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Abstract. Let (R4,*,A) be the Jacobi hypergroup. We introduce analogues of the
Littlewood-Paley g function and the Lusin area function for the Jacobi hypergroup and
consider their (H'!,L!) boundedness. Although the g operator for (IR,*,A) possesses
better property than the classical g operator, the Lusin area operator has an obstacle
arisen from a second convolution. Hence, in order to obtain the (H',L!) estimate for
the Lusin area operator, a slight modification in its form is required.
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1 Introduction

One of main subjects of the so-called real method in classical harmonic analysis related
to the Poisson integral f *p; is to investigate the Littlewood-Paley theory. For example, in
the one dimensional setting, the following singular integral operators were respectively
well-known as the Littlewod-Paley ¢ function and the Lusin area function

O =([|prap[ )" (112
SR(f)(x)= (/Ooo%m* f*t%Pt‘Z(x)%)l/z, (1.1b)

where x; is the characteristic function of [—t,t]. These operators satisfy the maximal
theorem, that is, a weak type L! estimate and a strong type L? estimate for 1 < p < co.
Moreover, they are bounded form H! into L! (cf. [10-12]). Our matter of concern is to
extend these results to other topological spaces X. Roughly speaking, in some examples
of X of homogeneous type (see [2]), Poisson integrals are generalized on X and analogous
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Littlewood-Paley theory has been developed (cf. [2,5,10]). On the other hand, if the space
X is not of homogeneous type, we encounter difficulties. As an example of X of non
homogeneous type with Poisson integrals, noncompact Riemannian symmetric spaces
X = G/K are well-known. Lohoue [9] and Anker [1] generalize the Littlewood-Paley g
function and the Luzin area function to G/K and show that they satisfy the maximal
theorem (see below). However, we know little or nothing whether they are bounded
from H! into L!, because we first have to find out a suitable definition of a real Hardy
space on G/K. The aim of this paper is to introduce a real Hardy space H'(A) and show
that they are bounded from H'(A) into L!(A) for the Jacobi hypergroup (R, *,A), which
is a generalization of K-invariant setting on G/K of real rank one.

We briefly overview the Jacobi hypergroup (R,*,A). We refer to [4] and [8] for a
description of general context. For a> B> —1 and (a,B) # (—%,—1) we define the weight
function A on R, as

A(x) = (2shx)?* 1 (2chx )21,

Clearly, it follows that

20x

e x>1
< 7 7

A(x)_c{ 2N x<l,

where p=a+B+1 and yg=a+ 3. For A €C let ¢, be the Jacobi function on R defined
by
g (P P (ah)?
#r(x) =2 F (552 F et - (she?),
where »F; the hypergeometric function. Then the Jacobi transform f of a function f on
R is defined by

N

F0) == [ (x)A )

We define a generalized translation on IR by using the kernel form of the product for-
mula of Jacobi functions: For x,y € R,

D= [ nE@KEy DA

The kernel K(x,y,z) is non-negative and symmetric in the tree variables. Then the gener-
alized translation Ty of f is defined as

0= [ fEKEAR)E:

and the convolution of f, g is given by

frg(x /f )Txg(y)A(y)dy.
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Since Ty f(y) =T, f(x) and ﬁf()\) =pa(x)f(A), it follows that fxg=g*f and ﬁk?g()\) =
F(A)-$(A). We call (R, *,A) the Jacobi hypergroup and the associated harmonic analysis
is called by Jacobi analysis. The Jacobi hypergroup is not a space of homogeneous type,
because A(x) has an exponential growth order ¢’ when x goes to .

In Jacobi analysis, the Poisson kernel p;(x), t >0, is defined as the function such that

i) =e VI,

Then, as analogue of the classical case, we introduce a generalized Littlewood-Paley g
function g,(f) and a generalized Lusin area function S, (), which are respectively de-
fined by

s =( [ rapme 5", (1.22)
S () = s ([ wi s e 0%) (1.20)

where 0,4 >0, h(x) is a positive function on R and

. 1
XB(at) = WXB(M)'

Here xp/y) is the characteristic function of B(t) =[0,t] and |B(t)| the volume of B(t) with
respect to A(x)dx. Similarly as in the case of non-compact Riemannian symmetric spaces
(see [1,9]), gv is strongly bounded on LP(A) for o <2p/+/pp’, where %—l—% =1and g
satisfies a weak type L! estimate with respect to A(x)dx. In the previous paper [7], the
author introduces a real Hardy space H'(A) and shows that g is bounded form H'(A)
into L!(A). As for S, , the strong type L? estimate of S, for p>1 is essentially obtained
in [9]. However, whether S, ; is bounded from H'(A) into L!(A) is still an open question.
In [7], Section 7, we obtained a partial answer for a modified operator of S, 1 with a < %
In this paper we refine this result and extend it to a more general area operator S, ,.

This paper is organized as follows. Basic notations are given in Section 2. Especial-
ly we recall the definition of the Hardy space H!(A) and give a relation with Euclidean
weighted Hardy spaces HL,(IR). In Section 3 we prove key lemmas on generalized trans-
lations. Finally, in Section 4 and Section 5 we consider (L?(A),L?(A)) and (H'(A),L1(A))
boundedness of g, and S, ; respectively.

2 Notations

Let LP(A) denote the space of functions f on R with finite LP-norm:

== [ P A,
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and L{,_(A) the space of locally integrable functions on R,. We may regard these func-
tions on IR as even function on R. Let CZ° be the space of compactly supported C* even
functions on R. For f € C® the Jacobi transform f is well-defined and the Paley-Wiener
theorem holds: The map f — f is a bijection of C® onto the space of entire holomorphic
even functions of exponential type on R. The inverse transform is given as

1 RN -
F0) == [ Fm I,

where C(A) is Harish-Chandra’s C-function. Furthermore, the map f — f extends to an
isometry of L?(A) onto L?(R,|C(A)|72dA):
£z a) = 1F 2R, o) -2a0)

(see [4, Section 2] and [8, Theorem 3.1, Remark 3]). Let f € L}(A). Since ¢, is bounded
by 1 for |SA| < p (see [4, (2.17)]), f has a holomorphic extension on |SA| < p and |f(A)] <
| fllz1(a)- We recall that, as a function of A, ¢ (x) is the Fourier Cosine transform of a
function A(x,y) supported on [0,x]:

A(x)pr(x) :/OxcosAyA(x,y)dy

(see [8, (2.16)]). Hence, if we define the Abel transform WY (f) of f by

WP = [ FAGY)y,
then we see that R
FA)=cFWL(F))(A),

where WY (f) is extended as an even function on R and ¥ is the Euclidean Fourier trans-
form on R. We put

W3 (f) (x) =W (f) ().
Since |A(x,y)| < ceY (thy)?* by the explicit form (see [8], (2.18)), it follows that

WL (Ol ryy Scllfllray for |s|<1,
and for A €R,
F(A+ips) =cF(WL(f))(A).
Especially, we have
W3 (f+8) =W (f) @W3(g),
where ® denotes the Euclidean convolution on IR. As shown in [8], Section 3, W9r is of
the form:

WY (f) =cWo_goW5 1 1o (),
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where W/ is the generalized Weyl type fractional operators on R; for n=0,1,2,---, ®u >
—nand c€R,

Wﬁ(f) (s)= I"((I—lk)Z) /SOO d(cﬁzt)nf(t)-(chat—chas)?“r”—ld(chat).

Since the inverse of WY is given by W7, the inverse operator W2 of W is given by
WE (f)=W?2 (F+1/2) OW ( ~%Xf). The following formula is obtained in [7, Corollary
3.7]. For fe L1(A), let F W1 1 (f). Then there exist finite sets I'g,I'; in R for which

f(x)—WlOW1 (f)( )=WL(F)
(Z )(thx)"+ Y (thx) / W]R (F)(s )Av(x,s)ds>, (2.1a)

€l yeh

where Wg is the Weyl type fractional operator on IR, which is defined by replacing chot
and chos in the above definition of WY (f)(s) with t and s € R respectively. For some
properties of A, (x,s) see [7, Lemma 3.6]. In particular, if « and  both belong to IN+ %,
then the integral terms in (2.1) vanish; I'1 =@ and T'o={0,1,2,---,70}, Y0 = zx+%. Since
e P*F is an even function on R, L' norm of WX, (F)(—x) on R is controlled by L' norms
of WX (F)(x) on Ry *. Hence it follows that

Ifllay~ Y IWE,(F )L, ®),
yelhul'
where Ly, (R) is the w,-weighted L! space on R and w.,(x) = (th|x|)".
We now define the real Hardy space H'(A) as the subspace of L!(A) consisting of all
functions with finite H' (A)-norm:

flmw= Y IWEF)lm ) (2.2)

yelpul' wv

where Hzluw (R) is the w,-weighted H! Hardy space on R that coincides with the weighted

homogeneous Triebel-Lizorkin space F/'3"" (cf. [3]). Thereby the above H'(A)-norm is
equivalent to

E [l )+ TWE,, ()

In [7], Section 4 we define a radial maximal operator M for the Jacobi hypergroup (R, *,A)
and deduce that H'(A) coincides with the space consisting of all f € L] (IR ) whose ra-
dial maximal functions Mf belong to L'(A) and || f| 1 (a) ~ [|Mf]l 1 (a)

The letter c will be used to denote a positive constant which may assume different
values at different places.

Hi, (R)*

tWe also use the fact that WB’Y’
icos ).

0 < <1, corresponds to the Fourier multiplier of —i|A|7(sgn(A)sin 2 —
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3 Key lemmas
The following lemmas on the generalized translation T, will play a key role in the argu-
ments in Section 4 and Section 5. The first one is obtained in [4, (5.2)], and the second one
is essentially obtained in [6, Lemma 2.2], for group cases.
Lemma 3.1 (see [4]). Let feLP(A), 1<p<oo,and xR . Then
I Tefllera) < fllzeea)-

Moreover, if f is positive, then the equality holds.
Lemma 3.2. Let x,y>0. Then

0< Tee 20) (y) < ce~2omax{xy}
where c is independent of x,y.

Proof. We may assume that x > y. It follows from [4, (4.19)], that

x+y
Tee 200 () :/ e %" K(x,y,2)A(z)dz
x—y

x+y
Sc(thx)_Z“e_px(thy)_z"‘e_’)y/ thze dz
x—y
—2u —2u ,—2px
<c(thx) “(thy) "~ “*thy

and moreover, from [4, (4.20)], that

Te 20y < [ K(xy2)AE)dz=1. (3.1)
0
Hence we can obtain the desired estimate. O
Lemma 3.3. Let x,t>0. Then
/O Tux:i(y)dy <ct,

where c is independent of x, t.

Proof. Similarly as (3.1), Tyx:(y) <1. Since Tyx:(y) is supported on [|x—¢|,x+¢], the de-
sired result is obvious. O
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4 Littlewood-Paley g functions

As shown in [1, Corollary 6.2], gs is strongly bounded on L (A) provided o <2p/+/pp’
where %—l—% =1 and gy satisfies a weak type L! estimate. We give a simple proof of the

L2 boundedness of g, for ¢ < p and consider a modified operator g, s when o = p.
Theorem 4.1 (see [1]). Let 0 <p. Then g, is (L*(A),L*(A)) bounded.

Proof. Since

t 2
<ot

20— <
VAZ+Z T p

for A€R and t >0, it follows that

s (PI3= [ [

Jd |2 . dt
f*tgpt‘ (x)TA(x)dx

>»<t2 ﬂ
f ol L2(a) t

:/OOEZ(Tt
0
f- ( e;)tpt)A 2 i

:/0062171‘ hiad
0 LR, |C(V)|242) ¢
= ooezaf/oo‘f(A)t\/A2+p2€_t\/A2+p2 2
= FORICQI( [ B4/ o

0
—/ MPIC(A)] 2(/0 TR P ’tht)d/\

_ —2( [ 20t/p,,—2t
/O|fAHCA| (/Oe te~2dt) d

<co | fI%

W2

where
[ee)
Co= / e~ 2-a/P)tgy.
0

Thus, we complete the proof. O

Theorem 4.2. Let g, g be the operator defined by replacing e** in the definition (1.2) of g, by

1
200~ 2.
“axnr P

Then g, is (L*(A),L?(A)) bounded.
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Proof. We note that

0 (1—|— ; >ﬁ t
/)\2+P2

is dominated by
/ L, i o<A<p,
* (1+7)
/e’(z’ﬁ)ttdt, if A>p.
0

Hence the desired result follows similarly as in Theorem 4.1. O

As shown in [7], Section 6, go is bounded from H!(A) to L}(A). In order to understand
the usage of the formula (2.1) we give a sketch of the proof.

Theorem 4.3 (see [7]). go is (H'(A),L'(A)) bounded.

Proof. We recall (2.1) and, for simplicity, we suppose that the integral terms vanish, that
corresponds to the case of o, € N+ % For general o, B, we refer to the arguments in [7],
Section 6. Hence, we see that

fx tatpt Z F)®P(x)(thx)?,

’YGro

where F=W! (f) and ;=W (t2 p;). Since P; behaves similarly as the Euclidean Poisson
kernel (see [7, Lemma 6.3]), it follows that

) <575 & (W (Brererg) o
r<lo
c
SNE) 7;5 (W, (F))(thx)",

where ¢R is the Euclidean g-function on R (see (1.1)). Since ¢R is bounded form H}UW (R)

to L}Uv(]R) (see [12, XII, Section 3], with a slight modification by a weight function), it
follows from (2.2) that

180 ()Ml (ay<c Y 18" (W Dy, w)
r€lo
<c Y IWE( ))HH;7 y=cllfllm(a)
r€lo

Thus, we complete the proof. O
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5 Lusin area functions

We shall consider strong type estimates of the modified area function S, ;. Similarly as in
the Euclidean case, the L? boundedness of San is reduced to the one of g;.

Theorem 5.1. S, is (L?(A),L?(A)) bounded provided that a <2 and h is the following:
(@) h=1,
(b) h=v/A,
(c) = (th)™.

Proof. We note that ||S,,(f)]|3 is given by
/000@/000 (/OwaXat(y)(h(y)f*t%pt(y)(ZA(y)dy> %A(x)dx

B © oo 0 h2 (y) _ a 2 dt
= ([ g Tk aGx) g p ] Aw)dy) T
Therefore, if we can deduce that

<) hZ
; W%Tx)zm(y)A(x)dxgcem, (5.1)

where c is independent of y,t, then we see that ||S, ,(f)[|3<c||g- () |3 and thus, ||S, ; (f)[|2<
c||f|l2 provided o < p by Theorem 4.1.

(a) h=1: It follows from Lemma 3.1 that

“ - |B(at)| 2(a—1
/0 Tt (1) A(K)er= o) < g < Dot

Therefore, (5.1) holds for o= (a—1)p. Hence, if a <2, then 0 < p.
(b) h=+/A: We divide the integral (5.1) over [0,00) into several segments.
Let x >y. Since
Aly) o
Ax) ~

it follows that

[e] A 5 B B
[ R T )M < [y e

Let x <y and x > 1. Since

it follows from Lemma 3.2 that

y
AT (1) < e 20 () < [y e P
1
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Let x <y and at <x <1 for sufficiently small « > 0. Since y <x+at < (14 %)x and x <1,

R ERNC
and thus,
T (1) < o 0y Son®
Let x<y,x <1 and x <at. Since y < x+at < (x+a)t, it follows from Lemma 3.3 that
MAWY) - A((ata)t)t

Tox (y)A(x)dxgcA((oc+a)t)/oooTyXat(x)dx§c —1(8).

OWxat

Elo]

We note that, if t <1, then J(t) <c(a+a)? and if ¢ > 1, then J(t) < ce?(@ 2=Vt Therefore,
for a <2, we can take a sufficiently small « >0 for which a+a—-1<1.

Therefore, in each case, if 2 <2, then there exists 0 <o < p for which (5.1) holds.

(c) h=(th)70: Similarly as in (b), we divide the integral (5.1) over [0,00).

Let x >y. Since

th
ﬁ < (5.2)
it follows that
 (thy)?70 _
/ %meym(wdmew Vet 53)

Let x <y and x> 1. Clearly (5.2) and thus, (5.3) hold.
Let x <y and at <x <1 for a >0. Since y < x+at < (14 %)x, (5.2) and thus, (5.3) hold.
Let x <y, x<1and x <at. Since y < x+at < (a+a)t and (thx) 270A(x) <c for x <1,
J(t) in the case of (b) is replaced by

(th(a+a)t)> ot
B

Hence, if t <1, then J(t) <c(a+a)" and if t > 1, then J(t) <ce~***at <c. Therefore, in each
case, if a <2, then there exists 0 < ¢ < 2 for which (5.1) holds. O

Theorem 5.2. S, is (H'(A),LY(A)) bounded provided that a and h are the following:
(@) h=vAanda<1,
(b) h=(th)" and a < .
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Proof. Similarly as in the proof of Theorem 4.3, for simplicity, we may suppose that the
integral terms in (2.1) vanish (see [7, Section 6], for general case). Then we see that
San(f)(x) is dominated as

ﬁ(/o Kat * ‘An,; WIR (F)®@P(th)” ‘ (x )dtt)l/z
CZF (/Ow;zm*(gw%(zr)@a(th) ( (x )dtt)l/z. (5.4)
veE

Hence [|S;4(f) |11 () is dominated by the sum of the L'-norm of each term in (5.4) with
respect to A(x)

0 (/ Xat*
X 00 h

_/ h(x ((t /0 Xat * A
- / / / TRt ZAA(( y)>((ti‘f>):><ywﬂi,(zr)®Pt(y>|2dy§)m(thx)mx. (55)

We note that, for f € H! (A), each WR (F) belongs to H}U7 (R) and P behaves similarly as
the Euclidean Poisson kernel. Therefore, if we can deduce that

2 (thy)27
/ Tefrar( A((y)) Ethgmd"ﬁc (5.6)

5 Eon )] (mF) A

~WR (F)@Pi(th)" ‘ (x )?) (thx)7dx

and

)2 A(x)? (thy)*”
/ Tx at A(y) (thx)27dy§01 (57)

where c is independent of x,y,t, then we can apply the arguments used in the Euclidean
case (see [12, Proposition 1.2]). Then (5.5) is dominated by [WX, (F)] HY, (R) and thus,

1San(F)llrr(a <CZHW HH1 y=cllfllen(a)

(@): h=+v/Aand a<1. The integrand of (5.6) and (5.7) is the following;:

(thy)>”

(thx)2r

The proof of (5 6): We divide the integral (5.6) over [0,00). Let x>y or x <y and x>1

or x<y and % < x <1. In these cases, similarly as in the proof of (b) in Theorem 5.1, it
follows that

TxXat(y)D(x)
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and thus, (5.6) is dominated by e2(*~ V¢!, Let x<y, x <1 and x <4 Since y < x+at<3at,

it follows that ) )
(thy) 7 (thy) 7" 3 2
AN AL o) ')’0‘
A(x) (fh) 27 A(x) (tha) 270 c(th3at)

Hence we see from Lemma 3.3 that

L (thy)?" (tht)?70t
< .
/ T Xat(y)A(x) (thx)szx_C B0 <c

Therefore, in each case, if 2 <1, then (5.6) holds.
The proof of (5.7): We divide the integral (5.7) over [0,00).
Let x>y, t>1and y>1. Since

>

(x
(v)

~—

Ax) < T Ay) S TVA(Y),

>

it follows from Lemma 3.2 that

|| T (y)a ) Ethy; dy < e Zarve 0 () < Zat 1) < c2@ V.
1

Let x>y, t>1and y <1. Since x <y-+at <1+-at, it follows that

L ( hy)>” A(l+at) _  pa-
< < pla=1)t,
/0 TxXat(y)A(x (th ) dy CA 1+at / Ty Xat y)dy C—ornT |B(t)|
Let x>y, t<1and at > 3. Since x <2at, it follows Lemma 3.3 that
. (thy)?" Aat)t _
<c < <ca“"
/o TieXat (V) A(x) (thx)szy_ (2at) / T Xat(y)dy <c——— (0] ca

Let x>y, t<1and at < 7. Since x <y-+at <y+a and y > x—at > 7, it follows that

Ax) if x>2a
A(x) < AEx)—a)' £ x>2,
Aly) — A(x .
A(%)' if x<2a,
<cqa

Hence, replacing A(x) by ¢,A(y), we can deduce that

/oTxxatw)A( <ca | Tt (1) Sy =cl 138y S
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Let x <y and 1 < x. Since

2
M) <8() <AW)

it follows that

e (thy)zy C 20(a—1)t
[ TRa(n)AC) gy <e | Teka(y)Aly)dy <ce

Let x <y and 2at <x < 1. Since y <x-+at < %x, we see that

2 §x 2
a0 B0 < A(x)% <eA(x) <cA(y)

and thus, we can obtain the above estimate.
Let x <y, x <1 and x <2at. Since y < x+at <3at, it follows that

(thy)> _ \\ (thy)?™0

2
() (thx)?r — () (thx)270 <c(th3at)™™.
Therefore, we see from Lemma 3.3 that
© (thy)? ) /°° _ (th3at)?10¢
< 70 <c—<c.
/x T Xat () D (x) (thx)27 dy < c(th3at) 0 T Xat(y)dy <c B(H) — ¢

Therefore, in each case, (5.7) holds if a <1.
(b): h=(th)" and a < % The integrand of (5.6) and (5.7) is the following.

(thy)*
(thx)2r

CTefar (y) VA (x)

Since x —y <at, this is dominated by

3 . thy)27
Tt () T

Hence it follows from the previous arguments in (a) that the integrals in (5.6) and (5.7)
are dominated by

e2pate2p(a—1)t _ eZp(2a—1)t'
Therefore, if a < %, then (5.6) and (5.7) hold. O
Remark 5.1. In the definition of S, , in (1.2) we can insert the term ¢*’* as in the one of g,
Then it is easy to see that the condition 2 <2 in Theorem 5.1 is replaced by

c+(a—1)p<p
and the conditions a<1and a < % in Theorem 5.2(a), (b) are respectively replaced by

c+(a—1)p<0,
c+(2a—1)p<0.
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