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Abstract. This paper investigates the fractal dimension of the fractional integrals of a
fractal function. It has been proved that there exists some linear connection between
the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a

fractal function.
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1 Introduction

Fractional calculus, both of theoretical and practical importance, is an important tool be-
ing used to investigate fractal functions and curves. Fractional calculus, such as Riemann-
Liouvile fractional integrals, can be effective applied to certain fractals like the Weier-
strass function [1]. With the help of the K-dimension, Yao [8,9], Su, and Zhou [11] proved
that there exist some linear connection between the order of fractional calculus and the
Box dimension, K-dimension, and Packing dimension of graphs of the Weierstrass func-
tion. A natural problem is, does this connection still hold for the Hausdorff dimension
which is very important in fractal theory? Firstly, we recall the definition of Riemann-
Liouvile fractional integral.

Definition 1.1 (see [5]). Let f be a function piecewisely continuous on (0,00) and inte-
grable on any finite subinterval of (0,00). Then we call

D7) = g [, (=20 )
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Riemann-Liouvile fractional integral of f of order v for >0 and Re(v) > 0.
This paper considers the Weierstrass function with random phase added to each term,
ie.,

folx)= i)\_“”sin(Zn(/\”x—l—Gn)), xel, (1.1)
n=0

where A >1, 0<a <1, I=10,1], ® ={60,61,02,---}. More details about the type of the
Weierstrass function can be found in [1,7].

Definition 1.2. Denote Riemann-Liouvile fractional integral of sin(27r(A"x+6,)) and
cos(27t(A"x+6y)) of order v as following

1 t o—1 n
m/{) (t—8) 1sm(27‘(()\ ¢+6n)),

1 f o— n
I(v) /0 (£=8)" " cos(27(A"E+6,)).

St(v,A,0) =D sin(A"'x+6,) =
Ci(v,A,0)=D “cos(A'x+6,) =

Then define -
Fs(x)=D ZA “ng.(v,A,0) (1.2)

be R-L fractional integral of fy(x) of order v.

Definition 1.3 (see [2]). Let a Borel set F € #" be given as follows. For s >0 and ¢ >0,
define

5 (F) :inf{ Y |Uif*:{U;} is a 6-cover of F},
i=1
where |U| =sup{|x—y| : x,y € U} denotes the diameter of a nonempty set U and the
infimum is taken over all countable collections {U;} of sets for which F C |2, U; and
0<|U;| <6. As 6 decreases, 77 (F) cannot decrease, and therefore it has a limit (possibly
infinite) as 6 — 0, define
A (F) = lim 25 (F).

The quantity #*(F) is known as s-dimensional Hausdorff measure of F. For a given
F there is a value dimpy(F) for which J#*(F) = co for s < dimpy(F) and s#°(F) =0 for
s>dimpg(F). Hausdorff dimension dimp (F) is defined to be this value, that is:

dimp (F) =inf{s: #°(F) =0} =sup{s: #*°(F) = oo}.

For simplicity, let
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Let H =[0,1]®, endowed with the uniform probability measure,and let © = {6y,60y,--- }
denote a point in H. Let Graph(f,[a,b]) = {(x,f(x))|a<x<b,f :[a,b] = R?*} be the graph
of f.

The remainder of this paper is arranged as follows, in Section 2, we give some
lemmas which are important for the proof of the linear relationship. In Section 3,
there are two theorems discussed for the relationship between dimpyGraph(Fg,I) and
dimpy Graph(fe,I).

2 Lemmmas

To prove the main theorems about the linear relationship, we need the following lemmas.
We first derive some simple but widely applicable estimation for Hausdorff dimension
of continuous functions.

Lemma 2.1 (see [2]). Let f:[0,1] — R be a continuous function. If
F()—f(w)| <clt—ul, (2.1)
where 0<t,u<1,¢>0,1<s<2, then we have °Graph(f,I) <oo and dimy Graph(f,I)<s

Lemma 2.2. Let Z(®) =Fg(x)—Fe(y), the variance of function Zg(x) has a bounded density
function.

Proof. Let mA"t=u, we have

o 1 (/xsm(Zrc(/\” x—t)+60y) d Y sin(2m (A" (y )+6")dt)
0 tH1-v t1-v

7%’:/\,“” 1 (/‘”/\"x sin(27t)x”x—2u+2719n)d _/‘7TA ys1r1(271/\”y—2u+27r9n)EZ )
0 0

= r(v) (n/\n)vtl—v (nAn)vtl—v
_ i 0~ (a+o)n 1 (/‘”)‘“x sin(27tA"x —2u+276,,) i /‘ﬂ?\"y sin(27tA"y —2u+276,,) dt)

n=o F(U) 0 yl-v 0 yl-v
_ i 0y~ (a+o)n 1 (/”/\"" sin(27tA" x —2u) cos(276,,) +cos(27tA" x —2u) sin (276, g

n=o I'(v) \Jo ut=o

Aty sin(ZnA”y—Zu)cos(Znen)+cos(27f/\”y—2u)sin(27r9n)d

_/0 ul-v u)

= 1 AT sin (27TA x —2u)
— vy —(at0v)n

Z:: AT (o) (/0 — i ducos(270,)

A" x n A"y gj ny_
/ cos Znix x— Zu)dusin(Zﬂen)—/ wduCOS(ZNGn)
u v JO u -0

/71/\ Y cos(2mtA"y —2u)

= dusin(ZnGn)).
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Let
A" x n A" x n
Ao / sin 27t)1\ x— zu)du, B / cos 27t)1\ x— zu)du,
0 ut—v ut—v
Ay n Ay n
o / sin 27r)1x y— Zu)du, D / Cos 27t)1\ y— Zu)du‘
0 u—v u—v
We have
Z(©)=Qyusin(278, + ¢n), (2.2)
where
¢ _A-C
ang,=p—p,

I\?I»—l

Qu= Y A (A= CP (B D)),

(0)

Since z1,z,- -+, are independent random variables with density functions

1
I (8,) = { 7(Q2—22)3
0, |Z] > Qul-

o 1 Zal <1Qul,

For z=zp+z1+2z2+---, we get
h(z) =ho*hyxhy*---.

Because the maximum value of a probability density can not increase under convolution
with another probability density, any upper bound we obtain on a finite convolution
hj*---xh is an upper bound on h, (6, ) as well.

Notice that

du

_/ sin(27tA"x — 2u)du+/m\"" sin(27tA"x —2u)
b

ul v ulfv

=:21+2,

here 0 <b<mA"x.

By Cauchy’s test we get X1 is absolute convergence. At the same time X, is conver-
gence too by Dirichlet test. Thus A is convergence. In a similar way B, C, D is conver-
gence too,

((A—C)*+(B—D)*)z=L.
Let integer K > 2 satisfy A~ (K1) < |x—y| < AK. We have

1 1
—vy —(a+o)n —v et
|Qu| > A I"(v)L>7t F(v)L’x yl*re. (2.3)
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It holds that |Q,| > M; |x—y|**”. Now let ||e||, denote the L¥ norm. obviously h, € L¥
(0<p<2),so

th(Zn)H% :M1|Qn’_% §M2’X—y|%
Here M, M;, M; are constants independent of x, y. By Young’s inequality
1= bl < [[Fe— |5 1Pl 5.
and Holder inequality
o b1 b3 < oz g ey bl < Nl 1 i g el 3 < M3 Jc—y 2

It follows that
h(z) < Mj|x—y|*T™. (2.4)

Thus, we complete the proof. O

3 Theorems
In this section, we will prove the main theorems.
Theorem 3.1. For 0<v<1, A>1, 0<a+v<1, we have dimy Graph(Fg,I) <2—a—v.

Proof. For x,y <1, let x>y. By Lemma 2.2, we have

%

‘/xsm A” (x—t)+6,) /ysm (A" (y—t)+6y)
0 t-

rF@<x>—P@<y>|sioA

sin(A"(x—t)+0y) ysin(A"(y—t)+6,)
R e =
N i/\_m ‘/ sin(A"(x —t)+9n)_/ysin(A”(y—t)+9n)
— t1-v 0 t1-v
n=m
=:X1+2.

For all m >0, if |[x—y| <1. let m be the positive integer with

AT < x—y| < AT,
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For ¥4, let A" % t=u, then we have

AN x—A"vu+6,)

AT x (
A—(ato)n / sin
Z ( ‘ ul—v du
NSy sin(AMy— A~ S u-+6,)
—/0 = du‘
m—1 (a+0) 1
< x—y|ATETON _—_2K
n;)! | (o)
1— A= (a+0)]m 1
=A@ ’x_y|r(v)2K
All=(at+o)]m
Sw|x y’ ()
2K
< _ 4 lato
—r(v)[)\lf(aﬁv)_lﬂx y’
§C1|x_y’04+v'
For X,, let A"t =u, we have
a+v) AMxgin(A"x —u+6, MY sin(A"y—u+6,
e £t L [ S Sy
& 1 A-(ate)m K
< /\f(ac+v)n 2K —
LA et
2K
< _ 4 |ato
STEya—r oY
=Calx—y|*".

Then, we get

[Fo(x) —Fo (y)| < Clx—y|*™,

where Cy, Cy, C is a constant. By Lemma 2.1, we get

dimpy Graph(Fe,I) <2—a—0.

Thus, we complete the proof.

Theorem 3.2. If0<v<1, A>1, 0<a+v<1, we have

dimpy Graph(Fg,I) >2—a—0.

du

(3.1)

(3.2)

Proof. By Theorem 3.1, we only need to show dimy Graph(Fg,I) >2—x—v. Let ug be the
measure supported on graph of Fg that is induced by Lebesgue measure u on interval

1=10,1]. That is, for S CIR?,

ne(S)=v({xel:(x,Fo(x))€S}).
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Then the t-energy of ug is

due(x )du@(w
H(po) //cmm@z (x—9)2+ (Fo () —Fo (1) )2] /2
_// dxdy
[(r—y)2+ (Fo(x)—Fo(y) 272"

Fixte(1,2—a—0), let

Et :/ It(]/l@)d@,
H

then by Tonelli theorem,

doe
E= | | e R

289

(3.3)

(3.4)

By Lemma 2.2, we have h(Z) < C;|x—y|~(“*%) for certain positive constant C that is

independent of x and y. It follows that

/ de
[(x—y)*+ (Fo(x) —Fo(y))?]"/?

h(Z
:/ [(x— y)(Z_:ZZ]t/ZdZ

h(lx—y[W)[x—y]|
/ lx—y|t( 1+W2)t/2dw

o dW
<suph(Z)|x—y|' t/wm
§C2|x_y’27a707t71'

Since t <2—a—7v, it holds that E; < 0. Thus we have proven for t <2—a —v that I;(yg) is
finite for almost every ® € H, which implies that the Hausdorff dimension of the graph of
Fg is at least t. Choosing a sequence of values of t approaching t <2 —a —v, we conclude
that for almost every ® € H, the Hausdorff dimension of the graph of Fg is at least t <

2—wa—v. That is
dimpy Graph(Fg,I) >2—a—0.
Thus, we complete the proof.
From Theorem 3.1 and Theorem 3.2, we get the result that

dimpy Graph(Fg,I)=2—a—0.
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4 Conclusions

This paper mainly studies the fractal dimension of a certain fractional function and
proves that there exists some linear connection between the order of Riemann-Liouvile
fractional integrals and the Hausdorff dimension of a fractal function. However, the con-
clusion is only true for some special fractal functions, we believe the linear connection
holds for general fractal functions all the time.
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