dx= o(ǫ
l(p−1)
k ),
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i.e.,

‖(Pǫk
( f )−Q)ǫk‖p−1,S= o(ǫl

k). (2.14)

Now, we recall a Pólya type inequality (see [6, Lemma 2.1]) There exists a constant K>0
such that

|(Pǫ( f )−Q)(j)(0)|≤
K

ǫj
‖Pǫ( f )−Q‖p−1,ǫ, 0≤ j≤n, 0<ǫ≤ a. (2.15)

From (2.14), (2.15), and the equivalence two norms on Πn, we obtain

|(Pǫk
( f )−Q)(j)(0)|≤

K

ǫ
j
k

‖(Pǫk
( f )−Q)ǫk‖p,1= o(ǫ

l−j
k ), (2.16)

so

(Pǫk
( f )−Q)(j)(0)→0, 0≤ j≤ l as k→∞. (2.17)

Therefore, since limk→∞ Pǫk
( f )=P, we get (2.8).

Remark 2.1. We observe that the constraint p≥2, only was used to obtain the inequality
(2.11).

As a consequence of the proof of Theorem 2.1 we obtain

Theorem 2.2. If p≥2 and f ∈c
p
n(0), then there exists the best local approximation of f at 0 from

Πn, and it is the unique polynomial in Πn which satisfies (1.2).

Proof. Since m≤ n, the theorem analogously follows as in the proof of Theorem 2.1, (b),
for l = n. In fact, (2.17) implies Pǫk

( f )→Q, as k→∞. Finally, as {ǫk} is arbitrary we get
Pǫ( f )→Q, as ǫ→0. Now, the uniqueness of Q verifying (1.2) is clear.

The next theorem gives a characterization of Lp differentiable functions.

Theorem 2.3. Let p ≥ 2 and f ∈ Lp(Ia). Then f ∈ t
p
n(0) if and only if f ∈ c

p
n(0) and ‖ f −

Pǫ( f )‖p,ǫ = o(ǫn).

Proof. Suppose f ∈ t
p
n(0). Since we have mentioned in Introduction t

p
n(0) ⊂ c

p
n(0) and

clearly ‖ f−Pǫ( f )‖p,ǫ=o(ǫn). Now, assume f ∈c
p
n(0) and ‖ f−Pǫ( f )‖p,ǫ=o(ǫn). Let Q∈Πn

be verifying (1.2). From the equivalence two norms on Πn and (2.14), we have ‖Pǫ( f )−
Q‖p,ǫ= o(ǫn). Therefore, we get

‖ f −Q‖p,ǫ ≤‖ f −Pǫ( f )‖p,ǫ+‖Pǫ( f )−Q‖p,ǫ = o(ǫn), i.e., f ∈ t
p
n(0).

So, we complete the proof.

Given Q1,Q2∈Πn, let Sǫ be one of the following sets { f>Qi>Qj}∩Iǫ, { f<Qi<Qj}∩Iǫ,
i, j=1,2, i 6= j.
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Lemma 2.2. Let f be a bounded function on Ia, and let 1< p<∞.

(a) Let Q1,Q2 ∈Πn be such that Q1(0) 6=Q2(0). Then there exist 0< ǫ0 ≤ a and K> 0 such
that

∣

∣|( f −Q1)(x)|p−1−|( f −Q2)(x)|p−1
∣

∣≥K|(Q1−Q2)(x)|p−1 (2.18)

for all x∈Sǫ, and for all 0<ǫ≤ǫ0,.

(b) Let Q ∈ Π0, and let Pǫ( f ) be the best constant approximation of f . Suppose that for a
sequence ǫk ↓0, |Q−Pǫk

( f )|≥α>0, then there exist K>0 and k0∈N such that

∣

∣|( f −Q)(x)|p−1−|( f −Pǫk
( f ))(x)|p−1

∣

∣≥K|Q−Pǫk
( f )|p−1 (2.19)

for all x∈Mǫk
, k≥ k0, where Mǫk

was introduced in Lemma 2.1.

Proof. (a) If (2.18) is not true, then there exist a sequence ǫm ↓0 and xm∈Sǫm such that

0≤
∣

∣|( f −Q1)(xm)|
p−1−|( f −Q2)(xm)|

p−1
∣

∣≤
1

m
|(Q1−Q2)(xm)|

p−1. (2.20)

Since f is bounded on Ia, the sequences {( f−Q1)(xm)} and {( f−Q2)(xm)} are bounded.
Therefore, for some subsequence which we denote in the same way, it follows from (2.20)

|(Q1−Q2)(xm)|= ||( f −Q1(xm)|−|( f −Q2)(xm)||→0.

The last equality follows from definition of the set Sǫm . Since xm → 0, we have Q1(0) =
Q2(0), a contradiction.

(b) Since f is bounded and Pǫk
( f ) is constant, it is easy to see that {Pǫk

( f )} is uniformly
bounded. Then there exists a subsequence, which we denote in the same way, and T∈Π0

such that Pǫk
( f )→ T. If (2.19) is not true, a similar argument to the proof of (a) yields

Q−T=0. On the other hand, |Q−T|≥α>0, a contradiction.

Theorem 2.4. Let 1< p<∞, and let f be a bounded function on Ia. Then

(a) If Q1,Q2∈Πn satisfy (1.2) then Q1(0)=Q2(0). In particular, for n=0 there exists at most
a constant polynomial verifying (1.2).

(b) If f ∈ c
p
0(0) then there exists the best local approximation of f at 0, and it is the unique

constant polynomial verifying (1.2).

Proof. (a) Suppose that Q1(0) 6= Q2(0). By Lemma 2.2, there exist ǫ0 and K > 0 verify
(2.18). Proceeding as in Theorem 2.1 with Q1 instead of Q and Q2 instead of Pǫ( f ) we
obtain that Q1−Q2 =0, a contradiction. In fact, we observe that (2.11) remains valid for
all p, 1< p<∞, ǫk ≤ǫ0 and Sǫ =Mǫ.

(b) Let Q∈Π0 be verifying (1.2) and Pǫ( f ) the best constant approximant. If Pǫk
( f )9Q,

for some sequence ǫk ↓ 0, using Lemma 2.2 and proceeding as in Theorem 2.1, we have
that Pǫk

( f )→Q, which is a contradiction.
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Remark 2.2. We observe that all the theorems proved in this Section hold, with the ob-
vious modifications, if f satisfies the left (right) Cp condition of order n at 0, and we
consider ‖·‖p,−ǫ(‖·‖p,+ǫ) instead of ‖·‖p,ǫ.

If f ∈ c
p
n(0), and p≥2, let Tn,p( f ) be the unique polynomial in Πn satisfying (1.2). The

next theorem can be easily proved.

Theorem 2.5. The operator Tn,2 :c2
n(0)→Πn is linear. Further, c2

n(0)⊂c2
n−1(0), and if f ∈c2

n(0),
then Tn,2( f )(x)=Tn−1,2( f )(x)+α( f )xn , α( f )∈R.

If f ∈ c2
n(0), the Theorem 2.5 allows us to define the k-th derivative in the C2 sense

by f (k)(0) :=(Tn,2( f ))(k)(0), 0≤ k≤n. Clearly, if f has a k-th derivative in the L2 sense, it
coincides with the k-th derivative in the C2 sense.

3 Convexity of P0( f )

We begin this section by proving the continuity of the function F : (0,a)→Πn defined by
F(ǫ)=Pǫ( f ), with f ∈Lp(Ia), 1< p<∞.

Lemma 3.1. F is a continuous function.

Proof. Fix ǫ0∈ (0,a), and let ǫm ∈ (0,a) be such that ǫm →ǫ0. There exists m0∈N such that
for all m≥m0 we have ǫm ≥ǫ0/2. Then,

‖ f −Pǫm( f )‖
p

p,
ǫ0
2

≤
2ǫm

ǫ0
‖ f −Pǫm( f )‖

p
p,ǫm ≤

2ǫm

ǫ0
‖ f‖

p
p,ǫm ≤K. (3.1)

Thus, the sequence {Pǫm} is uniformly bounded. Consequently, there exists a subse-
quence which denote in the same way, such that Pǫm( f ) converges to Q∈Πn. In addition,
by (1.1) we have

∫

Ia

|( f −Pǫm( f ))(x)|p−1sgn(( f −Pǫm( f ))(x))xjχIǫm
dx=0, 0≤ j≤n, (3.2)

where χA is the characteristic function of the set A. It is easy to see that the integrands
in (3.2) are bounded by an integrable function, so from (3.2) and Lebesgue Dominated
Convergence Theorem, we get

∫

Ia

|( f −Q)(x)|p−1sgn(( f −Q)(x))xjχIǫ0
dx=0, 0≤ j≤n. (3.3)

Therefore Q=Pǫ0( f ), i.e., F(ǫm)→F(ǫ0).

Using the same technique that in [4], Proposition 3.1, and Lemma 3.1, we can prove
the following theorem.
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Theorem 3.1. Let f ∈ Lp(Ia), 1< p<∞, be such that its best ‖·‖p,ǫ-approximation from Πn,
is Pǫ( f )=∑

n
i=0αi(ǫ)xi, where αi(ǫ)→αi, as ǫ→0, 0≤ i≤n−1. Then P0( f ) is either empty or

convex.

As a consequence of Theorem 2.1 for l = n−1, and Theorem 3.1, we have the next
result, which extends Corollary 3 in [11] for p≥2.

Theorem 3.2. Let p≥2 and f ∈ c
p
n−1(0). Then P0( f ) is either empty or convex.

Remark 3.1. In [9], the author gave an example of a function f ∈ L2(Ia), continuous at 0
such that the set of cluster points of the best ‖·‖2,ǫ-approximation from Π2 is not empty
and is not convex. Since f is continuous at 0, f ∈ c2

0(0). Therefore, we cannot assume the
weaker condition f ∈ c2

n−2(0) in Theorem 3.2.
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